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Abstract

Current theories of a time-varying spectrum of a nonstationary process all involve, either by definition
or by difficulties in estimation, an assumption that the signal statistics vary slowly over time. This
restrictive quasi-stationarity assumption limits the use of existing estimation techniques to a small class
of nonstationary processes. We overcome this limitation by deriving a statistically optimal kernel, within
Cohen’s class of time-frequency representations (TFRs), for estimating the Wigner-Ville Spectrum of a
nonstationary process. We also solve the related problem of minimum mean-squared error estimation of
an arbitrary bilinear TFR, of a realization of a process from a correlated observation. Both optimal time-
frequency invariant and time-frequency varying kernels are derived. It is proven that, in the presence of
any additive noise, optimal performance requires a nontrivial kernel, and that optimal estimation may
require smoothing filters very different from those based on a quasi-stationarity assumption. Examples
confirm that the optimal estimators often yield tremendous improvements in performance over existing
methods. In particular, the ability of the optimal kernel to suppress interference is quite remarkable,
thus making the proposed framework potentially useful for interference suppression via time-frequency
filtering.
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Program under Grant No. N00014-90-J-1270, and the Schlumberger Foundation.



1 Introduction

Spectral analysis is of fundamental importance in the analysis and processing of wide-sense stationary ran-
dom processes; the power spectral density (PSD) has an immediate physical interpretation as a spectral
distribution of power and plays a central role in linear filtering, prediction and estimation. However, highly
nonstationary signals arise in many applications, such as acoustic, speech, and biological signals. Thus, there
is a need for extending the techniques of classical spectral analysis to nonstationary processes.
Nounstationary Spectrum Estimation. A number of extensions for the definition of a nonsta-
tionary spectrum have been proposed, none of which is completely satisfactory. (Loynes has in fact argued
that a satisfactory extension may not exist at all [1].) More notable ones are the evolutionary spectrum
(ES) proposed by Priestley [2] for the class of oscillatory processes, and the Wigner-Ville spectrum (WVS)
proposed by Martin [3] for the class of harmonizable processes. Both definitions are based on second-order
statistics and reduce to the PSD in the stationary case. One attractive feature of the ES is that it is always
nonnegative, which is consistent with the usual interpretation of energy spectrum, whereas the WVS is not

necessarily so. However, there are quite a few important advantages of the WVS over the ES:
e The ES is not unique, whereas the WVS is.

e There is no assumption of “slowly time-varying characteristics” in the theory of the WVS, whereas
this assumption, except for the definition, underlies almost the entire development of the theory of the
ES.

e There is no simple way, in general, of computing the ES from the correlation function, whereas the

WVS is explicitly defined in terms of the correlation function.

The WVS also has some other desirable properties, as discussed in [3, 4], which the ES does not necessarily
have. For these reasons, we adopt the WVS as our definition for the nonstationary spectrum and address the
problem of estimating it from a realization of the process. But before we present our approach, we briefly
discuss the limitations of the existing estimation techniques, which require a new approach to overcome.

The problem of estimating the PSD from a single realization of a stationary process involves the well
known bias-variance trade-off; smoothing reduces the variance of the estimate but introduces bias. This
trade-off should be optimized in some sense. Ergodicity plays a central role for stationary processes in that
ensemble-averages can be replaced by time-averages. In the case of nonstationary processes, the situation
is complicated by the fact that the concept of ergodicity, in its true form, does not exist anymore, since
time-averaging smooths out the nonstationary structure of the process. To overcome this problem, the
quasi-stationarity assumption is usually invoked; that is, it is assumed that the characteristics of the process
are changing slowly with time so that locally, at any particular time ¢,, the process can be approximated by
a stationary process over some finite interval Ts(t,) around ¢,. The problem then reduces to PSD estimation
over Ts(t,). Implicit is the crucial assumption that the process also decorrelates fast enough so that a
reasonable estimate of the spectrum over T(t,) can be obtained.

As we mentioned before, this quasi-stationarity assumption is effectively embedded in the definition
of the ES because Priestley, with the problem of estimation in mind, develops his theory for the class of
semi-stationary processes whose characteristics are changing slowly with time [2]. Although the definition
of WVS does not involve any such assumptions, all current techniques for estimating the WVS invoke the
quasi-stationarity assumption [4, 5, 6]. Clearly, the quasi-stationarity assumption is not valid in general. For
example, there can exist spectrally stationary processes whose characteristics do not change with frequency,



or other classes of processes whose characteristics remain constant along certain directions or curves in the
time-frequency (TF) plane. This is simply due to the fact that the class of nonstationary processes is richer
than the class of stationary processes. Clearly, TF analysis, being primarily concerned with nonstationary
processes, needs to incorporate all these various kinds of processes; assumptions like quasi-stationarity are
far too restrictive to provide a satisfactory theory.

So, the question we address is: given the statistics of the process, and without making the quasi-
stationarity assumption, what is the “best” estimator of the nonstationary spectrum which optimizes the bias-
variance trade-off in some sense? For reasons discussed earlier, we begin with the WVS as our definition of the
nonstationary spectrum. As the class of estimators we choose Cohen’s class of time-frequency representations
(TFRs), which is described in the next section.! Since Cohen’s class is completely characterized by a kernel,
the question is equivalent to the “best” choice of kernel. In this context, (7) yields a useful interpretation of
the estimator; the WD of the realization z, the “empirical” WD, is smoothed by the kernel ®, which may
vary with time and frequency, to produce an estimate of the WVS.

As we have already noted, the concept of ergodicity does not hold for nonstationary processes. We
are confronted with the bias-variance trade-off, but unlike the case of PSD estimation where independent
smoothing in the time and frequency directions suffices, the direction of smoothing in the TF plane becomes
important in the nonstationary case. Intuitively, at each point (¢, f) in the TF plane, the kernel ® should
average over some region, G(; ), over which the characteristics of the process are essentially constant. The
shape, size and orientation of G(; sy are the crucial parameters and depend on the structure of the WVS.
If we allow @ to vary with time and frequency, then at each (t, f), its support should correspond to G, y).
On the other hand, if we aim to design ® so that it does not vary with time and frequency, then its support
should correspond to some sort of an average of the {G s} over (t, f). We will refer to the former as the
“local” and the latter as the “global” kernel. Clearly, if the shape and area of the {G 4 #)} vary substantially
over the TF support of the WVS, a local kernel would be more appropriate.

To capture these intuitive notions about the form of the kernel, we consider minimum mean-squared
error (mmse) estimation of the WVS. Recall that our primary objective is to optimize the bias-variance
trade-off, and since mean-squared error (mse) = variance + bias?, mmse estimation is clearly a reasonable
way of doing so. The global kernel is obtained by minimizing the integrated mse, whereas the local kernel is
obtained by minimizing the mse at each value of (¢, f). The support of the optimal kernel obtained in this
manner is then an estimate of the regions {G(;,s)}; we use this information to illustrate the importance of
the direction of smoothing in the TF plane, and that smoothing in the time and/or frequency direction(s) is
not always appropriate.

Optimal TFR Estimation. So far we have discussed the problem of estimating the WVS from
a realization, but our proposed framework naturally leads to another estimation problem as well. Instead
of estimating the spectrum, what if we are interested in estimating a particular TFR of a realization from
a noise-corrupted version of that realization? This is a plausible scenario, for example, for extracting the
TFR of a random signal, characterized by a finite set of random parameters, from a noisy observation of
a realization. More generally, we consider mmse estimation of an arbitrary TFR, characterized by a kernel
¢, of a realization of a process from the corresponding realization of a correlated process. The class of
estimators is again Cohen’s class characterized by the kernel ¢, which may (local) or may not (global) vary

with time and frequency. We assume that the kernel ¢,, which we shall refer to as the reference kernel and

'We note that Martin and Flandrin [4], and Amin [5, 6] also consider the same class of estimators. Other choices of the class
of estimators are also possible; refer to the remarks in the concluding section.



which may also vary with time and frequency, yields useful TFRs for all realizations of the process. We shall
refer to this problem as the “TFR estimation” problem.

As we have already mentioned, all existing techniques for nonstationary spectral estimation assume
quasi-stationarity [4, 7, 5, 6, 8]. In particular, Kayhan, El-Jaroudi and Chapparo [7], and Riedel [8] have
proposed techniques for estimating the ES from a realization. On the other hand, Martin and Flandrin [4],
and Amin [5, 6] have addressed the problem of estimating the WVS using TFRs from Cohen’s class; the focus
has primarily been on smoothed-pseudo-Wigner distributions (SPWDs) because they allow independent time
and frequency smoothing owing to separable kernels. In [4], Martin and Flandrin propose SPWDs as a class of
estimators, and in [5] Amin has proposed approximating arbitrary time-frequency kernels by SPWD kernels
for nonstationary spectral estimation. Thus, we primarily restrict the comparison of our optimal kernels
to SPWD kernels. We note in passing that in [6], the Born-Jordan kernel [9] was shown to be optimal in
the sense of minimizing average variance for white noise processes. However, the effect of averaging on bias
was not taken into account in [6], and it seems unlikely that a kernel optimal for white noise will perform
satisfactorily for nonstationary processes.

We now present an outline of the paper. In the next section we define the WVS and describe our class
of estimators. In section 3 we discuss the global WVS and TFR estimation problems, and in section 4 we solve
the corresponding local problems. Some particular cases of global WVS estimation are presented in section
5 to show that the optimal kernel solutions are intuitively satisfying. Section 6 illustrates the superiority
of the proposed scheme to existing methods through examples. Section 7 highlights the significance of the
results and the limitations.

2 The Class of Estimators

The WVS of a random process, X, is defined as
WVx(t, f) = E{/X(t +7/2)X*(t —7/2)e" P Tdr} = /RX t+7/2,t—7/2e ?Tdr, (1)

where E denotes the expectation operator and Rx (u,v) = E{X (u)X*(v)} is the correlation function of X.
All unlabeled integrals go from —oo to co. The integral inside the expectation operator is a stochastic
integral, formally the Wigner distribution (WD) of X, and will be interpreted as a mean-square (m.s.)
integral. The interchange of expectation and integration in the second equation is justified if the above-
mentioned stochastic integral exists in the m.s. sense; a necessary and sufficient condition for its existence
being

//E{qx(t, )@ (t,72) e 2 (=T g dry < oo for all (¢, f) (2)

where gx (t,7) = X(t + 7/2)X*(t — 7/2). In addition, we restrict ourselves to harmonizable processes [3],

the processes for which the two-dimensional (2D) Fourier transform of Rx(t, s) exists; that is,
Rx(t,s) = //ew”’“‘e_m””FX (1, v)dpdy . (3)
The WVS can then be equivalently expressed in terms of Fx (u,v), the spectral correlation function [3], as
WVx(t, f) = / Fx(f +06/2, f — 6/2)e2tdg . @)

Note that the WVS contains all the information in the correlation functions because both can be recovered
from WVx via a Fourier transform. Another useful, equivalent, representation of the correlation functions
is in terms of the expected ambiguity function of the process (see (6)).



We are concerned with the estimation of the WVS from a realization of the process. Our class of
estimators is Cohen’s class [9] of bilinear time-frequency representations (TFRs). Although Cohen’s class
has been defined for deterministic signals, it will become clear from the following discussion that it can also
be used for estimation of the WVS.

For a given deterministic signal, z, a particular TFR from Cohen’s class can be written as [9]
Pi(t, f;9) = / / Ay (0,7)¢(0,7)e 2™ T2 dhdr | (5)
where A;(0,7) is the ambiguity function (AF) of the signal x, defined as
A,(6,7) = / 2+ 7/ (u — 7/2)e” 2T (6)

and ¢(0,7) is the 2D kernel which completely characterizes the particular TFR P,; the kernel may explicitly
depend on time and frequency. P, can equivalently be expressed as

Po(t, f;) = / / Wt fY8(t — ', f — f)dt'df’ = (W, 5% B)(t, f) | (1)

where “xx’ denotes 2D convolution, W, is the WD of the signal z, and @ is the 2D Fourier transform of ¢;
é(u; V) = ‘7:9—)7uf7'—>1/¢(077-)'
The interpretation of Cohen’s class as a class of estimators for the WVS becomes clear from the

following equivalent expression for P;:

Put, f; D)= / { / 2w+ 7/2)a" (u — /2T - u, T)du} e I gy / Bolt+7/2,t—7/2)e > 7dr | (8)

where TI(u,7) = Fyp_,_,P(0,7) is the representation of the kernel in the (¢,7) domain. If z denotes a
realization of a random process, then the inner integral in (8) represents an estimate, formed by the kernel
II, of the correlation function, Rx. This estimate is then used to form an estimate of the WVS.

Finally, we note that if x denotes a realization of a random process, then all the integrals defined in
(5)-(8) become stochastic integrals and will be interpreted as m.s. integrals. We assume that the kernel ¢ is

chosen such that the existence of the WD as a m.s. integral implies the existence of Px as a m.s. integral.

3 The Global Problem

In this section we formulate and solve the global WVS and TFR estimation problems, in which the kernel is
not allowed to vary with time and frequency, and discuss the implications of the solutions. From now on, we
will use uppercase letters to denote random processes and variables, and lowercase letters for realizations,

deterministic signals, and constants.

3.1 Global WVS estimation

Recall from the introduction that the objective here is to optimally estimate the WVS of a process from an
observed realization of a correlated process; the observed realization, for example, may be a noise-corrupted
realization of the process whose WVS is desired. We now formulate the problem.

Let X(t) and Y (¢), t € T C IR, be two random processes defined on the same probability space. ¥
denotes the process whose WVS, W1y, is to be estimated from a realization x of X; X can either be Y or

a process correlated in some way to Y, such as a noise-corrupted version of it. We assume that both X and



Y possess finite fourth-order moments and that 7' C IR is a finite interval. This, in particular, implies that
both processes have finite energy; that is,

/E{|X(t)|2}dt <0, )
T

and similarly for Y. This is not a restrictive assumption because in practice we will always be dealing with
finite observation intervals, and all realizations will be of finite energy almost surely. Let ¢ denote the kernel
which characterizes our estimate P(¢) of WVy. As motivated in the introduction, we are interested in

mmse estimation, and since our objective is to design a global kernel, the problem is formulated as

¢opt=arging{ / /T |Px(t,f;¢)—va<t,f)|2dtdf} - (10)

That is, ¢op+ minimizes the integrated mean-squared error between Px and WVy . Using Parseval’s theo-
rem and assuming that the integral in (10) exists in the m.s. sense, we arrive at the following equivalent

formulation:

¢opt = arg lgf/ E{|AX (07 T)¢(07 T) _EAY (07 T)|2}d0dT . (11)

The integrand in the above equation is a nonnegative quantity for all (6, 7), so the infimum of the integral

is equivalent to obtaining the infimum of the integrand for each value of (6, 7). Thus we have
¢0Pt(0’7—) = arg ¢%2f)E{|AX (0,T)¢(9,T)—EAY (9,7‘)'2}, (077—) € R?. (12)
T

The solution is quite clear now. For each value of (0,7), Ax(6,7) is a second-order random variable,
EAy(0,7) is a constant, and (12) says that ¢op:(6,7) should be chosen so that Ax (6, 7)dop:(6,7) is the
linear mmse estimate of EAy (6, 7) given Ax (6, 7). By the orthogonality principle [10], ¢op: must satisfy

BX (07 T)¢0pt (07 T) = BYX (07 T)J (07 T) € IR2 ) (13)
where
Bx(0,7) = E{|Ax(0,7)[’} >0, (14)
and
Byx(0,7) = EAy (6, T)EA% (0, 1) . (15)
Also define By as
By (0,7) = |BAy (0,7)]> > 0, (16)
and the support of By x as
Syx ={(8,7) € R? : |Byx(6,7)| >0}, (17)

where overbar denotes closure with respect to the Euclidean norm on IR?. Similarly define Sx,Sy as the
supports of Bx, By, respectively. Note that Syx C Sx NSy, which follows from the Cauchy-Schwarz (CS)
inequality.

From (13) we note that ¢, can be explicitly obtained by inverting (13) for each (8,7). If Bx is
bounded away from zero over Syx, that is Bx(6,7) > a > 0 for (0,7) in Syx, then ¢, is bounded.
But ¢,,: may be unbounded if Bx is not bounded away from zero over Syx, and in that case a bounded
approximation to ¢,¢ can be obtained as discussed in Appendix A. However, it can be shown that if the

observed process X includes some independent, additive white Gaussian noise, then By is bounded away from



zero, and hence ¢yt is bounded [11]. Thus, in most cases of interest, the following proposition characterizes
the globally optimal kernel.

Proposition 1. Let Bx, By, Byx and Syx be as defined in (14), (16), (15) and (17), respectively. Then,
the globally optimal kernel, ¢, solving (10), is given by

kyx(0,7) if(8,7) €S
Pore(6,7) = { OYX( ) Otl(lerw)ise = ’ (18)
where Byx(6.7)
yx\Y,T
—=Ya\n J 1
kyx(0,7) Bx(0.7) (19)
and the corresponding minimum mean-squared error is given by
By x(6,7)]2
mmse = / By (0, 7)d0dr + / [By(a,f) _ ByxO. D jog, (20)
Sy\SYX SYX BX(05T)

Proof: (18) and (19) follow immediately from (13) by noting that that since Sy x C Sx, (8,7) € R*\Syx =

¢opt(8,7)= 0. The expression for minimum mse is obtained by simply substituting ¢, for ¢ in

mse(d) = / E{|Ax(6,7)6(6,7) — EAy (0, 7)[2}dodr (21)

and taking into account the supports of the various terms.
Corollary. If X =Y, that is, the observed process is noise free, then

|[EAx(0,7)|?

kyx(0,7) = F{[Ax 6,17} (22)

The expression for ¢op in (18) is quite informative about its support. Let Sx, Sy denote the

supports of EAx and EAy, respectively, and S, the support of ¢,,:. From (17) and (15), it is clear that

Syx = SxNSy. Thus, from (18) and (19), it follows that Sy = Sx N Sy for the case when $opt is bounded

(when ¢, is not bounded, S 3R Sx N S'Y) For most cases of observation noise in X (independent, additive

or multiplicative noise, for example), Sy C Sx. Thus, essentially, Sy = Sy. This says that the support

of the optimal kernel, ¢,,:(6,7), is matched to that of the expected AF of the process ¥ whose WVS is

to be estimated. This is the first indication that the optimal kernel possesses the desired characteristics as

discussed in the introduction. We will return to this discussion in section 5 when we consider some specific
cases.

Another interpretation of the global solution can be obtained as follows. Let

_ EA%(0,1)
¢1(0,T) = m

Then, ¢opt = p1EAy. This implies that

Pz(taf;¢0pt) :WVY(t,f) **Pz(taf;¢1) . (24)

That is, the globally optimal estimate of WVy | based on the observed realization z, is W Vy itself, convolved
with a TFR of x generated by ¢ .

Arbitrary Nonstationary Spectral Estimation. So far we have discussed optimal estimation
of the WVS, which is formally the expected value of the WD of the process (see (1)). Now suppose that



instead of estimating the WVS, we are interested in estimating an arbitrary nonstationary spectrum, defined
as the expected value of an arbitrary TFR characterized by a kernel ¢,(6,7); that is, we want to estimate

E{Py(t, f; %)} In this case, the optimization problem becomes

Gopy =argind B { /I IPx(t,f;¢)—EPy(t,f;¢o)|2dtdf} , (25)
and ¢,y is characterized by
Bx(8,7)¢opt(8,7) = By x(0,7)¢,(0,7), (6,7) € R?, (26)

that is, ¢opt = dwvsdo = ky x ¢o, where ¢y s = kyx is the optimal kernel for WVS estimation given by
(18). For example, if we choose the Rihaczek distribution (¢, (8, 7) = €™7) [9] for defining the nonstationary
spectrum, the optimal kernel is ¢,,:(0,7) = €™ By x(0,7)/Bx (0, 7).

From the above discussion we see that given the kernel, ¢,, defining the nonstationary spectrum, the
optimal kernel is completely characterized by ky x = By x/Bx. Clearly, based on the observed realization, z,
and without any other information, the simplest and most intuitive estimate of the spectrum, E{Py (¢, f; ¢o)},
is the “empirical” TFR, P.(t, f;¢,); for example, the simplest estimate of the WVS is the WD of the
realization. On the other hand, the optimal estimate is P, (¢, f; kyx¢,). Thus, kyx characterizes the
averaging (filtering) done on the empirical TFR by the optimal kernel to yield the optimal estimate. A
natural question is whether the empirical TFR itself is an adequate or optimal estimate in certain situations
(“no-averaging” scenarios)? In Appendix B (Proposition B1) we show that in almost all nontrivial cases the
empirical TFR is not an optimal estimate; that is, ky x (6, 7) is not identically a constant, and thus effects
some averaging for optimal estimation.

An important scenario of nonstationary spectrum estimation is when X is a noise-corrupted version
of Y. In this case, Proposition B1 makes a strong statement: it says that if the noise is independent of the
process Y, then the empirical TFR is never an optimal estimate unless there is no noise; that is, X =Y.
In addition to that, the process itself must be more or less degenerate: a deterministic signal scaled by a
random variable. A special case of this scenario is that of estimating a particular TFR, say the WD, of a
deterministic signal from an observation which has additive Gaussian noise in it. In this case, an argument
similar to the proof of Proposition B1 shows that smoothing of the empirical WD is needed unless there is
no noise.

Also, it is shown in Proposition B2 that perfect estimation (mmse=0, an example of no averaging) is
possible if and only if Y is essentially a deterministic signal scaled by a random variable, and X is the same
deterministic signal scaled by a possibly different random variable.

The broad implication of the discussion in Appendix B is that, in almost all cases of interest, some av-
eraging is necessary in order to optimally estimate the nonstationary spectrum of a process from a realization;
the empirical TFR would be too noisy an estimate.

We note in passing that any side constraints on the kernel that constrain ¢(6,7) to have certain fixed
values for some regions in the (f,7) domain, like the time, frequency, or energy marginal constraints, can
easily be incorporated because of the simple “least-squares” nature of the optimal kernel solution; simply
set @opt(0,7T) to the constrained values over the constrained regions and solve for the optimal values, as in
Proposition 1, over the remaining regions.

We finish our discussion of global WVS estimation by generalizing the results to the case of multiple

independent realizations. Suppose that we have M independent realizations, x1, 2, --xar, of X available



to us. The most intuitive estimate of the nonstationary spectrum, EPy (¢,), is the empirical average of the
empirical TFRs, Py, (¢,);

1 M
7 Y P40 (27)
k=1

whereas we are interested in finding the kernel qﬁ%t which, when applied to the empirical average (27), results
in a mmse estimate. Thus, equivalently, the kernel acts on the empirical average of the observed ambiguity

functions, A, = % Zkle Az, and it can be easily verified that the optimal kernel is given by

_ BAy(8,7)EA%(0,T) 6.(0.7) = MEAy (6, T)EA% (6,7)
- E{Ax 6,02y 7 E{JAx(6,7)} + (M - 1)|[EAx(9,7)

g/p{t (07 T)

E $o(6,7) - (28)

3.2 Global TFR estimation

As mentioned in the introduction, in the TFR estimation problem we are interested in estimating a particular
TFR of a realization of a process from the corresponding realization of a correlated process. For example, we
may wish to estimate the TFR of a signal in the presence of additive noise and nonstationary interference.
More specifically, let X () and Y (¢t), t € T C IR, be two random processes defined on the same probability
space. We again assume that both X and Y possess finite fourth-order moments and that T is a finite
interval. Let ¢, denote the reference kernel, which we assume to have been chosen to produce useful TFRs
for all realizations of Y. X is the observed process, which is correlated with Y. Recall that a typical scenario
for this problem is where Y represents a random signal characterized by a finite set of random parameters,
X represents a noisy version of Y, and the objective is to undo the effects of noise to yield a good estimate
of Py(¢,) from the noisy observation z.

We are again interested in mmse estimation of Py(¢,) by P, (¢), and since we want to design a global
kernel, the problem is formulated as

¢o,,t=a.rging{ /I |Px(t,f;¢)—Py(t,f;¢n|2dtdf} . (29)

The above problem is very similar to the WVS estimation problem in (10), the only difference being that in
(29) what we are trying to estimate, Py(¢,), is a random function as opposed to the deterministic function

WVy in (10). Proceeding similarly as in the previous section, we arrive at the following characterization of

¢opt:
Bx (05 T)¢opt (05 T) = BYX (05 T)¢T (07 T)a (05 T) € ]R'Q ) (30)

where Bx is defined as before in (14) and
Byx(8,7) = E{Ay (8, 7)A%(6,7)} . (31)
Also define By as
By (8,7) = E{|Av(8,7)} . (32)
We thus have the following proposition, which characterizes the optimal kernel.

Proposition 2. Let By, By x and By be defined as in (14), (31) and (32), respectively. Then, the globally
optimal kernel, ¢,p¢, solving (29), is given by

_  kyx(6,7),(6,7) if (6,7) € Syx
Popt (0, 7) = { 0 otherwise ’ (33)



where S’y x is the support of By x and

Byx(a, T)
— \"o 1/ 4
kvx(0,7) = 5207 (34)
The mmse is given by
2 2
mmse = / |68, 7)|* By (6, 7)dfdr +/ |6, (8,7))? | By (6, 7) — [Byx 0, 1)1 dbdr (35)
Sy \Sy x Syx Bx (9:7—)

where .§y is the support of By.
Proof: Similar to the proof of Proposition 1.

We note that ¢,y in (33) may not be bounded, in which case a bounded approximation can be
obtained in a similar way as discussed in Appendix A.

It is worth noting the similarity of ¢,p: to the optimal Wiener filter for linear mmse estimation of a
reference stationary process from an observed process: H(f) = Syx(f)/Sx(f), where H(f) is the transfer
function of the optimal Wiener filter, Sy x (f) is the cross-power spectral density of the processes, and Sx (f)
is the (auto-)power spectral density of the observed process. To see the similarity, first note that ¢op is
simply a weighted version of the reference kernel ¢,, and thus the weighting ky x completely characterizes
it, given ¢,. And as evident from (31) and (14), By x is simply the zero-lag cross-correlation between the
ambiguity functions Ay and Ay, and By is the zero-lag auto-correlation of Ax.

The expression for ¢,p; in (33) also shows that the support of the optimal kernel is more or less
concentrated in that region of the (f,7) plane where the cross-correlation Byx is significant. This also
makes intuitive sense because we are interested in those components of X which are strongly correlated with
Y and wish to attenuate those which are not. Actually the support of ¢,p:, Sy, satisfies, Sy C Sx N Sy.
These observations again suggest that the optimal direction of smoothing in the TF plane depends on the
structure of the processes and need not be along the time and/or frequency directions. This property of the
optimal kernel will become more apparent when we discuss some specific cases in the section 5 and examples
in section 6.

In the TFR estimation problem, the simplest and most intuitive estimate of the reference TFR,
Py(t, f; ¢r), based on the observed realization, z, is the empirical TFR, P, (t, f; ¢»). The optimal estimate
is P.(t, f; kyx®,) and thus, just as we argued in the previous section, kyx defined in (34) completely
characterizes the optimal averaging done on the empirical TFR to yield the optimal estimate. Again,
parallel to the Proposition B1 we show in Appendix B (Proposition B3) that the empirical TFR is almost
never optimal; some averaging is always needed in general.

We mention that Altes [12] has discussed a similar problem of estimating the signal from a spectrogram
of its noisy observation. Since a signal can be recovered (within a complex constant factor) from its AF, he
essentially addresses the problem of mmse estimation of the AF of the signal from a spectrogram of a noisy

observation of the signal.

4 The Local Problem

In this section we solve the local estimation problems, in which the kernel ¢ is allowed to vary with time

and frequency in order to better track the nonstationary structure of the processes.
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4.1 Local WVS estimation

Let X and Y be two random processes defined the same way as in section 3.1. The local WVS estimation

problem is formulated as
St = argint E{|Px(t, f:) = WW (1, )P} . (36)

where ¢t € T and the superscript (¢, f) denotes the possible dependence of the kernel on time and frequency.
This is again a problem of linear mmse estimation. First note that for each value of (¢, f), Px(t, f;¢ €
L»(TR?)) belongs to a Hilbert space H of second-order random variables, defined on the underlying probability
space. The random ambiguity function, Ax (6, 7), generates a subspace Mx of H, as defined by Px (¢, f; ¢)

(see (5)):

Mx = {Px(t,f;¢) : ¢ € Lo(IR*)} . (37)
In the local problem (36), the orthogonal projection of WVy (t, f) onto My is desired.?2 Thus, by the
orthogonality principle and using the expression for Px (¢, f; ¢) in (5), ¢§f,;{ ) is characterized by

E{[Px(t, f;{5)) — W (t, )] A% (8',7')} = 0, for all (¢, 7") . (38)
Expressing Px as in (5) and WVy in terms of EAy, we can write (38) as
B{Ax(0,7)A% (0, 7)}e?" O D LD (0 rydgdr = WV (t, f)E{A% (6',7')}, for all (¢',7) . (39)

r2

(t.f)
opt

insight about the optimal solution. The linear equation is of the form A sy¢ = WVy(t, f)b where A :
Ly(R?) = Ly(IR?) is a linear operator and b = EA% € Ly(IR?). Thus, the solution can be formally written
as

The above linear equation characterizes the locally optimal kernel, ¢ from which we can gain some

o5 = Wi (t, )AL b, (40)

where the superscript ‘7’ denotes the pseudo-inverse. This implies that
Pot, f505]) = WV (t, F)Pa(t, £; A, D) - (41)

That is, for each value of (¢, f), the optimal estimate of WVy (¢, f) based on the observed realization z is
WVy(t, f) itself, scaled by a constant which is the value of the TFR of x generated by ¢ = A}Lt b Thus,

the TF support of the optimal estimate P, (t, f; q)s;tf )) is contained in the support of WVy (t, f). Note that

if we constrain ¢ to be independent of (¢, f), then (39) yields the global solution (13) by multiplying both
sides with e~227(#=7'f) and integrating over (¢, f).

4.2 Local TFR estimation

Let the random processes X and Y be defined in the same way as in section 3.2. Similarly to local WVS

estimation, we formulate the related problem of local TFR estimation as
St = argint B{|Px(t, f:6) = Pr(t, 6P}, teT, (42)

Note that the reference kernel, ¢, € Ly(IR?), may also vary with time and frequency in this case.® Apart
from that, (42) is very similar to (36), except that in this case the quantity to be estimated, P, (¢, f; ¢,),

2Since we are projecting onto M x, ¢opt may not be in L2(IR?), in general.

3Although ¢, € La(IR?) strictly precludes the consideration of the WD as the reference TFR, in almost all cases the essential
support of the AF realizations will be finite, in which case the WD can effectively be characterized by a unity kernel on that
support (and zero everywhere else), making it an admissible reference TFR.
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is a random variable as opposed to the constant WVy (¢, f) in (36). Proceeding similarly to the local WVS

estimation solution, we arrive at the following characterization of the optimal kernel
E{Ax(0,7)A% (6, 7')}e2™ =D g{b1) (g 1V dgdr= /E{Ay 6, 7) A% (6, 7) Y2 @D () (8, 7)d6dr
Rr2 r?2
for all (6',7") . (43)

The above equation is again a linear equation of the form A, sy = B 5y ¢, where Ay 5y, B 5y 1 Lo (IR?) —
Ly(IR?) are linear operators. In this case also, if we constrain ¢ and ¢, to be independent of (¢, f), then (43)
yields the global solution (30).

We note a few things about the two local solutions. Comparing (39) with (13), and (43) with (30),
we note that the local solutions require much more computation and much more statistical information
about the processes X and Y. Even if we have the required statistics, (39) and (43) involve tensors, which
makes the local solutions computationally intensive. However, since the cost functionals in (42) and (36) are
quadratic in the kernel ¢, if we know the required statistics we can use any standard quadratic minimization

algorithm to find ¢g§;{ ),

5 Some Special Cases

In this section, we consider globally optimal WVS estimation for three special classes of processes, the
motivation being to check whether or not the optimal kernel solutions are intuitively satisfying. The three
classes of processes that we consider are: temporally stationary processes, spectrally stationary processes, and
processes whose Karhunen-Loeve (KL) eigenfunctions are linear chirps. In all cases, we assume zero-mean,

complex Gaussian processes, which results in the following moment decomposition [13]

E{X(t1)X*(t2)X*(t35) X (t4)} = Rx(t1,t2)Rx(ts,t3) + Rx(t1,t3)Rx (ts,t2)
FE{X (t2) X (84) }E{ X" (t3) X" (t4)} - (44)
To simplify computation, we also assume that {X (¢), t € T} and {e?? X (t), t € T'} are identically distributed

for all € R (circular Gaussian), which results in the third term in (44) being identically zero (Grettenberg’s
Theorem) [13].

5.1 Temporally stationary processes

Let X be a temporally stationary process. Then, the correlation function becomes Rx (t,s) = Rx(t — s),
and the WVS reduces to the PSD, Sx:

WV (t, f) = / Ry (r)e=217dr = Sx(f) . (45)

In the case of a finite observation interval [0,T], for T sufficiently large and the decorrelation time of Rx
much smaller than T, EAx can be approximated as

TRx(r) if6=0

EAx(0,7) ~ { 0 otherwise (46)

Recalling that the support of ¢, is the same as that of EAx, we note from (46) that the optimal kernel is

effectively one-dimensional. Its variation along 7 is characterized by wyp:(T) = ¢opt(0,7), which is given by

_ |[EAx(0,7) IR0
|[EAx(0,7)[? + var{Ax(0,7)} ~ |Rx(7)?+ 7 [Sx(wdu’

(47)

Wopt (T)
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where 7 € [-2T,2T]. The expression for we,: in (47) is exactly the expression for the optimal window
for mmse estimation of the PSD of X [14]. Note that, in this case, the optimal kernel does uniform time-
averaging over the entire interval [0, T]; that is, II(¢, 7) = %wom (1),t € 10,T],7 € [-2T,2T] in (8), neglecting
end effects. This makes intuitive sense because the process is temporally stationary. Smoothing in the

frequency direction is governed by the Fourier transform of wep; via ®(t, f) = FrfII(t, 7) (see (7)).

5.2 Spectrally stationary processes

The TF dual of the class of temporally stationary processes is the class of spectrally stationary processes
whose 2D spectral correlation function, Fx, is only a function of the difference of its arguments; that is,
Fx(u,v) = Fx(u — v). In this case, the WVS reduces to the “power temporal density (PTD)”, Qx:

WV (t, f) = / Fy (0)e2™dg = Qx (£) . (48)

In the case of finite observation bandwidth, f € [0,B], if B is sufficiently large and the decorrelation
bandwidth of Fx is much smaller than B, again we find that the optimal kernel is essentially one-dimensional
and is characterized by the function H,,:(0) = ¢op(6,0) given by

- |Fx (6)?
HortO) = T @P+ 5 J @

where 6 € [-2B,2B]. In this case we note that the optimal kernel does frequency-averaging over the entire

(49)

bandwidth [0, B], which is consistent with the fact that the process is spectrally stationary.

5.3 Chirp processes

We now consider a class of processes for which the optimal solution clearly demonstrates the inadequacy
of existing methods for nonstationary spectral estimation. We consider processes whose KL expansion [15]
is characterized by eigenfunctions which are linear chirps, all having the same chirp rate. Such a process
would arise by modulating a stationary process by e’ Let X (t), t € [0,T], be a process whose correlation

function Rx admits the eigenexpansion

K
Rx (ta S) = Z )\kSDk(t)WZ (5) ) (t7 S) € [0,T]2 ) (50)
k=1
where )
t)=—=eiCmitttat®) [ —1...K a€R, te0,T], 51
er(t) Wi [0,T] (51)
fr = % for some integer m and the f;’s are distinct. Using (50) and (1), the WVS is given by
K
WVX (t7 f) = Z )‘k:WlPk (t7 f) ) (52)
k=1

where, for T large and ¢ not close to 0 or T, Wy, (t, f) is concentrated along the ridges 6(f— fx — %) in the
TF plane. Similarly, the expected AF is given by

K
EAx (03 T) = Z )\k:AsOk (97 T) 3 (53)

k=1
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where
ar

Ay, (8,7) = e e ™0 gine (nT(9— 7)) , (54)
which, for T large enough, is highly concentrated along §(§ —<%). Again, since the support of ¢op; is the
same as that of EAx, we note from (53) and (54) that, in this case, for T long enough, the support of
Gopt is essentially concentrated along the line characterized by §(6— 7). Thus, the optimal kernel does TF
smoothing along the chirp direction, which makes intuitive sense because the characteristics of the process
remain more or less constant along that direction.

This case clearly demonstrates the need for smoothing in arbitrary directions in the TF plane depending

on the TF structure of the process. Smoothing kernels proposed in the past [4, 5, 6] do not possess this
property.

6 Examples

In this section we present some examples to illustrate the superiority of the proposed technique to existing
methods. For WVS estimation, the performance of the globally optimal estimator is compared with that of a
smoothed-pseudo-Wigner (SPW) estimator proposed by Martin and Flandrin [4], which uses a length 2/ —1
rectangular window for time-smoothing and the Fourier transform of a length 2N —1 rectangular window for
frequency-smoothing. Normalization is chosen such that ¢spw (0,0) = 1. For TFR estimation, in addition
to a SPW estimator, the optimal estimator is compared to a matched-filter spectrogram in which the kernel
is matched to a characteristic component of the desired signal. In each case, 128 time and frequency samples
are taken for discretization.

WYVS estimation of a chirp process. Let X be a complex Gaussian process which has a KL-like

expansion in terms of Gaussian chirps,
K
X(t)=> Zypi(t) inms., tel0,T], (55)
k=1

where the Z;’s are uncorrelated, zero-mean, complex Gaussian random variables with E{|Z;|*} = A,
and oy, (t) = e~ (@—i®(t—t)’+i2rfit K —3 in this example. The WVS, given by (52), is estimated from
a noisy realization, the noise being additive, zero-mean, white, complex Gaussian such that SNR,,,. =
10log{max{E|X (t)|*}/o*} =3dB, where o? is the variance of noise. We chose the parameters M =6, N=11
for the SPW estimator, which were approximately optimized by trial and error. The results are shown in
figure 1. Clearly, the SPW estimate, whose kernel smooths along the time and frequency directions, is quite
different from the true spectrum, whereas the optimal kernel, which is matched to the characteristics of the
process, yields a much more accurate estimate. Also, the mean-squared error of the SPW estimate is about
4 times larger than that of the optimal estimate.

Interference suppression: deterministic signal with narrowband noise. This example demon-
strates the ability of the optimal kernel to suppress interference. The desired signal Y is a deterministic Gaus-
sian chirp s(t)=e (@~ ¢ € [0,T], and the observation is corrupted by narrowband noise, N (t) = AeBei®t,
where A, B and 2 are uniformly distributed over [al,a2], [—7, 7], and [w1,w2], respectively. The parameters
a1, az, wi and wy are chosen to make SNR,,.. =0dB, and the normalized (after discretization) bandwidth
of noise BW = /20 radians. The objective is to extract the WD of the chirp from a noise-corrupted ob-

servation. In this case, the optimal TFR is compared to a SPW estimator (M =2, N =16) and a matched
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spectrogram in which the window is matched to the Gaussian chirp signal; that is, ¢spect =|As|/A5(0,0). Fig-
ure 2 shows the results. The SPW kernel, smoothing along time and frequency directions, is more matched
to the narrowband interference than to the chirp signal, and thus yields a TFR which is dominated by the
interfering noise. The spectrogram, despite being matched to the desired chirp signal, does not do a good job
in suppressing the interference. The optimal kernel, on the other hand, is not only matched to the desired
signal, but also has a “notch” in the region of the (6, 7) plane where A; and Ay intersect, and thus yields a
very accurate estimate in which the interference has been almost completely suppressed.

TFR estimation of BPSK signal with white noise and narrowband co-channel interfer-
ence. In this example Y (t) = Y, Zye™els,(t — kT,), t € [0,T], is a BPSK signal where the Z,’s are
independent Bernoulli random variables taking on the values {—1,1} with equal probability, and s, is a
rectangular pulse of width 7" < T,. The observed signal is X =Y + N + N;, where N; is complex, white
Gaussian noise with variance 012\,1, and N is narrowband co-channel noise, as in the previous example, with
center frequency w,, the carrier frequency of the BPSK signal. Since Y is a multi-component signal, choosing
the WD as the reference TFR is not appropriate because of the significant cross-terms inherent in the WD.
Since all of the components in Y are TF translates of the baseband pulse s,, we choose ¢,. corresponding to
the spectrogram matched to s,; that is, ¢, = |As,|/As,(0,0). The parameters of noise are chosen so that
the SNR between Y and the narrowband noise, IV, is 0dB and that between Y and N; is 8dB, making the
overall SINR a little below 0dB. Again, the performance of the optimal estimator is compared with that of
a SPW estimator (M =6, N =8) and the matched-filter spectrogram (¢spect = ¢r). Note that in this case
the characteristics of all processes are aligned along time and/or frequency directions, and thus the SPW
estimator has the potential of performing well. However, there is one caveat; since the characteristics of
both signal and noise are somewhat similar, matching the kernel to the signal also matches it to noise. The
optimal kernel, however, uses the information about noise to optimize the matching. The results are shown
in figure 3. The optimal estimate is almost perfect, whereas both the spectrogram and the SPW estimates

are severely affected by the presence of noise.

7 Conclusions

We have addressed two important TF estimation problems: the problem of estimating the WVS of a random
process from a corrupted realization, and the related problem of estimating an arbitrary bilinear TFR of a
realization from a correlated observation. For the former, all existing techniques are based on the assumption
that the process statistics change slowly with time, which limits their use to a small class of nonstationary
processes. We overcome this limitation by deriving a kernel within Cohen’s class of TFRs which is optimal
in a mean-square sense. For the latter problem, which has never been addressed before, we obtain a similar
optimal kernel. Both optimal time-frequency invariant and time-frequency varying kernels are derived. Using
the nature of the optimal kernel, it is proven that, in the presence of any additive independent noise, optimal
performance requires a nontrivial kernel, and that optimal estimation may require smoothing filters very
different from those based on a quasi-stationarity assumption. Examples confirm that for a large class of
processes the optimal estimators often yield great improvements in performance over existing ad hoc methods.

The main limitation of the proposed estimation techniques is that certain second and fourth-order
statistics are needed to compute the kernels. Those statistics can be computed if adequate models are
available for the processes, or can be estimated if multiple realizations are available. In certain applications

involving rotating machinery, for example, in which failures with nonstationary signatures need to be de-
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tected, the periodic nature of the signal statistics lends itself to collecting multiple realizations. However, in
the case of a single realization, the next major research issue is to form an estimate of the statistics in order
to design the optimal kernel to process the realization.

Another question that needs to be answered is the choice of the reference kernel, ¢,., for TFR estimation
when the signal realizations are multi-component. As done in example 3, if the various components have a
similar TF structure, then some sort of a matched kernel may be used.

In the TFR estimation framework, the ability of the optimal kernel to suppress interference is par-
ticularly remarkable. Thus, it can also serve as a framework for suppressing interfering signals via TF
filtering, and could potentially be very useful for detection, estimation and classification of signals corrupted
by nonstationary and co-channel interference.

Finally, we make a few comments about possible extensions of the work. First, we note that although
we restricted ourselves to Cohen’s class for estimating the WVS, it is by no means the only class of estimators
for which the mmse estimation problem can be posed. In fact, any class of bilinear signal representations
which is characterized (linearly) by a kernel and includes the WD as a member can be used as a class of
estimators. An example is the class of time-scale representations proposed by Rioul and Flandrin [16], which
may be useful in the case of processes exhibiting a 1/ f-type spectral structure. The corresponding globally
optimal kernel will always be characterized by a linear equation; however, the characterization may not
always be as simple and explicit as in the case of Cohen’s class, and the solution may not take such a simple
form. A second possible extension is to apply mmse estimation techniques to estimate particular physical
quantities, like the random instantaneous frequency, which are derivable from the TFR. In such problems,
the optimal kernels would, in general, be different from the optimal kernels derived in this paper, and may

involve more complicated characterizations.
Appendix A

In considering the case when Bx is not bounded away from zero over Sy x, we define

Se={(0,7) € Syx : Bx(0,7) > €¢|Byx(0,7)|}, €>0. (56)

Note that since Sy x C Sx, U%"ZIS&:;) = Sy x. Also define

. Bx(0,7)
c:égim >0. (57)
If ¢ > 0, then we note from (57) and (13) that ¢y is bounded and is characterized as in Proposition 1 in
section 3.1. On the other hand, if ¢ = 0 then ky x defined in (19) is not bounded. In this case we can obtain
a bounded approximation, ¢30Pt, t0 ¢opt by inverting (13) over S C Sy x, € > 0. Again, qgopt is characterized
just as ¢opt is in Proposition 1 by replacing Sy x by S.. Moreover, since U2 ; S(;%) = Syx, we note from
(20) that by choosing € small enough, ¢,,: can be made arbitrarily close to ¢op¢ in the sense of achieving the

minimum mse.
Appendix B

In this appendix, we show that in the proposed framework, in almost all nontrivial cases, averaging of the
empirical TFR is necessary for optimal estimation of the nonstationary spectrum or the reference TFR. We
first discuss the spectrum estimation scenario.
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Suppose we start with an arbitrary definition of the nonstationary spectrum corresponding to the
kernel ¢,. Then, from (26) we have ¢opr = kv x $,, which implies that

Pz(taf;¢opt):KYX(taf)**Pm(taf;¢0) ) (58)

where Ky x is the 2d Fourier transform of ky x. Thus, the averaging done by ¢, is completely character-
ized by ky x because relative to the definition of the spectrum, the empirical TFR, P, (¢, f; ¢,), corresponds
to the “non-averaged” estimate. Now, from (58) it is clear that kyx(0,7) = 1 & Ky x (¢, f) = 6(t)d(f)
corresponds to no averaging; that is, using the empirical TFR, P, (¢, f; #,), as an estimate of the spectrum,
E{Py(t, f;00)}. In the other extreme, ky x(0,7) = 6(0)d(7) & Kyx(t, f) =1 corresponds to maximum av-
eraging. Guided by intuition, we argue that in all nontrivial cases, the optimal kernel effects some averaging.
Thus, we want to characterize the case when ky x(6,7) = d, for some constant d, which corresponds to no
averaging. We recall from our discussion on the support of the optimal kernel that if either EAx or EAy
has essentially finite support, then so does ky x; the finite support of ky x itself introduces some averaging
in the optimal estimate. However, we want to characterize the cases when kyx = d over its support, Sy x
(see (17)).

We first give a general characterization of the “no-averaging” scenario. Recall from our derivation of
the optimal kernel in section 3.1 that, at each (4, 7) in Sy x, ¢opt(8,7)Ax (6, 7) is the linear mmse estimate
of EAy(6,7) given Ax (0, 7). Then, it follows from the projection theorem [10] that EAy can be uniquely
decomposed as

EAy(0,7) = kyx(0,7)Ax(0,7) + Ny(0,7) , (59)

where kyx is defined in (18), and the component Ny = EAy — kyxAx is orthogonal to Ax; that is,
E{Ny(6,7)A%(0,7)} =0 for all (A, 7). Thus, we see from (59) that the optimal kernel effects no averaging;
that is, ky x = d over Sy x, if and only if the component of EAy corresponding to Ax has the same scale
factor (kyx = d) for all (6,7). This should be compared to the decomposition (59) in the general case in
which kyx is not constant and thus Ax is scaled differently for different values of (4, 7). We now characterize

the “no-averaging” cases in an important scenario.

Proposition B1. If X(t) = Y(¢) + Z(t), t € T, where both Y and Z are zero-mean and independent of
each other, then no averaging is needed (ky x = 1) if and only if

i) Z = 0 almost surely (a.s.); that is, X =Y a.s., and

ii) Y(t) = Y,u(t) in the mean-square sense, where Y, is an arbitrary random variable satisfying |Y,| =
constant a.s., and u(t) is some unit-energy deterministic function.

Proof: First note from (18) that kyx = 1 if and only if EAy EA% = E{|Ax|*}. After expanding Ax by
using X =Y + Z, it can be easily verified that EAy EA% = E{|Ax|?} if and only if

E{|Az|*} + [E{|Ay|*} — |EAy|"] + 4E{Re*(Ay )} + EALEA7z =0, (60)

where Ay 7 is the cross-ambiguity function between Y and Z [9]. Since A,(0,0) = ||s||2, we note that at the
origin, (0,7) = (0,0), all the terms (treating the terms inside the brackets as one) in (60) are nonnegative,
and hence must individually be zero (note that E{|Ay|?*} — |EAy|> > 0 by the Cauchy Schwarz (CS)
inequality). In particular, E{|A7(0,0)|?} = E{||Z||4} = 0, which implies that Z = 0 a.s. and thus X = Y
a.s. The only nonzero term remaining in (60) is [E{|Ay|*} — |EAy|?] which, by the CS inequality, is zero if
and only if Ay (6, 7) is a deterministic function a.s., that is Ay = AA, for some A > 0 and some unit-energy
deterministic signal u. Now, Ay = AA, implies that Ry (t1,t2) = Au(t;)u*(t2), and thus Y admits the KL
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expansion Y (t) = Y,u(t) in mean-square, with E|Y,|> = X\. On the other hand, if Y admits such a KL
expansion, then Ay = |Y,|?>A,, which is equal to AA,, a.s. only if |Y,|?> = X a.s. This completes the proof.

A special case which implies no averaging is that of perfect estimation; that is, the minimum mse is

zero. The following proposition characterizes such a situation.

Proposition B2. In the global nonstationary spectral estimation problem, the minimum mse (see (20)) is
zero, if and only if EAy (0,7) = aAx(4,7) a.s., for all (8, 7), for some a > 0. Moreover, the above condition
is equivalent to X and Y having the mean-square (KL) representation X (t) = X,u(t) and Y (t) = Y,u(t),
where u(t) is some unit-energy deterministic signal, X, and Y, are random variables satisfying | X,|=constant
a.s. and E|Y,|? = aE|X,|? for some a > 0.

Proof: From (20) we note that minimum mse is zero if and only if Sy = Syx and |E{EAyA%}|*> =
E{|Ax|*}|EAy|?, which, by the CS inequality, is true if and only EAy (0,7) = aAx (0, 7) a.s., where a > 0
because the AF is positive at the origin. Now, suppose that EAy (0, 7) = aAx (0, 7) a.s. Then, since EAy is
a deterministic function, we see that Ax is a deterministic function a.s., and, from the proof of Proposition
B1, we conclude that X (t) = X,u(t) where u is some unit-energy deterministic signal and X, is a random
variable satisfying | X,| = A = constant a.s. Then, using the eigenexpansion for Ry and the expression for
EAy in terms of it (see (6)), we conclude that Y () = Y,u(t) in m.s. with E|Y,|?> = aE|X,|*. It is easy to
see that if X and Y admit such representation then EAy = aAx a.s. This completes the proof.

TFR Estimation. Next, we state the corresponding results in the TFR estimation problem, to
characterize the cases in which no averaging is needed to optimally estimate the reference TFR of a realization
of a random process from a noisy version of that realization. Note, arguing similarly as in the discussion
preceding Proposition B1, that relative to the reference TFR (corresponding to ¢,) to be estimated, the
averaging done by the estimator is completely characterized by kyx. The case when kyx is identically a

constant corresponds to the

‘no-averaging” case.

First, we just note that in the TFR estimation problem an exactly similar decomposition as in (59)
holds for Ay as well, with a corresponding “no-averaging” interpretation. Moreover, it can be easily verified
that perfect estimation (a case of “no-averaging”) is possible if and only if Ax = aAy a.s., which in particular
implies that Rx (t, s) = aRy (¢, s). Moreover, the following proposition characterizes the “no-averaging” cases

in an important scenario which is typical of many situations of interest.

Proposition B3. If X(t) = Y(¢t) + Z(t), t € T, where both Y and Z are zero-mean and independent of
each other, then no averaging is needed (ky x = 1) if and only if Z = 0 a.s.; that is X =Y a.s.
Proof: Similar to the proof of Proposition B1.
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CHIRP PROCESS REALIZATION
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Figure 1: Estimation of the WVS of a chirp process from a realization corrupted by white noise (SNRpqz =
3dB). (a) Real part of the signal and noise realizations. (b) True WVS of the chirp process. (¢) SPW
(M =6, N=11) estimate of the WVS. (d) Optimal estimate of the WVS.
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LINEAR CHIRP SIGNAL
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Figure 2: Estimation of the WD of a chirp signal corrupted by narrowband interference (SNR;,,, = 0dB).
(a) Real part of the signal and noise realizations. (b) Contour plot of the optimal kernel. (c) The WD of
the chirp signal. (d) Matched spectrogram of the corrupted signal. (e¢) SPW (M =2, N =16) estimate of
the WD. (f) Optimal estimate of the WD.
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BPSK SIGNAL REALIZATION
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Figure 3: Estimation of the matched spectrogram of a BPSK signal corrupted by white noise and narrowband
(a) Real part of the signal and noise realizations.
TFR: the matched spectrogram (matched to BPSK pulse). (c) Matched spectrogram of the corrupted signal.
(d) SPW (M =6, N =8) estimate of the desired TFR. (e) Optimal estimate of the desired TFR.

co-channel interference (SINR,,,. = 0dB).
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