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ABSTRACT

This paper investigates the design of Coiflet-like nearly
symmetric compactly supported orthogonal wavelets.
The group delay is used as the main vehicle by which
near symmetry is achieved. By requiring a specified de-
gree of flatness of the group delay at w = 0 (equivalent
to appropriate moment conditions), near symmetry is
achieved. Grobner bases are used to obtain the solu-
tions to the defining nonlinear equations. It is found
that the DC group delay that maximizes the group de-
lay flatness at w = 0 is irrational — and for a length 10
orthogonal wavelet with three vanishing moments, the
solution is presented.

1. INTRODUCTION

One of the interesting problems in the design of
wavelets 1s the problem of symmetry. Coiflets are an
example of wavelets with excellent symmetry proper-
ties [2, 3]. This paper discusses the design of nearly
symmetric compactly supported orthogonal wavelets.
The criterion used is the degree of flatness at w = 0
and w = 7 of the scaling filter frequency response mag-
nitude and its group delay (equivalent to appropriate
moment conditions). The way in which the group de-
lay approximates a constant is a traditional measure of
symmetry in filter design.

Grobner bases are used to obtain the solutions to the
nonlinear equations. There are multiple solutions, and
the group delay of all the real solutions are shown in
the figures of the example below.

2. NOTATION

The transfer function of a length N FIR filter is de-
noted by H(z) = ST h(n)z=!. The real and imagi-

nary parts of the frréqlolency response are denoted by
Rw) = R{H(e?*)} and I(w) = S{H(e?)}. The
frequency response square magnitude is then given
by F(w) = R?(w) + I*(w) and the group delay by
Glw) = (1) R () — Rw) "))/ F ().

To obtain an orthogonal wavelet, it is necessary to
impose the constraints:

> h(n)h(n +2k) = c - 5. (1)

*THIS WORK HAS BEEN SUPPORTED BY BNR AND BY
NSF GRANT MIP-9316588.

To obtain a flat frequency response magnitude be-
havior, H(z) is required to have a multiple degree
zero at z = —1, so that H(z) is of the form H(z) =
(z 4+ 1)K P(2), see [2, 3].

In this paper, instead of spectrally factoring a sym-
metric polynomial to obtain the coefficients h(n), the
nonlinear equations are expressed in the coefficients
h(n) directly.

The moments of H(z) will be useful. They are de-
noted and defined here by: m(k) = ZnNz_ol nfh(n).

Note that because F(w) and G(w) are even functions
of w, for odd I, F(l)(O) and G(l)(O) equal zero. The
degree of flatness of the response magnitude at w = 0
is denoted by M:

FZ)(0) =0 i=1,..., M. (2)

The degree of flatness of the group delay at w = 0 is
denoted by L:

G (0) =0 i=1,...,L. (3)

The square magnitude derivatives at w = 0 are given

by:
FEm(0) = ()

When F(0) = 1 and F?)(0) =0 fori = 1,...,n, the

group delay derivatives at w = 0 are given by:

From (4), the first few derivatives of the square mag-
nitude at w = 0 are:

P(0) = m? ()
F®(0) = 2m? — 2moms (7)
F(4)(0):6m§+2m0m4—8m1m3 (8)

(0)

9)



From (5), the first few derivatives of the group delay
at w =0 are:

G(0) = momy (10)
GP(0) = —momg + myms (11)
G(4)(0) = moyms — 3mima + 2 myms (12)
G(6)(0) = —mgmy7 + 5mymg — 9 mams + 5 mamy.

(13)

(The equation mg = 1 is used in this paper.) By in-
specting F(*)(0) and G(*))(0), it can be seen that when
an equal number of the derivatives are made to vanish,
then these DC flatness constraints are equivalent to the
moment equations: m; = m} for an appropriate range
of 7. However, if the number of group delay equations
used is less than the number of magnitude equations,
then not enough of the flatness constraints can be writ-
ten as m; = m! to obtain the filter coefficients h(n),
making the equations more difficult to solve.

3. PROBLEM FORMULATION

To obtain orthogonal wavelets with a specified degree of
flatness of the magnitude and group delay, the following
problem formulation is suggested. Given N, K, and
A (the specified DC group delay), find N real filter
coefficients h(0), ..., A(N — 1) such that:

1. H(1) = 1.
2. >, h(n)h(2k 4+ n) = %5k.

3. H(z) has aroot at z = —1 of order K.
4. G(0) = A.

5. G0y =0fori=1,...,N/2— K — 1.

4. GROBNER BASES

For this paper, Grobner bases [1] were used to solve
this problem formulation. Given a system of multi-
variate polynomials, a Grébner basis (GB) is a new
set of multi-variable polynomial equations, having the
same set of solutions. When the lexicographic ordering
of monomials is used, and there is a finite number of
solutions, the ‘last’ equation of the GB will be a poly-
nomial in a single variable — so its roots can be com-
puted. These roots can be substituted into the remain-
ing equations, etc — like back substitution in Gaussian
elimination for linear equations. Unfortunately, this
use of GBs is only practical for small problem sizes. We
were unable to obtain wavelets of longer lengths for this
paper using GBs due to the high computation needed.
(There are methods using GBs with other monomial or-
derings for solving multi-variable polynomial systems,
which we have not yet examined [5].)

5. DISCUSSION

Our goal is to obtain a set of coefficients for which
the group delay is very flat. In Figure 1, the group
delays for a set of length 10 filters (scaling vectors for
orthogonal wavelets) are shown. In each figure, the
group delay is incremented by one quarter. Each of
these filters possess a zero of multiplicity 3 at z = —1.

Because there are multiple solutions to the problem
formulated above, for each case there are several group
delay curves shown, each of which correspond to a filter

satisfying the requirements listed above.

The problem formulated above can be modified so
that the value of the group delay at w = 0 is not spec-
ified. With the extra degree of freedom so obtained,
an extra derivative of the group delay can be made to
vanish. The Grobner basis for the resulting set of poly-
nomial equations was found for N = 10, K = 3 using
the software ‘Singular’ [4]. (The Grébner basis for this

system contained a polynomial of degree 20.) The scal-
ing filter coefficients are given in Table 1. The Holder
exponent was found to be 1.0441. Figure 2 shows the
scaling function, the zero plot, and the group delay.
G(Z)(O =0fori=1,...,5. Here, G(0) was not spec-
ified, but was obtained by extracting the appropriate
root from the following polynomial of degree 20:

64A4%° — 5760A'% + 2412804'% — 62467204'7 +
111944784 A'% — 14736902404 + 1476073296041 —
1149547982404 + 705334664064412 —
3434246514720 A + 13301429369040410 —
40913515089360A° + 99378635912264A4°% —
188777678032800A7 + 2764592917109204° —
306048229816680A° + 249409993446324 4% —

144246954606480A° + 5597182614330042 —
13095607284000A4 + 1405452313125 (14)

This polynomial has only two real roots. The two real
roots, 3.75501 and 5.24498, are located symmetrically
about 4.5. The solution corresponding to one of these
roots 1s the time-reversal of the solution obtained by
using the other one of these roots. All the roots of
this polynomial are shown in Figure 3. Due to the
symmetry about 4.5, the change of variables y* = 2 —
4.5 gives a new polynomial of degree 10 the roots of
which can be mapped back.

6. CONCLUSION

By imposing constraints on the group delay derivatives
at w = 0, and by using Grobner bases to solve the
resulting multivariate polynomial system of equations,
Coiflet-like wavelets can be obtained. Currently, how-
ever, this technique is only practical for low order fil-
ters. Using this approach, for a fixed number of van-
ishing moments, it is possible to find the DC group
delay that maximizes the number of DC group delay
derivatives, as was done in the example above.
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Figure 1. The group delays of all the real solutions to the problem formulated in Section 3. of length N = 10
having a root at z = —1 of multiplicity 3. For each curve shown, G(l)(O) =0fori=1,2,3.
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Figure 2. The wavelet with length N = 10 having a
root at z = —1 of multiplicity 3, for which G (0) =
0 for ¢ = 1,2,3,4,5. For this wavelet, G(0) was not
specified, but was obtained by finding the roots of a
polynomial of degree 20. The consequent value of G(0)
is 3.75501.

Table 1. Length 10 scaling filter for which m; = G(0)

3.75501 and G) = 0 fori = 1,...,5. The scaling func-

tion, zero plot, and group delay are shown in Figure 2.
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Figure 3. The roots of the polynomial (14).
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0.01572426325815
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—0.01627935203249
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Roots of expression (14)
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