Fast, Exact Synthesis of Gaussian and nonGaussian
Long-Range-Dependent Processes

Maitthew S. Crouse and Richard G. Baraniuk*

Corresponding Author:
Richard G. Baraniuk
Department of Electrical and Computer Engineering
Rice University
6100 South Main Street
Houston, TX 77005, USA

Ph: (713) 285-5132

Fax: (713) 524-5237
Email: richb@rice.edu
URL: www.dsp.rice.edu

Submitted to:
IEEE Transactions on Information Theory
August 1999

Abstract

1/f noise and statistically self-similar processes such as fractional Brownian motion (fBm)
are vital for modeling numerous real-world phenomena, from network traffic to DNA to the
stock market. Although several algorithms exist for synthesizing discrete-time samples of a 1/ f
process, these algorithms are inexact, meaning that the covariance of the synthesized processes
can deviate significantly from that of a true 1/f process. However, the Fast Fourier Transform
(FFT) can be used to exactly and efficiently synthesize such processes in O(N log N) operations
for a length-N signal. Strangely enough, the key is to apply the FFT to match the target
process’s covariance structure, not its frequency spectrum. In this paper, we prove that this
FFT-based synthesis is exact not only for 1/f processes such as fBm, but also for a wide class
of long-range dependent processes. Leveraging the flexibility of the FFT approach, we develop
new models for processes that exhibit one type of fBm scaling behavior over fine resolutions and
a distinct scaling behavior over coarse resolutions. We also generalize the method in order to
exactly synthesize various nonGaussian 1/f processes. Our nonGaussian 1/f synthesis is fast
and simple. Used in simulations, our synthesis techniques could lead to new insights into areas
such as computer networking, where the traffic processes exhibit nonGaussianity and a richer
covariance than that of a strict fBm process.

*This work was supported by the National Science Foundation, grant no. MIP-9457438, the Office of Naval
Research, grant no. N00014-99-1-0813, and by DARPA/AFOSR, grant no. F49620-97-1-0513. We would also like to
thank Dr. Rudolf H. Riedi for providing insightful comments and criticism of this work.



1 Introduction

Long-range dependent (LRD), 1/f,! and self-similar processes occur frequently in numerous dis-
ciplines, including physics, chemistry, astronomy, economics, and biology [1-3]. In electrical en-
gineering these processes have served as extremely useful models for characterizing textures in
images [4-6] and noise in analog circuits [2]. In finance, these processes have been recognized as
important for characterizing price volatility and market risk [7,8]. They have even impacted DNA
research [9].

Data networking conjures up many of the salient features of 1/f processes. Recently, traffic
loads and interarrival times in data networks have been shown to exhibit LRD and self-similar
behavior [10]. This behavior has proven to be a key factor driving network performance, yet it is
ill-described using classical Poisson or Markov models. For a given mean traffic load, these classical
models predict levels of network performance that are much more optimistic than the performance
observed in practice [11].

The inadequacy of classical models has been a driving force behind the application of Gaussian
1/f models such as the fractional Brownian motion (fBm) process (power spectrum 1/|f|2%+!) and
its increments process the fractional Gaussian noise (fGn) (power spectrum 1/|f|?271), 0 < H < 1
[12]. These models have led to exciting new insights regarding the impact of LRD and self-similarity

on network performance [10,11].

1.1 Synthesis of Gaussian 1/f processes

In scenarios where closed-form analysis is intractable, fBm and fGn synthesis algorithms become
extremely useful for generating synthetic data that can be used in Monte Carlo simulations [13].
Synthesis provides two key advantages over simulations using real traces. First, real traces can be
quite cumbersome to measure and store. Second, the few, easy-to-understand parameters of these
models allow us to generalize to hypothetical scenarios for which empirical data would be difficult
or impossible to obtain. The parameters consist of the variance, an optional mean, and the Hurst
parameter H, which controls the covariance.

Unfortunately, accurate discrete-time synthesis of fBm and fGn has been fraught with difficulty,

particularly for the huge data sizes often required for accurate simulations. As we will examine

!The description 1/f is used for a process with a power spectrum that decays like 1/|f|*, —1 < a < 3.



in Section 2, methods such as Cholesky factorization via Levinson Durbin are ezact (matching
the second-order statistics without error), but computationally expensive (O(N?) for a length-N
trace). Other approaches such as wavelet-based synthesis are fast (O(N)), but only approximate.

In this paper, we apply an algorithm based on the Fast Fourier Transform (FFT) to exactly
synthesize discrete-time 1/ f processes such as sampled fBm and fGn in only O(N log V) operations
for a length-N trace. The FFT algorithm, described in detail in Section 3, operates as follows. To
synthesize a stationary, length-N, jointly Gaussian signal, we embed its covariance matrix into a
circulant covariance matrix of approximately twice the size. Since the FFT provides an eigenvalue
decomposition for circulant matrices, we can synthesize the embedding signal efficiently via the
FFT, with our desired signal obtained as the first N samples. In Figure 1(a) and (c), we provide
visual examples of our fBm synthesis for H = 0.6 and H = 0.9.

This FFT approach and conditions for its exactness were developed in a general context in [14].
However, [14] focused on the less interesting case of Gaussian processes with quickly-decaying
covariances (short-range dependence). In 1-d, efficient synthesis algorithms already exist for such
processes. The work in [4] insightfully recognized the utility of the FFT for synthesizing fBm, but
focused on 2-d fBm, a case for which the algorithm is not exact. As a result, this FFT synthesis
approach has been little-used for synthesis of 1-d fBm and fGn despite its computational efficiency.
Here, we prove that the FFT synthesis is exact not only for 1-d fBm and fGn, but for a host of

Gaussian LRD processes.

1.2 Synthesis of general LRD processes

FBm and fGn models are limited in their ability to characterize many real-world signals. For
example, fBm and fGn are Gaussian, while processes such as financial data and network traffic
are inherently positive-valued and, hence, nonGaussian. Moreover, real-world data exhibit a more
general dependency structure than can be modeled with a strict 1/f spectrum. For one, fBm
and fGn have a fixed covariance structure whose shape is entirely determined by one parameter.
Although real-world processes may exhibit the same asymptotic covariance decay as these models,
their short-term covariance structure may differ substantially. With our FFT approach, these
generalizations are relatively straightforward.

Leveraging the core FFT synthesis algorithm, we will develop a framework for modeling and
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Figure 1: Realizations of (a) Sampled fractional Brownian motion (fBm) with H = 0.9 and 0% =1, (b)
sampled kinked fractional Brownian motion (kfBm) with Hy = 0.9, Hy = 0.6, 0% = 1, and transition
region from nq = 64 to ny = 340, and (c) sampled fBm with H = 0.6 and 0% = 38.63. All data sets were
synthesized using the FFT method. Top: Plots of the entire length-2'7+ 1 traces. Over large time scales,
the kfBm exhibits a smoothness and persistency similar to fBm with H = 0.6 (to the right). Middle: Plots
zoomed-in to the first 512 samples. Over small time scales, the kfBm exhibits a smoothness and persistency
similar to fBm with H = 0.9 (to the left). Bottom: Variance-time plots. The o’s are empirical variance-time
plot measurements, and the dotted lines correspond to least-squares linear fits to estimate H. For all traces,
the empirical variance-time plots and H estimates closely match the desired theoretical behavior. The kfBm
trace demonstrates a linear scaling behavior corresponding to H = 0.9 over fine resolution and H = 0.6 over
coarse resolutions, joined by a “kink” in the middle. See Section 4.3 for more details.

synthesizing a wide class of Gaussian LRD processes. We will derive the covariance structure

necessary to obtain self-similar scaling over two different sets of time scales. This includes processes



that exhibit one type of fBm-like scaling over short time intervals and an entirely different scaling
over long time intervals. This scaling can be characterized through the variance-time plot (see
Section 2.3.3), a plot of the variance of the increments of a process as a function of aggregation
size. We call the resulting model kinked fBm (kfBm) because of its variance-time plot behavior
(see Figure 1(b)). This behavior has been discovered in network data [15] and may have important
consequences for network management [16]. In addition, the kfBm model could provide a useful
link to the processes that occur in science, where some claim that most “fractal” data sets exhibit
a power-law scaling behavior only over a limited scaling range [17].

We will also extend our framework to model and synthesize nonGaussian LRD processes. To
create a nonGaussian process with a target LRD covariance, we simply pass a Gaussian process
through an appropriate nonlinear transformation, with the transformation chosen to convert the
Gaussian marginal to the desired nonGaussian marginal [18, 19]. Transformation in hand, we
need only “prewarp” the covariance of the input Gaussian process to account for the effect of the
transformation on the covariance of the nonGaussian output process. In theory, this approach
can be used for any finite-variance nonGaussian process and a wide class of covariances functions.
Moreover, the prewarping can be calculated analytically for many nonGaussian processes, including
processes with lognormal, exponential, uniform, and finite-variance Pareto marginal densities. For
these densities, we prove that our approach can exactly synthesize nonGaussian processes with the

same 1/ f-type spectrum and second-order scaling behavior as {Bm.

1.3 Paper Organization

In Section 2, we introduce our notation, define self-similarity, the 1/f property, and LRD, and show
how they are inter-related. We also review several current synthesis techniques for discrete-time
1/f noise. In Section 3, we develop the FFT-based synthesis approach for Gaussian processes. We
present conditions for when this approach is exact, and (with help from Appendix A) prove that
fGn and fBm satisfy these conditions. In Section 4, we look at two generalizations of fBm and
demonstrate in which cases synthesis is exact for these generalizations. In Section 5, we develop a
method for synthesizing nonGaussian processes and enumerate several nonGaussian processes that
can be treated easily in closed form. In Appendix B we derive conditions for the nonGaussian 1/ f

synthesis to be exact and demonstrate that the enumerated nonGaussian densities jump through



these hoops. In Section 6, we discuss potential extensions and further applications of this work.

2 Characterization and Synthesis of 1/f Processes

2.1 Notation

We will use = to define an expression, & to mean proportional to, and ~ to denote equivalent
asymptoptic behavior. The expression X (¢), ¢t € IR will denote a real stationary Gaussian process
in continuous time; the expression X[n], n € Z will denote a separate real stationary Gaussian
process in discrete time. AX[n] = X[n + 1] — X[n] and A?X[n] = AX(n + 1) — AX|[n] represent
the first and second differences of X|[n], respectively. In some cases, we will identify X[n] with
the increments process X (nT) = B((n + 1)T) — B(nT) of a nonstationary Gaussian process B(t).
(Generally, X will correspond to an fGn-like stationary process and B an fBm-like nonstationary
process.) When dealing specifically with fBm or {Gn, we will add the subscript H to signify their
dependence on the Hurst parameter.

We will reserve Y'[n] for the stationary nonGaussian LRD process formed via a nonlinear trans-
formation of X[n| (see Section 5). For the first-order distribution function and probability density
function (pdf) of Y[n], we write Fy (y) = Pr[Y[n] <y| and fy(y) = d%Fy (y), respectively. For the
distribution function of the standard Gaussian random variable, we write ®(x). The notation wlds
represents equality in finite-dimensional distributions.

Finally, we will find matrix and vector notation useful. We will use boldface notation for
vectors; for instance, X = [X][0], X[1],... ,X[N — 1]]7 and similarly for the covariance vector
rx = [rx[0],7x[1],... ,rx[N — 1]]. The term 0 will represent the zero vector. We will denote the
identity matrix by I, the covariance matrix for X by Rx, and the matrices corresponding to the
FFT and IFFT operations [40] by F and F*, respectively, with F* the conjugate transpose of F.

We now provide a brief review of some of the properties of continuous-time and discrete-time
1/f processes, with a focus on fBm and fGn. Although a continuous-time treatment is key to
understanding and analyzing the basic properties of 1/f processes, in the end a discrete-time

treatment is needed to accurately analyze and synthesize these processes using the digital computer.



2.2 Continuous-time 1/f processes

Consider a second-order stationary Gaussian process X (¢) with covariance function

rx(r) = B[X(6)X (- 7)] - E[X () (1)
and Fourier power spectrum
Sx(f) = /oo rx(1)e 2T dr, —00 < f < . (2)

Such a process is called a continuous-time 1/f process if its Fourier power spectrum takes the

form [20]
SX(f)ocﬁ, Coo< f<o0, —1<a<3 (3)

Right at the outset we encounter some technical difficulties. For the case 1 < o < 3, Sx(f) is
not integrable near the origin and hence, strictly speaking, not a valid power spectrum. This is
usually attributed to an inherent nonstationarity in the process, in which case (1) and (2) are not
valid definitions. In this case, (3) must be interpreted as a time-averaged power spectrum [21].

When —1 < a < 1, S(f) is not integrable as f — oo, since the high-frequency energy decays
too slowly. Thus, 1/f processes for —1 < « < 1 have infinite power and are well defined only
in a generalized sense.? Nevertheless, these processes can still provide extremely useful models.
For instance, continuous-time white Gaussian noise, 1/f noise with a = 0, is indispensable in

communication theory as a model for channel noise. Let us meet the Gaussian 1/f processes for
a #0.

2.2.1 Fractional Brownian motion (fBm): 1 < a <3
The Gaussian process used for modeling 1/f noise with 1 < « < 3 is known as fractional Brownian
motion (fBm) [12]. The fBm process By (t) is a continuous, jointly Gaussian process defined via

the self-similarity property
By(at) £ "' By 1), (4)

with H =2a+ 1, 0 < H < 1, denoting the Hurst parameter. In words, a zoom of fBm by a factor
of a leads to an fBm that, after scaling by a®, has statistical properties identical to the original

fBm.

%See [20] for one such definition that, in addition, treats the case of 1/f processes for a < —1 and a > 3.




For fBm the time-averaged power spectrum is given by (3) with @« = 2H+1 and the nonstationary

covariance function by [12]

2
o
ra(5,1) =B [By(0)Bu(s)] = T [IsP + 12 — s — 4] (5)
2.2.2 Fractional Gaussian noise (fGn): -1 <a <1
The Gaussian 1/f process with —1 < a < 1 can be viewed as the derivative of an fBm with
1 < a < 3, since a derivative provides a multiplicative factor of 1/f2 in the power spectrum. In this
case, the decay parameter a relates to the Hurst parameter H via a = 2H — 1. When 0 < a < 1,

using the generalized Fourier Transform inverse for 1/|f|*, we obtain the stationary covariance

function for the idealized derivative of fBm:
r(r)x L 0<a< 1. (6)

As noted previously, for —1 < a < 1, a process with strict power-law decay can be defined only
in a generalized sense. Therefore, we find it useful to construct an approzimation to 1/f noise,

—1 < a < 1, using the continuous-time increments process for fBm,
Xp(t)=Bu(t+T)— Bul(t), (7)

which is a stationary Gaussian process known as fractional Gaussian noise (fGn) [12]. It has a

spectrum of the form [21]

in?
Sy, (f) = % ®)

with ¢ a proportionality constant. For f < =, we have Sx, (f) o< 1/|f[*~1. The accompanying

covariance function is given by

2 m2H
o5 T
TXH(T) =&

[|7+ 122 + |7 — 122 —2|7]*H], 0< H < 1. (9)

2H—-2

Note that rx, (1) ~ T as 7 — oo, meaning fGn has the same asymptotic covariance decay as

the idealized derivative of fBm.

2.2.3 Long-range dependence
For 1/2 < H < 1, the slow power-law decay of 7x,(7) in (6) and (9) implies that the integral of

the covariance function fOT rx, (1) dr will diverge to oo as Ty — oo. For any stationary process X,

7



this divergence is known as long-range dependence (LRD) [22]. LRD is equivalent to a singularity
in the DC component of the spectrum, S(0) = oo, and is a key feature of f{Gn with 1/2 < H < 1.

Since the covariance function of an LRD process decays extremely slowly, LRD processes have
a great deal of “memory.” This is a key property in scenarios where LRD occurs, such as in data
networking and the financial markets. In networking, LRD in traffic loads can lead to poor network
performance, since the packets arrive in bursts over long time scales [11]. In financial markets, the
memory aspect of LRD is potentially useful for predicting volatility and potential risk [7].

LRD is difficult to characterize using classical models such as AR or Markov models, since
classical models exhibit a much faster exponential covariance decay, and robust model parameter
estimation for highly correlated data is difficult. For instance, approximating an LRD 1/f process
using an autoregressive moving average (ARMA) model is equivalent to fitting a slowly-decaying
power-law covariance function using quickly decaying exponentials — an impossible task for a
finite-order model. This is one reason why fGn and fBm have recently come to the fore as models

for LRD processes.

2.3 Discrete-time properties

A discrete-time treatment is needed to accurately analyze and synthesize 1/f processes using the
digital computer. To begin, we will examine the second-order behavior of two discrete-time pro-
cesses: the sampled fBm process By (nT) and the fGn process (7) sampled with period 7" known

as discrete fractional Gaussian noise (dfGn):
X0 = X(nT) = By((n + 1)T) — By(nT), n=0,1,... (10)

For clarity of presentation, we will replace Xl(qT) [n] with Xg[n] when clear from context.

To model these processes, we will develop three equivalent second-order characterizations: the
power spectrum, the covariance function, and the variance-time plot. An understanding of these
different characterizations provides insight into the various approaches to modeling and synthesizing

LRD processes.

2.3.1 The power spectrum and why we should avoid it

In practice, we can only work with discrete-time, finite-length data, so the continuous Fourier

power spectrum is of little practical use. A direct frequency-domain analysis or synthesis requires



the Discrete Fourier Transform (DFT), which we will call the FFT for convenience.® The forward

FFT can be written as

Ak = :/g:r[n] exp(—y%nk) , k=0,1,... ,N—1, (11)
and the inverse FFT (IFFT) written as
1= 2
r[n]Eﬁkz:%)\[k]exp<jﬁnk>, n=0,1,... ,N—1. (12)

In vector from, (11) and (12) are written as A = Fr and r = F*), respectively.

We define the FFT power spectrum (periodogram) of X[n] as [23]

2
N-1
1

& O Xlnlexp(—j2mnfy)

n=0

~ k
Sx(fk)EIE ,fk:ﬁ,kZO,l,...,N—l, (13)

the expected value of the squared magnitude of the FFT of a length-INV realization of the pro-
cess X[n]. The FFT power spectrum provides approximate values of the Discrete Time Fourier
Transform (DTFT) power spectrum at the frequencies f = f.

The FFT power spectrum of a length-N dfGn sequence can be expressed in terms of the Fourier

spectrum of fGn (8) [23]

_ 1 sin2(n N 00 . —(2H+1)
Sxn(fr) = (N%(@%m;wsin?(w(f—m))‘f#‘ );_f (14)
fk:%, k=0,1,...,N -1,

with ® the circular convolution operator. The infinite sum in (14) is caused by aliasing of higher
frequencies onto lower frequencies (due to sampling), and the convolutional smearing is caused by
the effects of finite-length data. This complicated expression deviates noticeably from a strict 1/f
behavior and is difficult to calculate. Even worse, it is a nontrivial function of the data length V.

Of course, the same types of sampling effects and smearing occur in the FFT power spectrum
of sampled fBm, except with an added interpretational difficulty — fBm is nonstationary, and
the notion of power spectrum applies only to stationary processes. Hence, the inherent difficulties
of using and interpreting the FFT power spectrum suggest that we should look to alternative

second-order characterizations of dfGn and sampled fBm.

3The FFT is simply an efficient O(V log N) algorithm for computing an N-point DFT.



2.3.2 The covariance function and why we should use it
Unlike the spectrum, which is warped and smeared by sampling, the covariance function for sampled
fBm is obtained simply by plugging s = nT and ¢t = mT into (5). Similarly, for dfGn the covariance
function is found by substituting nT for 7 in (9). Moreover, we can be confident that if we exactly
match the covariance, then we have exactly matched all second-order statistics of the process,
including the spectrum. In this paper, we will focus on modeling the covariance behavior of dfGn,
since dfGn is easier to synthesize than sampled fBm and can be converted directly to sampled fBm
by cumulative summation.

Since the choice of the sampling period 7" effects only a constant scaling factor in the covariance

of dfGn, without loss of generality we can set 7'= 1 in (9) to obtain
o% 2H 2H 2H
TXH[”]:T [In+ 1% + |n — 1% = 2|n]*"], 0< H < 1. (15)

For 0 < H < 1/2 and n # 0, the covariance function is negative. For 1/2 < H < 1, the
covariance function is positive and decreasing in |n| with an asymptotic power-law decay n?# =2 as
n — oo. This decay implies that dfGn exhibits LRD for 1/2 < H < 1 since, in accordance with
the continuous-time LRD definition, a discrete-time process X is LRD if Zi:]:o rx[n] diverges as
N — o0.

Note that, strictly speaking, dfGn has a mean of zero. However, in networking and other

applications, non-zero mean processes with the covariance structure of dfGn prove useful. In this

paper, we will not discriminate between zero and non-zero mean dfGn.

2.3.3 Variance-time plot and generalizations of fBm and fGn
An alternative characterization of the second-order properties of fBm and fGn can be obtained

using the self-similarity property of {Bm (4)
Var[By (t + s) — Bu(t)] = |s|*2 Var[By (t + 1)) — Bu(t)] = |s|*1 0%, (16)

or equivalently for dfGn with T' =1

no+m

3l = )

n=ng

Var

for m € IN.

10



The latter property can be measured by forming the aggregated processes*

X Oml=— Y Xuli (18)
i=(n—1)m+1

and tracking how their variances decrease with the aggregation variable m. It follows from (17)

that

Var [qumT) [n]] =m?H25%,. (19)

Hence, a log-log plot of the variance of XgnT) [n] as a function of m — known as a variance-time

plot — will have a slope 2H — 2. The variance-time plot can be applied to nonGaussian and non-
zero-mean data as well. Processes whose variance scales with a power of 2H — 2 have been termed
ezactly second-order self-similar (ESS) processes [24].> Since ESS processes have power spectra
identical to dfGn (a Gaussian 1/f noise), ESS processes do correspond to a type of nonGaussian
1/f noise. However, considering the difficulties associated with the FFT power spectrum (e.g., it
is not truly 1/f), the terminology ESS provides a more precise characterization.

For more general processes, we can define the structure function gp [25,26] such that
Var [B(t + s) — B(t)] = gg(s)o% (20)

and for T'=1 (now in a discrete-time setting)

Var [X<m> [n]] - gf?ET] Var[X[n]]. (21)

When gg(s) = o%|s|>, we have the self-similarity condition for fBm and fGn. The structure
function directly describes the scaling behavior of a given process and provides a more intuitive
description of LRD behavior than the covariance function. The structure function converts directly
to the covariance function via one-half the central second difference

rxln] = 5 (g + 1] — 2g5[0] + g — 1)) (22)

We will use the structure function in Section 4 to characterize more general types of LRD processes.

“Recall from (10) that we write X [m)] instead of X},T) [m], with T our dfGn sampling rate.
SStrictly speaking, the Hurst parameter H only applies to fBm and fGn. However, we will use it in the context of
more general LRD data to characterize the covariance decay.

11



2.4 Discrete-time synthesis algorithms for Gaussian 1/f noise
We now describe several commonly used alternatives for synthesizing the Gaussian 1/f processes
corresponding to sampled fBm and dfGn. It is simple to convert between these processes using

(10), so a synthesis algorithm for one can synthesize the other as well.

2.4.1 Cholesky factorization

This method is exact [5,27], but slow, requiring O(N?) computations to form a length-N dfGN
vector X. From (9), we form the Toeplitz covariance matrix Rx, for dfGn and then factor it into
Rx, = QQT via the Levinson-Durbin algorithm (direct Cholesky factorization is even slower —
O(N3)). We then form X = QV, with V a white Gaussian noise vector, to obtain the desired dfGn

process.

2.4.2 FFT synthesis based on the power spectrum

If one is to use the FFT power spectrum for synthesis, a reasonable approach is to ensure that the
FFT power spectrum of the synthesized process has properties equivalent to those of the FFT power
spectrum of the data to be modeled. Paxson [28] takes this approach, performing an FFT-based
synthesis of dfGn under the assumption that for a single realization the FFT power spectrum at
Sx, (fx) is independent and exponentially distributed with mean given by the infinite sum in (14).
He thus generates exponentially distributed magnitudes in each FF'T frequency bin, multiplies each
magnitude by a random phase, and then inverts to obtain the desired dfGn signal.

Although fast, Paxson’s approach does not account for the effects of the aliasing in (14) nor for
the fact that the power in different FFT frequency bins can be correlated for dfGn. Furthermore,
the output process has an undesirable circulant covariance structure (see Section 3), which among
other things implies that the end of the synthesized dfGn trace will often be highly correlated with
the beginning.

In passing, we note that any direct FFT-based synthesis of sampled fBm through this approach
is undesirable because the same sampling and smearing effects occur. Moreover, any process syn-

thesized by this approach will be stationary, whereas fBm is nonstationary.

2.4.3 Random midpoint displacement

The next technique [29] synthesizes the values of a sampled fBm trace at a few dispersed points

and then successively refines (or randomly interpolates) the values between the synthesized points.

12



Since it does not attempt to model all cross-covariances between all fBm samples, it is inexact and

in practice can deviate noticeably from exact fBm.

2.4.4 Parametric approaches

Corsini and Saletti [30] apply to white noise a discretized set of analog filters with logarithmically-
spaced poles and zeros in order to generate a process with an approximate 1/|f|* power spectrum
for —2 < a < 2. Aside from the aliasing and finite-length concerns mentioned earlier, this approach
is inexact due to the discretization of analog filters.

The fractionally-differenced autoregressive integrated moving average (FARIMA) model com-
bines an ARMA model for modeling short-range dependence with a fractional differencing d oper-
ation for generating LRD [31,32]. Thus, the FARIMA model can approximate not only 1/f noise,
but also a wide class of LRD processes. However, estimation of ARIMA parameters can be difficult,

and exact synthesis of ARIMA data is O(IN?) complexity.

2.4.5 Self-similar basis functions

The remaining two techniques construct 1/f noise from self-similar basis functions that are spaced
logarithmically in frequency. The first uses wavelets and relies on the fact that the discrete wavelet
transform (DWT), in O(N) computations, provides an approximate Karhunen-Loéve transform
(KLT) for 1/f processes, including fBm and fGn [20, 33, 34].

Since the DWT is only an approximate KLT for 1/f processes, wavelet-based synthesis under the
assumption of independent wavelet coefficients does not lead to exact 1/f behavior [20]. Moreover,
the theoretical DWT synthesis results of [20] are derived only for continuous-time 1/f noise using
an infinite number of wavelet scales. On a computer, only a finite number of wavelet transform
scales can be used. Furthermore, recall from (14) that in discrete time the target power spectrum
is not exactly 1/f. These facts add to the potential synthesis inaccuracies resulting from the KLT
approximation.

Wavelet-based synthesis of fBm and fGn involves further inaccuracies. FBm is a trended process
— its variance increases with time, whereas wavelet-synthesized data is not trended. Moreover,
fGn is stationary, whereas wavelet-synthesized data is nonstationary in covariance [20,35]. The
time-averaged covariance of the wavelet-synthesized process will approximately correspond to the

covariance of fGn, but two neighboring samples of this process, depending on their location, could
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range from highly correlated to almost independent.
The randomized Weierstrass approach [36] synthesizes fBm by summing scaled sinusoidal func-
tions at logarithmically-spaced frequencies with random height and phases. Again, the approach

is inexact, although its deviation from true fBm has not been well quantified.
3 FFT-based Synthesis of Gaussian Processes

The FFT synthesis approach is based on the concept of embedding a Toeplitz covariance matrix
into a circulant covariance matrix. This has been studied previously in several contexts [4,14,37,38].
The work [37,38] provides procedures for embedding an N x N positive-definite covariance matrix
R into a circulant matrix of size M x M, M > 2N — 2. Unfortunately, M can become extremely
large depending on the condition number of the matrix R.

The work [14] develops several conditions under which the embedding is exact for M = 2N —
2 and uses this embedding to derive an algorithm for general FFT-based synthesis of Gaussian
processes. The work in [4], independently derived, specifically applies the approach to synthesize
2-d fBm, but does not rigorously analyze the exactness of the synthesis. Indeed, the algorithm is
not always exact for synthesizing 2-d fBm. We will follow along the lines of [14], but will specialize
to the case of 1/f and LRD data, demonstrating that the FFT-based synthesis is exact for many

1-d Gaussian and nonGaussian LRD processes of interest.

3.1 FFT properties and application

The FFT (11) has many magical and wondrous properties. Among them is the eigenvalue de-

composition it provides for an M x M circulant matrix C [39]. If we denote the top row as

[c[0] c[1] ... ¢[M —1]], we can write the entire circulant matrix as
c[0] c[1] c2] -+ M -—1] ]
c[M —1] c[0] cl] -+ M -2)
o= | -2 -1 do] o dM-3 | (23)
| @ @

C then has an eigenvalue decomposition C' = %F AF*, with A a diagonal matrix. The vector A =
[A(1,1) A(2,2) ... A(M,M)] is the FFT of the vector [¢[0] ¢[1] ... ¢[M —1]].
This is exactly the decomposition we desire for the covariance matrix Rx of a vector X ~

N(0, Rx) drawn from a stationary process with underlying covariance function rx[n]. If Rx were

14



equal to some circulant matrix C, we could synthesize X via X = F (1A) 1/2 W, with W ~ N (0, ).

We can easily check that X has the correct covariance in this case:
1
E[XX7] = NFAl/QIE[WWH]Al/QF* =C. (24)

For a real second-order-stationary process, the covariance matrix Rx for a length-N vector X

is formed from the covariance function rx[n] according to

Tx[O] Tx[l] Tx[Q] Tx[N— 1]
Tx[l] Tx[O] Tx[Q] Tx[N—Q]
Rx = rx[2] rx[1] rx[0] o rx[N=3] |, (25)
rx[N—1] rx[N—2 rx[N—3] -  rxl0]

This matrix is Toeplitz, but not necessarily circulant. In general, the FFT will diagonalize such a
matrix only as N — oo.

However, we can embed Rx into a 2N — 2 X 2N — 2 circulant matrix Rz with first row equal to
rz = [rx[0] rx[1] ... rx[N —2] rx[N —1] rx[N — 2] ... rx[2] rx[1]]*. (26)

The entry in the ith row and jth column of Ry is given by
.o TXHZ_]”’ Za]SNOI’Z>]>N
RZ[’LaJ] = . . . . . . (27)
rx[|2M —i—3j|], j<N,i>Nori<N,j>N.
Note that Rz[i,j] = Rx|i,j] for 4,7 < N. Thus, our plan will be to synthesize a vector Z ~

N(0,Ryz) of length 2N — 2 and then form X as the first NV elements of Z.

In accordance with (24) we could construct Z = F(QNEQA)I/QU, with U ~ N(0,I). Unfor-

tunately, since F is a complex matrix, Z is in general complex. However, if we add a imaginary

component iV, V ~ N(0,I), IE[UVT] = 0, to the spectrum (corresponding to a random phase),

we can generate two real sequences with the desired covariance: X; = Re(F (5 N1_2A)1/ 2(U+ zV))

and X, = Im( F(5A)2(U + iV)).

We have glossed over the fact that the embedding process Z may not even erist. In this case,
X cannot be synthesized exactly through this approach. In general, Rz may not be positive semi-
definite and, hence, we can obtain eigenvalues that are negative, implying negative power at certain

frequencies. In this case, the best we can hope to do is to set the negative eigenvalues to zero.
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3.2 Algorithm
Putting these ideas together, we present an algorithm to generate two real, length-N, mutually

independent Gaussian random vectors X;, Xo with mean pux and covariance function rx[n|:
Gaussian LRD FFT Synthesis Algorithm

1. Form the covariance function of the embedding process

. rx[n], 0<n<N-1
rzIn| =
z rx@N —n+1), N—1<n<2N—2

2. Calculate the FFT power spectrum of the embedding process, A = Frz.

3. Generate a length-2N — 2 realization of complex white Gaussian noise W = U + ¢V,

U, V ~ N(0,I), E[UVT] =0.

4. Set any negative eigenvalues to zero via X[k] = max(0,\[k]), k=0,1,... ,2N —2.5

~ 1/2
5. Compute Z as the IFFT of the sequence (2}\\,[5]2) Wk], 0 < k <2N — 2. In matrix form,

Z = F(g50)?W.,

6. Set X1[n] = Re(Z[n]) + px and Xo[n] = Im(Z[n]) + px, n=0,1,... ,N — 1.

7. To generate additional realizations, return to 3.

For software that utilizes power-of-two FFT algorithms, an efficient synthesis will occur if N =
2641, k € N, leading to an M = 2N —2 that is a power of two. For other lengths, efficient algorithms
such as the prime factor algorithm also exist [40]. If any of the eigenvalues A[k] are negative, then
the mean-squared deviation of the obtained covariance Ry [n] from the desired covariance will be

2N-3

> (Rel) - Rol)? = gip—y S NI (25)

n=0 k s.t. A[k]<0

3.3 Sufficient conditions for exactness

For many cases of practical interest, we can guarantee that Ry is positive semi-definite [14], and
hence that the algorithm is exact. We will develop several sufficient conditions based on the

properties of the covariance function rx[n].

5This step is unnecessary when the algorithm is exact (see Section 3.3).
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Theorem 1 If the covariance vector rx = [rx[0], rx[1], ..., rx[N —1]]7 satisfies the condition

N-2

> rxin]

then the matriz Rz in (27) is positive semi-definite, and the FFT-based synthesis of Section 3.2 is

Tx[O] 22 +|Tx[N—1]| (29)

ezact.

Proof: Rewrite (11) with M = 2N — 2 applied to r = r; from (26) to obtain

N-2
=r —1)ery [N — rx[n] cos 2mnk = —2.
S50 = 0+ (1)ralV ~ 1142 3 rxlnl eos (705 ) k=01, 2N—2 "

The theorem follows from the triangle inequality and the fact that | cos(z)| < 1, Vz € IR

The next theorem will provide the primary theoretical justification behind the algorithm. A

sequence {r[n], n=20,1,... ,N} is convez if its second difference satisfies
A?r[n] >0, n=0,1,... ,N —2. (31)
Theorem 2 If the covariance vector rx = [rx[0], rx[1], ..., rx[N — 1]] is convez, decreasing,

and nonnegative, then Ry in (27) is positive semi-definite, and the FFT-based synthesis of Section
3.2 is ezact.
Proof: See [14]. Under the above conditions, the FFT series in (30) can be written as a sum of

nonnegative Fejér kernels with nonnegative boundary terms. O

We will apply both Theorem 1 and Theorem 2 to demonstrate the validity of our 1/f synthesis.
It might appear that the conditions in Theorem 2 are overly conservative and can be broadened,
since the proof involves writing the FFT spectrum in (30) as the sum of strictly nonnegative terms.
In practice we have observed this to be the case — covariance functions deviating slightly from the
conditions of Theorem 2 lead to positive-definite Rz’s as well. However, the complicated nature of
the Fejér kernels makes it difficult to significantly improve the bound. Fortunately, the conditions

of Theorem 2 are broad enough to include many LRD covariance functions of practical interest.

3.4 Proof of exactness for 1/f processes

We now establish the exactness of the FFT-based method for synthesizing dfGn for 0 < H < 1. By
cumulatively summing the dfGn, we obtain exact sampled fBm for 0 < H < 1 as well. Although

dfGn for 0 < H < 1/2 is not LRD (hence not of primary interest), we include it for completeness.
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Recall the covariance function rx,, of a dfGn process Xy[n] (15). We apply Theorem 1 to show
for 0 < H < 1/2, that (15) satisfies the desired conditions for any N > 1. We will apply Theorem 2

to show for 1/2 < H < 1 that (15) satisfies the desired conditions for 1/2 < H < 1 and any N > 1.
Case I: 0 < H <1/2
We verify the conditions of Theorem 1 through the following set of inequalities:

rxy[0] = 0% > o% <1 — % (NQH _ (N—2)2H)> (32)

> ox (1+ (N -2 — (N —1)*) — % (N —2)2 —2(N —1)%#  N2H) (33)

By substituting in (15), cancelling common terms, and observing that H < 1/2, we obtain

N-2
21 rxylnl| =2|o% (-1 (N =27 + (N — 1)*H)| = 0% (1+ (V —2)* — (W — 1)*H).
n=1 (34)
Substituting (34) into (33) leads to
N-2
rxu (0] > 2| v, [n]| + |rxy [N — 1]]. (35)
n=1

Hence, from Theorem 1, the FFT synthesis is exact for M > 1 and 0 < H <1/2.
Case II: 1/2 < H < 1

We leave the proof that ry, satisfies the conditions of Theorem 2 to Appendix A. However, it is
easily verified for large n. Recall that the covariance function rx, [n] is one-half the central second
difference of the structure function U§(|n|2H . For large n, the second difference approximates the
second derivative, so the claim that the sequence 7x,[n] = o%|n|?" is positive, decreasing, and
convex can be easily verified from the derivatives of o%|t|?". For the case n = 0,1, the second

difference differs considerably from the second derivative; this case must be treated separately.
4 Exactness for Two Classes of Gaussian LRD Processes

It may be unrealistic to model real-world processes using a strict f{Gn or fBm process, with an
entire covariance structure determined through the choice of the single H parameter. Although
real-world processes may exhibit the same LRD as fGn or fBm, the short-term covariances may

behave differently, and for certain applications the behavior of these short-term covariances is of
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great importance. For instance, in our canonical networking example, we expect that both LRD and
short-term covariances will play a major role in queuing behavior. We investigate two parametric
models that overcome this limitation and prove that the FFT synthesis is exact for these two

models.

4.1 Asymptotic discrete fractional Gaussian noise
The first class, proposed by Kaplan and Kuo [25], results from the following covariance

O'g(, n=>0

rxln] = ok n—1 2H 2H 2H
(A=A = phlpl™  + A+ 1P + 0 = 1P7 = 2[nH)], |n|>1 (36
ith A = 2H4P2-2H) " pey call thi totic discrete fractional Gaussi ise (adfGn)

wi = S—p(a—am)- Lhey call this process asymptotic discrete fractional Gaussian noise (adfGn
and design a wavelet-based algorithm for estimating its parameters from observed data. Just as
for standard dfGn, 1/2 < H < 1 models the long-range dependence of the process. However, with
the additional term corresponding to the parameter p, we have more flexibility in modeling the
short-range dependence of the process. Notice that the covariance corresponds to the sum of the
covariance of an AR(1) process with the covariance of fGn.

We verify that (36) satisfies the conditions of Theorem 2 by observing that |p|® !

is convex,
decreasing, and nonnegative for n > 0 and |p| < 1 and that the sum of two convex, decreasing, and
nonnegative sequences is also convex, decreasing, and nonnegative. Hence, we can apply the FFT

method of Section 3 to exactly synthesize adfGn processes modeled via (36).

4.2 Kinked fractional Brownian motion
Other processes of interest exhibit different self-similar scaling over different scaling ranges [15]. To

model such behavior, let us consider a process with a structure function of the form:
[n] { okIn?, 0<n<n,
gBIn| =
YInl?He,

with 1/2 < Hy,Hs < 1, v > 0, and ng > n; > 0. We call such a process kinked fBm (kfBm) and

ne < n < 00,

the corresponding increments process X kinked discrete fraction Gaussian noise (kdfGn). These
are so named, because the variance-time plot exhibits two straight line segments connected with a
“kink” (see Figure 1(b)). We focus on Hy, Hy > 1/2, since this corresponds to a process with LRD

behavior.”

"It is easily shown that the special case of H; > 1/2 (LRD power-law scaling behavior over fine scales) combined
with H> = 1/2 (independence over coarse scales) can be obtained by selecting rx [n] to be equal to (15) for 0 < n < n1
and equal to 0 for n > ns. This model could be useful for processes such as those described in [17].
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Over short time scales (n < n1) the process behaves like sampled fBm with parameter Hy. Over
longer time scales (n > ng) the process behaves like fBm with parameter Hy. A variance-time plot
of such a process has a slope of 2H; — 2 for n < ny and 2Hy — 2 for n > ns.

Although we define kfBm and kdfGn in terms of the structure function of kfBm, we will actually
synthesize these processes by a generating the kdfGn increments process. Hence, we must derive
the kdfGn covariance function rx|[n]. Observe that gg[n] is derived from rx[n] via the difference

equation
gB[n +1] = 2gp[n] — gpln — 1] + 2rx|n], (37)

with boundary conditions gg[0] = 0 and gg[1] = 0%. We will invert this equation to solve for rx[n]

in terms of gp[n|.

4.2.1 Sampled kfBm without a transition region
Let us construct a kdfGn covariance function to model the kfBm scaling behavior. The simplest
example results from ny = n; + 1. That is, we piece the kdfGn covariance function together as
follows:
% (A 1P = 2P g — 1P 0<n<n,
rxlrl = { L (In+ 1122 — 2in?H2 4 |p — 1?H2) | ny+1<n < cc.

From (37) and (38), the structure function of kfBm is then given by

o2 |n|2, 0<n<m
. Yl + 1272 + @, n=n+1 59
gB|N| =
vin + 2272 + B, n=n+?2
ylne + 222 4 B(n —n+1) —a(n —n+2), n>n+2
with
a = 20% | —ok|ny — 1P — 2| P2 yfng — 122 (39)
B = 30%|ni M —20% |1 — 172 4 2v|ng — 1252 — 3|y P22, (40)

Since the error terms o and 8 are in general non-zero, with this approach it is impossible to
exactly achieve the desired scaling behavior for n > ng. Moreover, from (38), in general the

deviation from strict self-similarity grows linearly with time for n > ns. However, if 7 is chosen as
b= o (Il m — 1P (41)
X\ P =, — TP
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Figure 2: Covariance function of kdfGn without a transition for parameter values Hy = 0.75, Hy = 0.9,
ny = 32, and ny = 33 (top), and H; = 0.75, Hy = 0.6, ny = 32, and ny = 33 (bottom). Each covariance
function shares the same values for n < n; = 32. At n = ny, the kdfGn covariance functions exhibit a
discontinuity — a jump up for Hy = 0.9 and a drop for Hy = 0.6. In some cases, this behavior may not
correspond to a valid covariance function; however, it can be avoided by using a transition region (see Section
4.2.2).

then it is easy to show that o = 8 and that

ag(\n\QHl, 0<n<mn

gal={ " (42)
Y|nl*"2 +a,  n>mn.

Thus, for v as in (41), the kfBm process B will be in error by a fixed constant a and, hence, will

exhibit the desired self-similar scaling asymptotically as n — co. In practice, since gg[n| increases

at a super-linear rate for Hy > 1/2, the deviation for n > n; is often negligible.

With the « of (41), the covariance function for n > n; is given by

2
% (In = 1PH —2[nM 4 n 4 1PM1) . 0<n<m
TX[”] = 2

2
2H{ _1|2H
oy 53 (In + 12 — 2 4 Jn — 122) | m; +1<n < oo,

Note that the covariance function jumps substantially (up if H; < Hg, down if Hy > H;p) in the

transition from n; to ny + 1 (see Figure 2).

4.2.2 Sampled kfBm with linear transition

Aside from its artificial discontinuity, the covariance function of the aforementioned kdfGn may
not even be valid (positive semi-definite). Even if valid, this covariance will not satisfy Theorem
2 and, hence, we may not be able to exactly synthesize the kdfGn process via our FFT approach.
For this reason, we will utilize a transition region to ensure that the covariance remains smooth
and convex, yet still leads to the desired scaling behavior in the structure function.

In the transition region (n; < n < ng), we will choose the covariance function to be an affine
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Figure 3: Covariance function of kdfGn with a linear transition for parameter values Hy = 0.75, H> = 0.9,
ny = 32, and ny = 248 (top), and for kdfGn with Hy = 0.75, H» = 0.6, ny = 32, and ny = 82 (bottom).
In each case, na is chosen to be the smallest integer for which the covariance function remains convex.
For n < ny, the covariance function corresponds to dfGn with H = Hy. Starting from n = ny, the kdfGn

covariance function is linear (dotted line) until ny is reached, after which the covariance function corresponds
to dfGn with H = H,.

function an + b, leading to the overall expression:
[l + 120 + [0 — 1200 —2n21h] | 0 < |n| <my
rx[n] =< an+0b, ny < |n| < ng (43)
. [|n+ 1272 4 |n — 1)2H2 — 2|n|2H2] ny < |n| < co.
We use a linear transition for two reasons. First, it is analytically tractable and always leads to
a valid solution. Second, from the following heuristic argument we can demonstrate that a linear
function provides an efficient (short) transition.

For H; > H,, the value of the covariance function entering the transition is too large and must be
reduced. Thus, in the transition we wish to decrease the covariance function as quickly as possible,
while maintaining the convexity and monotonicity of the overall covariance function. In this case,
a linear transition function with slope a = Arx[n; — 1] leads to the shortest transition for a fixed
decrease in the covariance function (see Figure 3).

For Hy > H;, the value of the covariance function entering the transition is too small. Hence,
in the transition we wish the covariance function to decay as slowly as possible, yet still maintain
convexity and monotonicity. In this case, a linear transition function with slope a = Arx[ns] leads
to the smallest decrease in the covariance function for a given transition length (see Figure 3).

Having settled on a linear transition, we will take the following approach. Given the values
ag(, H,, Hy, n1, and ngy, we will solve for a, b, and v to approximate the desired scaling behavior

(37). As in (42), we will have to tolerate a slight error term in the structure function for n > no.
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For n9 large enough, we will demonstrate that the covariance function remains convex, decreasing,
positive, and, if viewed as a continuous-time function, smooth.

For the covariance function of (43), the structure function can be found through (37) to be
( agf\n\ZHl, 0<n<n

20§n12H1 — ag((m —1)28 4 2(ang +b), n=mn;+1

h[n], ni+1l1<n<ne
= 44
gB[n] ] ,yngHQ +a, n = ny ( )
Y(ng +1)*"2 + 3, n=ny+1

Yin+ 1222 4 B(n —ny) —a(n —no—1), n>ng+1,

with

1
hln] = %n?’ +bn® + (a(—n% +mny — §) +b(=2n1 +1) + o%n? — 6% (ng — 1)2H1> n

2n} 2 M 2 2 2H; 2H;
+a 5 M + 3 +b(nf—n1)+o0% ((—m + 1)nt + ng(ng — 1) ) , (45)
a = —y(n2)*" + h(ny), (46)
and
B = 2h(ny) — h(ng — 1) + y(ng — 1)2H2 — 2y(ny)?2. (47)

As in (42), we set @ = [ so that the structure function (44) will be in error by only a fixed

constant for n > no. This leads to the equation
~ (ngH ~ (g — 1)2H2) — h(ng) — h(ng — 1). (48)

Although our covariance function is in discrete time, we will choose b and v to ensure the

“continuity” of the covariance function at n; and ne, respectively via

b = rx(ni1)—am (49)

ans +b
= 2 . 50
7 (ng — 1)2H2 — 20272 4 (ny + 1)2H> (50

Substituting h into (48) and then plugging in (49) for b and (50) for  leads to:

0 — rx(n1) (2ng —n —2n;) + o-g(n%Hl — 0% (ny — 1)2H -

23



with

— 9 n§H2 — (ng —1)% (52)
7 (ng — 1)2H> — 2n2H2 | (ny 4 1)2H2’

Having solved for the desired parameters, we will now verify that the resulting covariance func-
tion is in accordance with Theorem 2, which ensures that FFT-based synthesis of such a process
is exact. For a fixed ng, a sufficient condition for the overall covariance function to be convex,

decreasing, and positive is that v > 0 and
Arx[n; — 1] < a < Arx[ng] < 0. (53)

We will demonstrate that such an no exists.

We will find it useful to approximate differences of a discrete function with the derivatives of
the identical function viewed as a continuous function of time, for instance, Arx[ng] = r'y (ng2). As
ngy — 00, these approximations become exact.

We start by substituting derivatives for the first and second differences in the 7 term of (51)
and finding the limit of (51) as ny — oco. This leads to the result

2H2 —2 Tx[nl] _
n2—0Q 3 — 2H2 U N

0, (54)

Since a — 0 and Arx[n; — 1] < 0, for ny large enough we find that a > Arx[n; — 1].
Substituting (49) and (54) into (50), we observe that

lim v = 2Hp — 1 rx(m] . (55)
n2—300 3 —2Hs (ny — 1)2H2 — 2n2M2 4 (ny 4 1)2H2

Hence for ny large enough, v > 0.
Finally, by substituting (55) into (43), approximating the second difference via the second deriva-
tive, and taking a derivative with respect to n, we obtain

(2H2 - 1)(2H2 — 2)7”)([711] ~ 2H2 —1
(3 — 2H2)n2 o 2 @

lim Arx(ng) = li_I)Il 'y (ng) = (56)
n2 o0

na—o00
Since a < 0 and 2221 < 1, from (56) we see that for ny large enough a < Ary[ns]. Hence, the
conditions v > 0 and (53) are satisfied, guaranteeing that an ny exists for which the covariance
function is convex, decreasing, positive, and consistent with the desired scaling behavior of (37).
Thus, to synthesize the desired kdfGn process exactly, we simply apply the FFT algorithm of

Section 3.2 to the covariance function (43).
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4.3 Gaussian LRD synthesis example
We can now provide more details on the synthesis experiment of Figure 1. Using the FFT method
of Section 3.2, we synthesized length-2!7+ 1 sampled fBms for H = 0.9, ux = 0, 0% = 1 and
H=0.6, ux =0, 03( = 38.63 and a sampled kfBm (37) with H; = 0.9, Hy = 0.6, ag( =1, ux =0,
n1 = 64, ng = 340, and v = 38.63. The value ne = 340 is the minimum ns for which the covariance
function remains convex, positive, and decreasing using a linear transition (as verified through
(53)). As expected, over short time scales, the kfBm behaves like the fBm with H = 0.9 and
03 = 1. Over larger time scales, the kfBm behaves like the fBm with H = 0.6 and 0% = v = 38.63.
At bottom in Figure 1 are the variance-time plots for the fBm and kfBm traces. Included within
these plots are empirical estimates of H corresponding to linear fits of the log-log plots over the
scales indicated. These H estimates agree quite well with the desired theoretical values, as they are
within the standard error range of the variance-time plot [27]. To decrease the bias in these plots
and H estimators, the variances in the variance-time plot were calculated using the knowledge that
the processes were zero-mean. For H near one, reliable mean estimation is difficult and can lead

to inaccuracy in the variance calculations, particularly at coarser resolutions.

5 FFT-based Synthesis of NonGaussian Processes

In many applications, data networking and the stock market to name two, the LRD processes of
interest are strictly positive and can exhibit heavy-tailed, nonGaussian behavior. To model this
behavior we consider the following task. We seek to synthesize a stationary, nonGaussian random
process Y [n| with distribution function Fy and covariance function ry. As shown in Figure 4,
our approach is to form Y as a memoryless nonlinear function 7" of a Gaussian process X [n] with
covariance function rx. The question is whether (and how) we can choose T and rx to obtain the
desired Fy and ry.

We will prove that through this approach we can synthesize ezactly second-order self-similar
(ESS) nonGaussian processes without error. Recall from Section 2.3.3 that a discrete-time process
Y'[n] is ESS if it has a variance-time plot (hence covariance and power spectrum) identical to that

of fGn. Thus ESS processes provide nonGaussian equivalents to the 1/f fGn process.?

8Note that we slightly prefer the use of ESS over nonGaussian 1/f noise, since as noted in Section 2, discrete-time
realizations of ESS or fGn processes will not be strictly 1/f.
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Figure 4: Block diagram for the synthesis procedure for nonGaussian LRD processes. From the desired
first-order distribution function Fy and covariance function ry of the nonGaussian process Y, the prewarped
correlation function rx is calculated. The process X is synthesized efficiently via the FFT algorithm of
Section 3, and passed through a nonlinearity to obtain the desired process Y = T'(X).

In this formulation, we do not specify the higher-order covariances of the process. In addition,
our approach applies only to finite-variance processes that have a well-defined covariance function,

which would exclude, for example, the stable distributions. For a fast, but approximate, synthesis

of positive-valued LRD data based on wavelets, see [35].

5.1 Creating a nonGaussian process from one Gaussian process

By definition, the random variable ®(X|[n]) is distributed uniformly on [0,1], and we can apply
the inversion principle [18,19,41] to synthesize a random process Y [n] with distribution Fy. Let
the value X[n] have a Gaussian first-order marginal distribution N(ux,0%), and let Fy(y) be a

continuous distribution function on IR with inverse F,-' defined by [41]
Fyl(u)=inf{y: F(y) =u, 0 <u < 1}. (57)

Then we can synthesize the nonGaussian process Y[n| via

Xnl —

Y[n] = T(X[n]) = Fy* (@ (M)) : (58)
ox

If X has covariance function rx|[n], then the covariance function for Y can be calculated as

follows. Let

— ni| — 2 rx|n
X X

be the normalized covariance function for X. Then ry[n] may be found via
ry[n] = BIT(X[m]) T(X[m — n])] - E[T(X[n])}? (60)

with

E[T(X[m]) T(X[m —n])] Z/oo e Y (21,22, px, 05, px [n])dz1dzs,

% 2ro34/1— p%[n] (61)
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= —\ > —2px (21 — To — + (29 — 2
Y (1,20, hx, 02, p%) _exp( (z1 — px) px(z1 — px)(z2 — px) + (2 — px) )
(62)

20% (1 = p)
Calculating (60) leads to the transformation ry[n] = W (rx|[n]), which we invert to obtain the

desired “prewarped” covariance function for X via®

rx[n] =W (ry[n]). (63)

5.2 Creating a nonGaussian process from two Gaussian processes

In the synthesis of nonGaussian processes, the distribution mapping ® used in (58) can lead to
difficulties in the calculation of 7' and W !. Closed-form analysis may be intractable, and hence
numerical integration may be required to obtain these quantities. Here we investigate a second
approach that is more amenable to closed-form analysis.

For a fixed value of n, if X;[n], Xa[n] ~ N(0,1) and are independent, then the random process

1

Vin] = exp (g (X¢ln] + ¥30r) (649

has a first order distribution that is uniform on (0,1) [42]. This suggests an alternative synthesis

approach for synthesizing a random process Y with first order distribution Fy. We set

Yin] = Fi! (exp <_% (X2[n] + X3 [n])>) , (65)

with X; and X5 two independent zero-mean Gaussian random processes with common covariance
function rx [n].
As before, to synthesize Y with a desired covariance structure, we must calculate the warping

W (rx[n]) = B [T (X1[m], Xa[m]) T (X1[m — n], Xa[m — n])] — IE? [T (X1[m], X[m])] (6)
66

and its inverse rx[n] = W~!(ry[n]). This leads to an integral similar to (61).

Note that since Y is a function of the square of Gaussian processes, this approach is only valid

for synthesizing positively-correlated processes, that is, processes with ry[n] > 0.

9Aside from the covariance function ry, rx may also depend on the parameters of the marginal density of ¥
(its mean for example). For clarity of presentation, we suppress the potential dependency of rx on these auxiliary
parameters, since they can be absorbed into W ™!,
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5.3 Algorithm for synthesis of nonGaussian LRD processes

Putting all of these steps together, we obtain the algorithm for synthesizing nonGaussian LRD

processes:
NonGaussian LRD FFT Synthesis Algorithm

1. Prewarp the desired LRD covariance function ry via rx = W™1(ry), with W obtained from
(60) if Y is synthesized from one process X; or (66) if Y is synthesized from two processes

X1 and Xs. If necessary, calculate ux.

2. Using the FFT-based synthesis algorithm of Section 3, synthesize Gaussian random vectors

X1, X9 with mean px and covariance function rx.
3. Transform the data via Y = T'(X;) from (58) or Y = T'(Xy, X3) from (65).
4. To generate additional realizations, return to 2.

As in the Gaussian case, there is no guarantee that we can exactly synthesize the target non-
Gaussian covariance function ry. Indeed, the prewarped Gaussian process may not even exist! In
some cases the covariance function ry would be valid if Y were Gaussian, but when prewarped
back to rx = W1 (ry) leads to an invalid covariance function for X [19].

Fortunately, for ESS processes with the correlation structure of dfGn, for 1/2 < H < 1 we can
use Theorem 2 demonstrate that in many cases the synthesis is exact for the underlying Gaussian
covariance function rx. We have already established that if Y has a covariance function correspond-
ing to (15) then ry is convex, positive, and decreasing. Prewarping typically preserves monotonicity
and positivity, but can destroy the convexity of the covariance function. In Appendix B, we provide
general sufficient conditions for the nonGaussian ESS synthesis to be exact and demonstrate that
ESS synthesis is exact for the lognormal, uniform, exponential and Pareto densities, densities that

we now subject to closer scrutiny.

5.4 Example densities
5.4.1 Lognormal
If X [n] has a first-order pdf N(ux,0%), then Y[n] = exp(X|[n]) has a first-order lognormal pdf [42]

1 (logy — 2
fy(y) = oyv2rexp _i(gya—qu) , y>0 (67)
X
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with mean and variance

ok
py = exp (MX + 7) ; (68)
oy = exp(2ux +20%) —exp (2ux +0%) . (69)

In addition, if X [n] has covariance rx[n] then from (61) it can be shown that Y'[n] has covariance

_ oexp(rx(n]) —1

= . 70
TY[n] Ty exp (o_g() 1 (70)
The transformations (68-70) are inverted by

2

px = log Ay ) (71)

\VHy + ot

o2

0% = log<1 + —;’) ) (72)
Hy

rx[n] = log<1 + rygn]) . (73)

Ky

5.4.2 TUniform

Although a random process whose values are uniformly-distributed on [0, 1] can be obtained sim-
ply through the transformation ¥ = ®(X), as noted earlier the transformation (65) provides a
construction more amenable to closed-form analysis.

By completing the square and using the fact the Gaussian pdf integrates to one, it can be shown

that
IE|exp —i(X[m] +X[m—n]’) )| = ——, (74)
4—rklnl
and hence
2
rx[n]
ryln] = —5——. (75)
R e )
Inverting this, we obtain
rx[n] =4 vl . (76)
1+ 4ry[n]
To generate a uniform variable on the interval (a,b), we simply form
1
Vil = a+ (0 o) exp (3 (X + X3l ) ()
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and obtain rx[n| as

ry|[n]
=4 . 78
TX[n] \/(b— Cl)2 +47"Y[7’L] ( )
5.4.3 Exponential
An exponential random variable Y with fy(y) = l%ye_y/ #Y y > 0 corresponds to Fy '(y) =

—uy logy [41]. Hence, to synthesize an exponential random process with mean py we form

Y] = py <w> (79)
We observe that
E[Y [n]Y[m —n])] = % (2 + 2 [X?[m]X?[m — n]]) (80)
and thus
ry[n] = pyrin, (81)

which implies that

rxln] = uim/ry[n]. (82)
Y

In passing, we note that a Weibull random variable with parameters (u, a) may be formed from
the a-th root of an exponential random variable [41,43]. Hence, a Weibull random process may be

obtained via

An expression for the covariance warping in terms of the hypergeometric function is provided in [43].

However, a derivation for the inversion of this expression appears analytically intractable.
5.4.4 Pareto
A Pareto(a, b) random variable with fy (y) = y‘ﬁ%, x>b>0and

ab

E[Y] = —. (a>1), (84)

E[Y?] = a“% (a>2), (85)
a 2

o = m (a>2), (86)

30



has F~1(y) = ylb/a. No moments of order g > a exist.

To synthesize a Pareto random process, we apply [41]

X? X3
Yn] = bexp(M> ) (87)
2a
For a > 2, we find that
a’b?
E[Ym]Y[m —n]| = 88
¥ =l = gt (58)
which leads to the following expression for ry[n] in terms of rx[n]
a’b’rx[n]
ry[n| = . 89
" @ A1y (&
To find rx[n] in terms of ry[n], we invert as follows
rx[n] = (a—1°Vryln] (90)
Va?b? + ry[n](a —1)2
By writing rx[n] in terms of py[n] = ry[n]/o%, we obtain the simpler expression
-1
rxln] = —aDVerin) (o1)

Va% =2a + py[n]
Care must be taken in the use of such a process for 2 < a < 4, since the fourth moment does
not exist. Hence, the process may not be covariance ergodic [44] and may vary significantly from

realization to realization.

5.5 NonGaussian LRD synthesis examples

In Figure 5 we provide synthesis examples of Gaussian, uniform, exponential, lognormal, and Pareto
ESS traces of length-65537, each synthesized using the FFT method of Section 5.3. The parameters
of each process are chosen so that H = 0.85, uy = 1, and a% = 1. Although all of these processes
have the same theoretical second-order statistics, they have different higher-order moments and are
quite distinct visually. Hence, we could expect them to behave quite differently in data network
simulations, for example. Moreover, we note that although the averaged auto-covariance function is
indistinguishable from the true covariance function, in any one realization the covariance can vary
significantly from the true auto-covariance. This deviation is more pronounced in LRD data with

H near one, and is exacerbated by skewed distributions with heavy tails, such as the Pareto.'? In

0Fyurthermore, the averaged auto-covariances plotted in Figure 5 were obtained assuming a known mean. With
LRD data, for any one realization the empirical mean can vary substantially, and covariance estimates can behave
even more erratically.
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Figure 5: Realizations of the exactly second-order self-similar (ESS) process Y[n] for (a) Gaussian, (b)
uniform, (c) exponential, (d) lognormal, and (e) Pareto data synthesized via the FF'T method of Section 5.3.
The parameters of each process were chosen so that uy = 1, 0% =1, and H = 0.85. At top are the full length-
65537 traces. At middle are the first 1000 samples. The processes have the same theoretical second-order
statistics, but appear strikingly different. At bottom are the averaged auto-covariance functions with 90%
confidence intervals computed over 500 trials. Except for the Pareto process, the averaged auto-covariance
function is nearly indistinguishable from the true covariance function. In any one realization, however,
the covariance can vary significantly from the true auto-covariance, particularly for H near one and for
heavier-tailed densities such as the Pareto.

these instances, great care must be taken in interpreting and estimating parameters from a single
LRD trace.

In Figure 6, we plot the prewarped Gaussian covariance functions required to synthesize the
traces in Figure 5 and the prewarping functions themselves. These plots demonstrate that the
underlying Gaussian process exhibits stronger LRD than the target nonGaussian process.

Although the focus of this work is not on the measurement and estimation of LRD in Gaussian
and nonGaussian data, this example illustrates how the tools developed here might be useful for
such a study. Our experiments indicate that for highly-skewed nonGaussian data with H close to
one, on any given realization the sample covariance can deviate significantly from the theoretical
covariance. In this case, accurate parameter estimation from a single trace is difficult. Our FFT

algorithm could be used to test the robustness of different LRD parameter estimation algorithms,
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Figure 6: (a) Gaussian covariance functions (normalized) required to synthesize the traces in Figure 5. In all
cases, the underlying Gaussian process X is more highly correlated than the target nonGaussian process Y .
(b) Normalized Gaussian covariance values px[n] = rx[n]/o% as a function of the normalized nonGaussian
covariance values py[n] = ry[n]/o%.

particularly those derived under a Gaussian assumption [27].
6 Conclusions

Although continuous-time 1/f processes such as fBm and fGn have a number of fascinating prop-
erties, at the end of the day a digital computer-based synthesis of these signals must be performed
in discrete time. We have demonstrated that an exact synthesis should be based on the time-
domain properties of these processes. Moreover, we have proved that an FFT approach based on
embedding a Toeplitz matrix into a circulant matrix is exact and, because of its computational
superiority (O(N log N) versus O(N?)), clearly the best method for exactly synthesizing sampled
fBm and dfGn.

The simplicity of the time-domain approach combined with the fast FFT algorithm has allowed
us to develop a general framework for modeling and exactly synthesizing Gaussian and nonGaussian
LRD processes. For instance, we have introduced a new Gaussian process called kinked fractional
Brownian motion, with increments process kinked discrete fractional Gaussian noise. KfBm exhibits
different fBm-like scaling behavior over different resolutions of analysis and for several applications
may be a more accurate model than pure fBm. In the nonGaussian arena, we have demonstrated
efficient synthesis techniques for exactly second-order self-similar processes — processes with a
covariance structure identical to dfGn, but with a nonGaussian first-order density. These types of

processes occurs in areas as diverse as data networking and finance and can be synthesized exactly
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for many nonGaussian pdfs of interest.

Several issues beg to be addressed. Synthesis of general nonGaussian LRD processes, such
as nonGaussian equivalents to kdfGn and adfGn of Section 4, via the FFT method would be
straightforward from the work developed here. In general it could be difficult to guarantee that
this synthesis procedure is exact, but we have noticed that if the Gaussian covariance function
satisfies Theorem 2, then the covariance will often be valid for FFT-based nonGaussian synthesis
as well.

Synthesis of multi-dimensional LRD processes is another application of clear interest, particu-
larly for image processing. Unfortunately, as shown in theory [14] and practice [4], many of the
useful 1-d conditions for guaranteeing exactness do not hold in higher dimensions. Moreover, for
higher-dimensional spaces, there does not exist a single fGn-like increments process for fBm [4].
Generalizations of this work to multi-dimensional processes could be quite difficult.

Lastly, a general polynomial warping [18, 19], in particular a Hermite polynomial expansion,
would allow us to synthesize LRD processes with a wider class of nonGaussian pdfs than the
examples listed here. However, in general such a method requires the use of numerical integration
to calculate the Hermite polynomial coefficients.

With algorithms to exactly synthesize both Gaussian and nonGaussian LRD processes, we pro-
vide network researchers with tools that will help them understand and differentiate the effects of
LRD and nonGaussianity in their data. Since the FT'T synthesis is exact, we can be confident that
the properties of the synthesized traces are indeed authentic and not due to some artifact of the
synthesis procedure. In addition to its potential applicability to networking, this research could
also be useful for applications such as simulation of financial markets, where volatility is known to
exhibit LRD and nonGaussian behavior [8,45].

We are not limited to these few applications, however. The FFT algorithm could also be quite
useful for benchmark testing of LRD parameter estimation algorithms. For instance, LRD processes
with varying short-term covariances and nonGaussian marginals could be synthesized to test the
accuracy and robustness of LRD estimation algorithms. More generally, our framework provides
synthesis and modeling tools that could lead to new insights into the general behavior of Gaussian

and nonGausssian 1/f and LRD processes, which are still poorly understood relative to classical
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Markov, Poisson, and AR processes.

A Exactness of FFT-Based Synthesis of DfGn for 1/2 < H < 1

To verify that the FFT synthesizes dfGn exactly, we must demonstrate the fGn covariance function
rx, [n] (15) satisfies the conditions of Theorem 2. That is, we must show that it is convex, decreas-
ing, and non-negative. Hence, we need to show for any integer n > 0: rx,[n] > 0, Arx,[n] <0,

and A?rx, [n] > 0. We will split this into two cases.

Al Casel:n>1

It will be convenient to replace the discrete-time function rx,, [n] with its continuous-time equivalent
rx, (7), since convexity, monotonicity, and non-negativity for the continuous function rx, (1), €
[n1,n2], ni,ne € Z immediately lead to the identical properties in the sequence rx,[n], n =
ny,ny+1,... ,n9.

d’I‘XH (Tl)

drxy (1) is non-negative on (n1,n2), then for 71 > 7o, we observe that —2— >

.. d?
For example, if —4

drx g (m2)

7—, implying that

A'rxy[n] = (rxgln] = rxg[n+1]) = (rxyln +1] = rxg [0+ 2))

_ _/n+1 dTXH(T)dT+/n+2 dTXH(T)dT
n n+1 dr

_ /nn+1 [dTXH(g +1) dr)f;-(T)] dr >0, (92)

Hence, it becomes clear that

d2’r‘XH (T)

d2

>0, V7 € (n1,n2) = AQTXH[H] >0, n<n<ng—2, (93)
-

which from (31) implies that the discrete-time sequence is convex over the interval [n1, ns].
To establish the convexity, monotonicity, and non-negativity properties of the covariance func-

tion, we will find the following expansion useful for qualitative analysis of rx, (1) for 7 > 1:

O ()krek s
(r+1)° = TC-I-Z%H(C—.]) (94)
k=1 ’ j=0
7_072
= %4 elc—1) 51 +--- (95)



By substituting (94) into (15) and combining terms, we obtain the series expansions for rx, and

its first derivatives for 7 > 1:

o 2H-2k 2k—1
rxy(1) = o% Z (2H —j), (96)
k=1 7=0
o 2H-2k—1 2k
e, () = Z [1H -, (97)
k=1 7=0
o 2H—2k—2 2k+1
% () Z I1 @H - ). (98)
=1 4=0

For H > 1

5, €ach term in (96) and (98) is positive (the product of an even number of negative

numbers), while each term in (97) is negative (the product of an odd number of negative numbers).

For 0 < H < 1/2 the opposite statements are true. Thus, it is easily verified that

rxy (1) > 0¥ HQRH —1)7m?H72 >0, 1/2<H<1, 7>1, (99)
v, (T) <oxH(2H —1)2H —2)7*#7% <0, 1/2<H<1, 7>1, (100)
%, (1) > 0% H(2H — 1)(2H — 2)(2H - 3)r* 4 >0, 1/2<H<1, 7>1 (101)

We have thus established that the continuous-time function rx, (7) is convex, positive, and
decreasing for 7 > 1. This fact and the continuity of rx, (7) at 7 = 1 imply that the discrete-time

function rx, [n] is convex, non-negative, and decreasing for n > 1.

A2 Casell: n=0

A continuous-time analysis in this case is more difficult, since the underlying continuous function
rxy (7) is not convex, with a second-derivative undefined for 7 = 0, 1. Instead we can look at the
first and second differences directly to verify that the function is decreasing with positive second

difference. At n =0, we have
Arx,[0] = r[0] —r[1] =2—22H"1 >, (102)
1
Ay, [0] = 5 (7—4 22" +3°H) > 0. (103)

To see the inequality in (103), note that

d(A2rx,0])  22H 3\ 92H 9
— AL —— [ —4log2 — 1 < — | —4log2+ -1 <
¥i% 5 og?2+ 2 ogd | < 5 og +4 ogd) <0,

(104)
with A?rx,[0] = 0 for H = 1. Hence, A?rx,[0] must be positive for H € (1/2,1). Thus, we

conclude that FFT-based synthesis of dfGn is exact for H € (1/2,1). O
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B Exactness of FFT-Based Synthesis of NonGaussian ESS Pro-
cesses for 1/2 < H < 1

We will verify that the prewarped Gaussian covariance used for synthesizing a nonGaussian ESS
processes is convex, monotonically decreasing, and positive for several types of nonGaussian pdfs.
Just as in Appendix A, we split the test for convexity conditions into two cases: n > 2 and n =0, 1.
Note that we investigate the case n > 2 instead of n > 1, since the continuous-time bounds we will

derive are not meaningful for n = 1.

B.1 Casel:n>2
B.1.1 General bound

Consider data with a covariance function rx = W 1(ry), where W1 is a twice-differentiable,
monotonically increasing map such that W~1[1] = 0%. As in Appendix A, we will treat rx as a
function of a continuous-time lag 7 € IR, using the fact that if rx(7) is convex for 7 > 2, then
A?rx[n] > 0 for n > 2.

By the chain and product rules of the calculus we have

Prx(r)  EPW ry) dry(M\?  dW(ry), d2ry(7)
dr? dri (T)< dr ) * dry (™) dr?

(105)

We will now examine the properties of the inverse warping function W ! that are necessary to

2
satisfy that the convexity constraint d%(ﬂ > 0. From (105) we obtain

2
d2W—1(ry) ( ) d27"y (1)

dry T )

b > __ar (106)
daw-1 = 2
UG

This bound holds for general LRD processes, not just for ESS processes.
B.1.2 Application to ESS processes

In the case of an ESS process Y, from (101) we observe that for 7 > 1

dQTy(T)

i oL H(2H —1)(2H — 2)(2H — 3)7%1*, (107)
-

Next, we find from (97) that for 7 > 1

dry(r) _ o2 _ _9),2H-3 S Tzk_QQHJwSl(?H —1-137)
= 2H(2H —1)(2H — 2) (1 +k222 2D .
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211255 (2H—1—7)|

It is easily verified that —~=2 o1 < % for £ > 2. Hence, for 7 > 1 we obtain
TRy oo 2115 (2H —1 - J) PRI W T 109
Dt (2K!) S1+52 s (g ) (109)
k=2 k=2
Thus, for 7 > 2 from (108) and (109) we obtain the bound
2
4
dry ()" 49 s mom — 1)@2m — 2))2r4H 5, (110)
dr 36
yielding
T () _ 36 (2H — 3) .
WTv) () T 4902 H(2H — 1)(2H — 2)72H 2 (111)
d'l‘y
Since on the interval 22=3 > 2 for H € [1/2,1], we can write
S O 1 72 1
L L > 21 (112)
W) () = 4903 H(2H — )72 2 = 497y (7)
Ty

Equation (112) is a simple, but somewhat overly restrictive, condition to check for the convexity
of the underlying Gaussian covariance function for n > 2. For instance, as 7 becomes large, the
covariance function ry (1) is well-approximated by the second-derivative of the structure function
0%,|7'|2H , and it is easy to show that we must have the asymptotic behavior

dZW_l(Ty) (7_)

dry > 2 i (113)
dW;:}E'I‘y) (7_) - ry (7_) ’
We now focus on the examples from the text.
B.1.3 Lognormal density
For the lognormal warping (73), we have
-1
%;Y(T)) = (i +ry(r) ", (114)
21171
W)~ 4 me ()™ (15
dry
This leads us to
d2W_1(21‘y('r)) 1
drsy . 2 -1 -
W = —(uy +ry(r) > e (r)’ (116)
ry

which satisfies (112).
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B.1.4 Uniform density

For the uniform warping (64), we see that

dw 1
T 0y = 2y ()24 4y (), (17)
d?w-1
TV () = —(6ry (7) + Dl ()20 + 4y ()72, (118)
v
and
W ry (1
s = WS NG
dW_;”E;Y(T)) 2 ry(T)(1 +4ry (7))
8 —1
1+4ry (1)  2ry(7)(1 4+ 4ry (7))
-1
> 88—
)
.2
— 3ry(r)  2ry(7)
7
> —
—  bry(r)’ (119)
which satisfies (112).
B.1.5 Exponential density
For the exponential warping (82), we observe that
dW—Y(r 1 _
ey = vy (120
d2wW—1(r 1 _
) ), (121)
e
and
de_hErY)(T) -1 (122)
d2W‘}(TY)(T) - 2ry (1)’

2
dry

which satisfies (112).

B.1.6 Pareto density: a > 3
In this case, we work with the normalized covariance function py (7). Since o2 just provides a

scaling, the bound of (112) applies with ry (1) replaced by py (7). For the Pareto warping (91), we
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obtain

dW = (py) _ a(a—1)(a —2)
T(T) - 2(py(’7’))1/2(a2 _2a+py(7))3/2 ’ (123)
PW = (pr) ala - 1)(a — (e — 2a+ 4py (7))
T(T) - 4(PY(T))3/2(G2 _2G+py(7’))5/2 (124)
and
W ' (py)
—apy () e’ —2a+4dpy(r)
% ~ 2ov(M)(@® —2a+py(7) (125)

We provide bounds for the case a > 4, when the fourth moment exists. It can be shown that for
a > 2 the Pareto satisfies the asymptotic bound of (113), but not necessarily that of (112).

We bound the numerator from above and the denominator from below using the fact that
0 < py(r) <1 and a > 4 to obtain

AW~ (py) (1)

dpy 7
2 > — (126)
2Ww-1 )
—Q—VVde(PY) (r) ~ 6oy (1)
which satisfies (112).
B.2 Casell: n=0,1
For each of the aforementioned pdfs, to guarantee convexity we must also verify that
Arx[0] = Wl(ry[0]) — 2W(ry[1]) + Wl (ry[2]) >0, (127)
A’rx[l] = W i ry[l)) —2W Yoy [2) + Wi (ry[3]) > 0. (128)

For these pdfs, the second differences at n = 0 and n = 1 are complicated expressions that
are difficult to bound analytically. Therefore, we provides plots that, in conjunction with the
smoothness of the underlying functions as a function of H, indicate that the second differences
A?rx[0] and A?rx[1] are non-negative for 1/2 < H < 1, with the zero value achieved only at the
boundaries H = 1/2 and H = 1. The first step to applying these plots and keeping them 1-d is to
show that the values of the parameters of the density functions do not effect the convexity.

For instance, we can set the parameter yy = 1 for the exponential function and assume the
uniform lies in the region [0, 1] without loss of generality. Examination of (78) combined with the

2
fact that ry[n] = (aIQb) py [n] shows that the choice of region has no effect on the covariance rx[n].

40



For the Pareto density, we now show that we can set the parameter a = 3 without loss of

generality. The second difference of the underlying Gaussian correlation function is given by

py[n+2]

py[n+1] .
Va2 —2a+ py[n+2] 129)

Va2 —2a+ py[n +1]

py[n] B
Va? —2a + py[n]

A%rxn] = (a—1) <

Since py[n + 1] > py[n + 2], (129) is bounded below by

\/a.2 2a+py | n—|—1 /—
Va2—2a+py[n

—2y/py[n+ 1]+ /py[n +2]

Arx[n] > (a—1) Va2 =2a+ py[n +1]

Ve

Va2 —2a + py|n]

Since py[n] > py[n + 1], (130) is monotonically increasing in a. Hence, in Figure 7(a), we plot

—2a+ py[n + 1]
atovind 1) - 2/t 1] + Vol 2] (130)

(130) for a = 3, H € [1/2,1], n = 0, and n = 1 in order to show that A2rx[0] and A?rx[1] are

non-negative for all a > 3.
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Figure 7: Demonstration of the convexity of the underlying Gaussian covariance function rx[n] atn =0
and n = 1 for the problem of nonGaussian ESS process synthesis. (a) The second differences Arx[0]
and A?rx[1] (or lower bounds) are non-negative for H € [1/2,1] for the exponential, Pareto, and uniform
densities. (b) The terms ry [n]ry [n+2]—r%[n+1] are non-negative for the lognormal density with H € [1/2,1]
and n = 0,1. This implies that A?rx[0] > 0 and A%rx[1] > 0.

Finally, for the lognormal, in order to demonstrate non-negativity in a single one-dimensional
plot, we must remove the extra parameter ,u%,. Note that the second difference for the lognormal

function is given by

m%+wm—mm%+wm+m) (131)

A”W:m( W%+ ry[n])?
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Since ry[n — 1] + ry[n + 1] > 2ry[n] by the convexity of ry[n], we see that (131) is non-negative if

ry[n — 1)ry[n + 1] > r2[n]. Hence, in Figure 7(b) we plot 7y [n]ry[n + 2] — r&[n + 1] as a function

of H for n =0 and n = 1 to demonstrate that A?rx[0] and A%rx[1] are non-negative.
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