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Abstract—We propose a straightforward characterization of all quadratic time-frequency rep-
resentations covariant to an important class of unitary signal transforms (namely, those having
two continuous-valued parameters and an underlying group structure). Thanks to a funda-
mental theorem from the theory of Lie groups, we can describe these representations simply

in terms of unitary transformations of the well-known Cohen’s and affine classes.
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I. INTRODUCTION

Quadratic time-frequency representations (TFRs) have found wide application in problems re-
quiring time-varying spectral analysis [1,2]. Since the distribution of signal energy jointly over
time and frequency coordinates does not have a unique representation, there exist many different
TFRs and many different ways to obtain them. Up to the present, two classes of TFRs have pre-
dominated: Cohen’s class [1] and the affine class [2-4]. Cohen’s class TFRs are covariant to time
and frequency shifts in the signal, whereas affine class TFRs are covariant to time shifts and scale

changes in the signal.

Since time shifts, frequency shifts, and scale changes are not the only important signal transfor-
mations occurring in nature, several new TFR classes matching different transformations have been
proposed recently. The TFRs of the hyperbolic class [5] are covariant to “hyperbolic time shifts”
and scale changes, while the TFRs of the power classes [6] are covariant to “power time shifts”
and scale changes. Unitarily transformed Cohen’s and affine classes furnish even more TFRs [7,8].
While extremely simple both in concept and in application, the unitary equivalence or “warping”
procedure that generates these TFRs leads at once to an infinite number of new TFR classes co-
variant to a broad class of signal transformations. Coping with this veritable explosion of new TFR

classes demands a comprehensive theory for time-frequency analysis.

In this paper, we propose a simple characterization of covariant TFRs based on the theory of
unitary equivalence. The sufficiency of unitary equivalence for this task comes as somewhat of a

surprise, since this method proves more powerful than previously surmised.

II. CoHEN’S CLASS AND THE AFFINE CLASS

We denote the TFR of a signal s € L%*(IR) using the operator notation (Ps)(t, f), where
P : L*(R) — L?*(R?) is the TFR mapping and ¢ and f are the time and frequency coordinates,

respectively. We will emphasize only quadratic TFRs in this paper.
Each TFR in Cohen’s class [1,2] can be expressed as
(©)(.) = [[(As)(b.7)0(0,7) e D agr,

in terms of the narrowband ambiguity function of the signal (As)(8,7) = [s(t+ Z) s*(t — Z) /2™ di
and a kernel function ¢(8,7). TFRs generated by fixed kernels are covariant to the time shift op-

erator (T, s)(z) = s(x — n) and the frequency shift operator (F,,s)(z) = €/2™"5(z)

(CFT,8)(t, f) = (Cs)(t—n, [ —m) (1)



with m,n € IR. Conversely, all quadratic TFRs covariant in this way must belong to Cohen’s
class [2]. Covariance by translation is natural for Cohen’s class TFRs, because T and F comprise

the heart of the unitary representation on L%(IR) of the Weyl-Heisenberg group, with
(Fm1 TTLJ )(szTsz) = e_jQﬂmQM Fm1+m2 Tn1+n2-

(See [4,9,10] for more details on the role of group theory in time-frequency analysis.)

Each TFR in the affine class [2-4] can be expressed as

(Qs)(t.f) = //(AS)(& ) (8], fr) e~ dg dr,

with kernel (8, 7). TFRs generated by fixed kernels are covariant to the time shift operator and
the scale change operator (Dgs)(z) = |d|~Y%s(x/d)

QT.Das)(n ) = (@) ). 2)

Conversely, all quadratic TFRs covariant in this way must belong to the affine class [2-4]. Affine

covariance is natural for these TFRs, because T and D comprise the unitary representation on

L%(IR) of the affine group, with

(Tm Dd1 )(Tnz Dd2) = Tﬂ1+d1n2 Dd1 da -

III. UNITARILY EQUIVALENT

TIME-FREQUENCY REPRESENTATIONS

To match signal transformations different from time shifts, frequency shifts, and scale changes,
new classes of TFRs have been developed, including the hyperbolic class of TFRs covariant to scale
changes and “hyperbolic time shifts” [5] and the power classes of TFRs covariant to scale changes
and “chirp time shifts” [6]. While both of these classes can be derived from first principles, they

can also be obtained directly by transforming Cohen’s class and the affine class.

In particular, each hyperbolic class TFR can be expressed as VCU, where C is a Cohen’s class
TFR, U : L*(R) — L%(IR) is a unitary signal transformation and V : L?(R?*) — L%(IR?) is a
unitary change of variables [5]. Each power class TFR can be similarly expressed as VQU, where
Q is an affine class TFR [6]. (See [5,6,8] for the exact form of the transformations U and V.)
The primary advantage of this transformation-based derivation is its conceptual and computational
simplicity: To compute a hyperbolic or power class TFR, we simply preprocess the signal by the
unitary transform U, compute a Cohen’s class TFR C or affine class TFR Q of the transformed

signal, and then warp the axes of the resulting distribution by V.



Transformation of the Cohen’s and affine classes does not have to stop with the hyperbolic and
power classes. By varying U and V, we can generate an infinite number of transformed Cohen’s and
affine classes. We now summarize the salient features of the resulting theory of unitarily equivalent

TFRs developed in detail in [8].

Transformed Cohen’s and affine class distributions are covariant, not to time and frequency

shifts and scale changes, but to the unitarily equivalent operators
T,=U"'T,U, F,=U"'F,U, D,=U"'D,U.
To see this, ignore V for the moment and note that

(CUF,, T,s)(a,b) = (CUs)(a—mn,b—m) (3)

(QUT, Dys)(a,b) = (QU5)<“;”, db). (4)

The preprocessed distributions CU and QU maintain the same translation and affine covariances
exhibited by the distributions from which they are derived (compare (3) to (1) and (4) to (2)),
because the operator pairs FT and TD remain unitary representations of the Weyl-Heisenberg and
affine groups, respectively. Thus, transformed Cohen’s and afline classes are unitarily equivalent to

the original Cohen’s and affine classes.

While the coordinates (a,b) of the preprocessed distributions CU and QU do not correspond to
time and frequency (in fact, they correspond to the physical quantities associated with the operators
T and f‘), the postprocessing transformation V can warp (a, b) to new coordinates providing correct
time-frequency localization [8]. Given a fixed U, the procedure to determine the corresponding V is
straightforward: We simply warp the axes of the distributions by functions A(¢, f) and B(t, f) that
describe the group delay and instantaneous frequency of the transformed eigenfunctions U™'é(z—a)

and U~1e/2m7 of F and ’i‘, respectively.! For transformed Cohen’s class distributions, we set
(VCUs) (1, f) = (CUs)[A(L, [), B(t, [)].
The affine class case is similar.

The unitarily equivalent TFRs VCU and VQU remain covariant to the operators FT and ’i‘]NJ,
respectively, although V warps the group actions (3), (4) along the group delay and instantaneous

frequency curves of the transformed eigenfunctions [8].

The simplicity of the unitary equivalence principle makes the study of the properties of uni-

tarily equivalent TFR classes essentially trivial, since the attributes of any transformed class can

!The group delay of U™8(z — a) lies along the curve a = A(t, f). The instantaneous frequency of U127 ies
along the curve b = B(t, f) [8].



be obtained immediately from those of Cohen’s class or the affine class by a simple translation
procedure. (We simply replace s by Us throughout and warp the axes.) This translation has been

performed in detail in [8].

IV. A UNIFIED THEORY FOR

COVARIANT TIME-FREQUENCY REPRESENTATIONS

Unitary equivalence provides a simple means for developing an infinite number of different TFR
classes. However, it is not a priori obvious that this theory encompasses all possible covariant TFRs.
For instance, unitarily equivalent TFRs are bound (within warping) to the Weyl-Heisenberg group
and affine group covariances they inherit from Cohen’s class and the affine class. (In [7,8], this
was viewed as a limitation of the theory.) A comprehensive theory of covariant TFRs thus seems

a worthy goal.

A. Covariant Time-Frequency Representations

Our formulation will characterize TFRs covariant to a class of two-parameter unitary signal
transformations Gy, ;) that generalize the time-frequency shift and time-scale change operators so
natural for Cohen’s class and affine class TFRs. Physical considerations (invertibility, composition,
etc.) dictate that each of these transformations be a unitary group representation with group law
“e” [4,9,10]

G1.0) G 22) = Glo1,01)8(p2,02)- (5)

We say a TFR (Ps)(t, f) is covariant to G, ) if

(PGg8)t, f) = (Ps)(t, f)o(p,q),

where “0” is the representation of G, ) on the time-frequency plane (specifically, the coadjoint

representation [9,10]). Note that the group property (5) of G(, ) yields immediately that

(PG (p,,01)G (p2,00)5) (L [) = (Ps)(L, f)o[(p1,q1) o (p2: ¢2)]-

A similar (and equivalent) approach to covariance has been developed independently by Hlawatsch
and Bélcskei in [11,12]. In their terminology, G is a time-frequency displacement operator with “o”

the associated displacement function.



Examples of displacement operators and functions include: Gy, ) = F,,T», and (1) for Cohen’s
class TFRs;? G(ng = TnDg and (2) for affine class TFRs; Gy ) = F.T, = U 'F,T,U
and a version of (1) warped by A(t, f), B(t, f) for unitarily equivalent Cohen’s class TFRs; and
Gy = U~'T,D,U and a version of (2) warped by A(t, f), B(t, f) for unitarily equivalent affine
class TFRs.

B. A Simple Unified Theory

Unitary equivalence generates TFRs covariant to an infinite number of different two-parameter
displacement operators G. What we now show is that there exist no covariant TFRs beyond these.
In other words, the simple unitary equivalence procedure described in Section III proves sufficient

for characterizing all covariant TFRs.

The key realization is the following: Since the displacement operator G determining the covari-
ance properties of a TFR class is constrained by (5) to be a unitary group representation, it is
clear that the classification of all covariant TFR classes is equivalent to the classification of all two-
parameter Lie groups (within a phase) that can act on the signal space L?(IR). It has been recently
pointed out [10] that there exist only {wo such Lie groups: the Weyl-Heisenberg group leading to
displacement operators of the form G = UT'FTU and the affine group leading to displacement
operators of the form G = U™!TDU. Since the TFR classes covariant to these displacements
correspond to unitarily equivalent Cohen’s and afline classes, we have the following fundamental

result.

Theorem: All quadratric TFRs that are covariant in the sense of Section IV-A can be represented
in the form VCU or VQU, with C a Cohen’s class TFR, Q an affine class TFR, U a unitary
signal transformation, and V a two-dimensional coordinate transformation as described in Section

III.

V. DiscussioN AND CONCLUSIONS

An observation regarding the dearth of two-parameter covariances has lead us to an extremely
simple characterization of all covariant quadratic TFR classes as unitarily transformed Cohen’s or

affine classes. The “shortcut” of unitary equivalence gives this theory several advantages. First, we

?The Weyl-Heisenberg group actually has three, and not two, parameters; therefore, the displacement operator
G(n,m) = Fn T}, does not strictly obey (5). However, since the desired group IR? of translations in the time-frequency
plane does not have a representation on the space Lz(lR), we are forced to employ the Weyl-Heisenberg group in
signal processing applications. Fortunately, the third parameter plays the role of a phase and can be ignored.



see immediately that the set of all two-parameter time-frequency displacement operators inducing
covariant TFRs is limited to operators of the form UT'FTU or U 'TDU. Second, since each
covariant TFR class corresponds directly to either Cohen’s class or the afline class, we can leverage

our years of experience with these classes into new contexts with no additional effort.

It is straightforward to demonstrate the equivalence of our theory to that of Hlawatsch and
Bolcskei [11,12], since the axioms they impose on a time-frequency displacement operator constrain
it to be (within a phase) a unitary representation of a two-parameter Lie group. The prime
advantage of the present theory is its ease of use; in contrast, the Hlawatsch-Bélcskei construction
appears quite complicated. Thus, despite its striking simplicity, the power and generality of unitary

equivalent time-frequency analysis should not be underestimated.
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