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ABSTRACT

This paper reports a new analytic technique for the
design of nonlinear-phase maximally-flat lowpass FIR
filters. By subjecting the response magnitude and the
group delay (individually) to differing numbers of flat-
ness constraints, a new family of filters is obtained.
With these filters, the delay can be reduced while main-
taining relatively constant group delay in the passband,
without significantly altering the response magnitude.

1. INTRODUCTION

A fair amount of attention has been focused on the de-
sign of non-symmetric digital FIR filters. Laakso et al.
discuss in [6] the design of non-symmetric FIR filters
for fractional delay applications. Other recent work
has given attention to the design of FIR filters that
approximate, in the Chebyshev norm, a given response
magnitude and group delay [3, 13] or a given response
magnitude and phase [2, 7]. Baher [1] gives an analytic
technique for obtaining non-symmetric FIR filters hav-
ing a maximally-flat behavior (see also [9, 10]). How-
ever, in [1], the degrees of flatness of the response mag-
nitude and group delay at w = 0 can differ by no more
than one. In the proposed paper, an analytic technique
is given for the same problem Baher addresses in [1],
but the degree of flatness of the response magnitude
and group delay need not be approximately equal.

Like the above cited papers, this paper considers the
problem of giving up exactly linear phase for approx-
imately linear phase in exchange for a smaller delay
and improvement in the response magnitude. The fam-
ily of new FIR filters described below are obtained by
subjecting the frequency response magnitude and the
group delay (individually) to differing numbers of flat-
ness constraints. The approach taken in this paper is
appropriate when:

1. Exactly linear phase is not required.
2. Some degree of phase linearity is desired.

3. A maximally-flat frequency response is desired.

2. NOTATION

The transfer function of a length N FIR filter is de-
noted by H(z) = ZN_Ol h(n)z~!. The real and imagi-

nary parts of the frequency response are denoted by
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R(w) = R{H ()} and I(w) = S{H(e¥)}. The
frequency response square magnitude is then given
by F(w) = R*(w) + I*(w) and the group delay by
Glw) = (I(w) R () — R@)I'())/ F(w)

The number of zeros of H(z) at z = —1 is denoted
by K. Note that because F(w) and G(w) are even
functions of w, for odd I, F(V(0) and G()(0) equal zero.
The degree of flatness of the response magnitude at
w = 0 is denoted by M:

FE)(0) =0 i=1,...,M. (1)
The degree of flatness of the group delay at w = 0 is
denoted by L:

G (0) =0 i=1,...,L. (2)

A filter satisfying these conditions will be said to have
flatness parameters (K, L, M).
The moments of H(z) will be useful They are de-

noted and defined by: m(k) = En S nfh(n).
The square magnitude derivatives at w = 0 are given

by:
FeM(0) = )

(2") )+ 2 Z (2”) 1)+ m()m(2n — i)

When F(0) = 1 and F?)(0) = 0 fori = 1,...,

group delay derivatives at w = 0 are given by:
GP(0) = (4)
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From (3), the first few derivatives of the square mag-
nitude at w = 0 are:

F0) = mo ()

}7(2)(
17(4)(
(

FO(0) = 20 m2 — 2moms + 12 myms — 30 mamy.

(8)

0)_6m2+2m0m4—8m1m3 (7)

The derivatives of G(w) are similar in appearance.

The half-magnitude frequency, denoted by w,, is that
frequency at which the response magnitude equals one
half. Like the 3 dB point, it indicates the location of
the cut-off point.
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Figure 1. A selection of nonlinear-phase maximally-flat filters of length 13. The four filters shown for which
K+ L+ M = 12 are solutions to the problem formulation of Section 3. For each of these four filters, the zero at
z = —1 is of multiplicity 6. The length 13 filters, the frequency responses of which are shown in the lower right
panel, are obtained by giving up two degrees of flatness and by specifying that the half-magnitude frequency be

0.6367 — and that the specified DC group delay be 3.5: 0.5 : 6. See [11, 12].




3. BASIC PROBLEM FORMULATION

To obtain maximally-flat FIR filters having different
degrees of magnitude and group delay flatness, the fol-
lowing problem formulation is suggested. Given the
flatness parameters K, L, M, (with K > 0, M > 0,
L < M), find N filter coefficients h(0),...,A(N — 1)
such that:

1. N=K+4+L+M+1.

2. F(0) = 1.

3. H(z) has a root at z = —1 of order K.
4. FC)(0)=0fori=1,...,M.

5. GP)(0)=0fori=1,...,L.

4. DISCUSSION

Note that the problem formulated in Section 3 gives rise
to nonlinear equations. Consequently, the existence of
multiple solutions should not be surprising, and indeed,
that is true here.

To find all the solutions, a Grobner basis can be
used. Given a system of multivariate polynomials, a
Grobner basis (GB) is a new set of multivariate poly-
nomial equations, having the same set of solutions [4].
When the lexicographic ordering of monomials is used,
and there is a finite number of solutions, the “last”
equation of the GB will be a polynomial in a single
variable — so its roots can be computed. These roots
can be substituted into the remaining equations, etc —
like back substitution in Gaussian elimination for linear
equations. Unfortunately, Grobner basis solutions are
only practical for small problems, because computing
a Grobner basis is highly computationally intensive.

It is informative to construct a table indicating the
number of solutions as a function of K, I and M. It
turns out that the number of solutions is independent
of K. The number of solutions as a function of L and
M is indicated in Table 1 for the first few L and M.
We should note that many solutions have complex co-
efficients or posses frequency response magnitudes that
are unacceptable between 0 and 7. For this reason, it is
useful to tabulate the number of real solutions possess-
ing monotonic responses, as is done in Table 2. From
Table 2, two distinct regions emerge. Let us define two
regions in the (L, M) plane. Define region I as all pairs
L, M for which L%J < L < M. Define region II as
all pairs (L, M) for which 0 < L < L%J — 1. See
Table 3. It turns out that for (L, M) in region I, all
the variables in the problem formulation, except G(0),
are linearly related and can be eliminated, yielding a
polynomial in G(0); the details are given in [11, 12].
For region II, we have no similarly simple technique.

4.1.

Panels 1 through 5 of Figure 1 show the frequency re-
sponses of four different FIR filters of length 13 for
which K + L + M = 12. Each of these filters has 6
zeros at z = —1 (K = 6) and 6 zeros contributing to
the flatness of the passband at 2 = 1 (L+M = 6). The
four filters shown were obtained using the four values
L=0,1,2,3.

Examples

Table 1. Number of solutions to the problem formu-
lated in Section 3.

L
0 [1]2]3[4a]5]6]7
0 1
1 2 3
2 4 4 | 5
M |3 8 6 | 6|7
41 16 | 8 | 8 | 8 | 9
51 32 |16 | 10| 10 | 10 | 11
6| 64 | 26|12 |12 | 12| 12| 13
T 128 | 48 | 24 | 14 | 14 | 14 | 14 | 15
Table 2. Number of real monotonic solutions, not
counting time-reversals.
L
0[1]2[3]4]5]6]7
011
Tif1 |1
21111
321|171
Mi4)2|1]11]|1
5412|111
6412|111
78141211 1

When L =3, M = 3, the symmetric filter shown in
the second panel of Figure 1 is obtained. This filter
is most easily obtained using formulas for maximally-
flat symmetric filters Herrmann presents in [5]. When
L = 0, M = 6, the minimum-phase filter shown in
the fifth panel of Figure 1 is obtained. This filter is
most easily obtained by spectrally factoring a length 25
maximally-flat symmetric filter. The other two filters
shown (L = 2, M =4 and L = 1, M = 5) can not
be obtained using the formulas of Herrmann. They are
new and provide a compromise solution.

Observe that for the filters shown, the way in which
the passband zeros are split between the interior of the
unit circle and its exterior is given by the values L and

Table 3. Regions I and II.

L

|
‘ ‘loll|2|3|4|5|6|7|8|9|10|'“

o|e|~|o|o| k| wl v|=|lo

region II

L=
=}




M. Tt is interesting to note that the location of these
zeros in this regard was not part of the way in which
the problem was formulated — so it is very satisfying.
It may be observed that the half-magnitude frequen-
cies of the four filters in Figure 1 are unequal. This is
to be expected, because the half-magnitude frequency
was not included in the problem formulation above. In
the problem formulation of Section 3 both the half-
magnitude frequency and the DC group delay can be
only indirectly controlled by specifying K, L, and M.

4.2. Continuously Tuning w, and G(0)

To understand the relationship between w,, G(0) and
K,L, M, it is useful to consider w, and G(0) as coordi-
nates in a plane. Then each solution can be indicated
by a point in the w,-G(0) plane. For N = 13, those
region I filters, that are real and posses monotonic re-
sponses, appear as the vertices in Figure 2.

To obtain filters of length 13 for which (w,, G(0)) lies
within one of the sectors, two degrees of flatness must
be given up. (Then K+ L+ M 43 = N, in contrast to
item 1 in Section 3.) In this way arbitrary (non-integer)
half-magnitude frequencies and DC group delays can be
achieved exactly. This is ideally suited for applications
requiring fractional delay lowpass filters.

The flatness parameters of a point in the w,-G(0)
plane are the (component-wise) minimum of the flat-
ness parameters of the vertices of the sector in which
the point lies. See [11, 12] for further details.

4.3. Reducing the Delay

To design a set of filters of length 13 for which w, =
0.6367 and for which G(0) is varied from 3.5 to 6 in
increments of 0.5, we use Figure 2 to determine the
appropriate flatness parameters — they are tabulated
in Table 4. The resulting responses are shown in the
lower right panel of Figure 1. It can be seen that the
delay can be reduced while maintaining relatively con-
stant group delay around w = 0, without significantly
altering the response magnitude.

Table 4. The flatness parameters for the filters shown
in the lower right panel of Figure 1.

| N[w/n|G(O) K L M
35 3 2 5

4 3 2 5

45 4 2 4

13| 0.636 ——————
55 3 3 4

6 4 3 3

5. CONCLUSION

The problem of simultaneous magnitude and group de-
lay approximation is a classic one in filter design. That
the problem is a difficult one for FIR digital filters is
made evident by the sophisticated iterative algorithms

Specification sectors, N=13

Figure 2. Specification sectors in the w,-G(0) plane for
length 13 filters in region I. The vertices are points at
which K+ L+ M +1 = 13. The three integers by each
point give the flatness parameters (K, L, M).

that are required [3, 7, 13]. However, if a maximally-
flat approximation is employed, then, for a class of FIR,
filters, there exists a straight-forward design technique
[11, 12].
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