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Abstract— Signal processing algorithms based on Volterra
filter structures often require that a matrix composed of
higher-order moments of the underlying process be invert-
ible. Previously, this problem has been studied for uncor-
related random variables. This paper establishes conditions
under which a wide class of correlated processes have in-
vertible higher-order moment matrices.

I. INTRODUCTION

Volterra filters have received increasing attention in the
recent signal processing literature. Algorithms for Volterra
filtering applications, such as signal detection [12], estima-
tion [3,4,12] and system identification [9,10], often require
inversion of a matrix composed of higher-order moments
or statistics of the underlying random process. Hence, the
existence of the inverse is an important issue. The non-
singularity of moment matrices is also important in the
study of stability and convergence of adaptive algorithms
[7,8]. Previous authors have considered the invertibility of
moment matrices corresponding to uncorrelated random
variables [2,4,10].

This paper generalizes earlier work to include a much
wider class of correlated random processes. First, it is
shown that the moment matrix corresponding to absolutely
continuous random variables is invertible. Second, neces-
sary and sufficient conditions are established for the in-
vertibilty of the moment matrix corresponding to a linear
transformation of a given random process.

Notation and previous work are reviewed in section II.
In section III, the case of jointly absolutely continuous ran-
dom variables is examined. In section IV, the invertibility
of a general class of moment matrices corresponding to lin-
ear transformations of random variables is studied. These
results are generalized to polynomial transformations in
section V. Section VI includes several applications relevant
to adaptive filtering and nonlinear system identification.

II. NoTATION AND PREVIOUS WORK

Consider a collection of real-valued random variables
{X; : 1 < i < m}. Througout the paper, let the inte-
ger N > 1 be fixed. If {X; : 1 < i < m} is the input to
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an N-th order Volterra filter, then the output is a linear
combination of the random variables [11]
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There are exactly rp, = ( ) random variables in the
collection above. The number r,, is the number of N-
selections from an m + 1 set [5,11]. Define the r, x 1
random vector X whose elements are the random variables
in (1).

Let E{-} denote the expectation operator. The random
variables {X; : 1 < i < m} are said to be uncorrelated up
to order n if E|X;|” < oo for 1 <i < m and

: inigN, n; €{0,1,...,N} }. (1)
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for -7 pi < n, 0 < p; < n. The condition E|X;|" < oo,
1 < i < mis necessary and sufficient to guarantee that the
cross moments up to order n exist [4]. Throughout the pa-
per we assume, without explicitly stating, E|X;|?" < oo,
1 < i < m, so that all moments involved exist.

Previous Work

Begin with the single random variable case.

Lemma 1.1 [13]: Let m = 1. The matrix E{XXT} is
singular if and only if X is a discrete random variable that
takes on at most N distinct values with positive probabil-
ity. O

The following results have been obtained for the case
m > 1.

Lemma 1.2 [4]: The matrix E{XXT} is singular if one
or more of the random variables {X;}72, is a discrete ran-
dom variable that takes at most N distinct values with
positive probability. O

If the random variables are sufficiently uncorrelated, the
last result can be strengthened.

Lemma 1.3 [4]: If the random variables {X;}7, are un-

correlated up to order 2N, then the matrix E{XXT} is
singular if and only if one or more of the random variables
is a discrete random variable that takes at most N distinct
values with positive probability. O

Generalizations of these results and an excellent survey
of applications are found in [4]. Similar results have been
obtained fori.i.d. sequences and a special class of determin-
istic signals known as pseudo-random multilevel sequences

[10].



111. JoiNnTLY CONTINUOUS RANDOM VARIABLES

Define the random vector X = (X1, X)),

Theorem 3.1: If X has a density with respect to m-
dimensional Lebesgue measure, then E{XXT} is invert-
ible.

A proof is given in Appendix A. Note that no assump-
tions are made on the correlation between the random vari-
ables. Hence, Theorem 3.1 can be used to establish the
invertibility of E{;V;VT} even when the random variables
are correlated. Throughout the remainder of the paper we
assume that all densities are with respect to Lebesgue mea-
sure and simply say that a random variable/vector has a
density.

IV. LINEAR TRANSFORMATIONS OF RANDOM VARIABLES

Consider the linear transformation Y = HX, where H
is a constant ¢ x m matrix and we assume ¢ < m. Let Y
be a ry x 1 random vector (ry = (QEN)) whose elements are
the random variables

q
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Theorem 4.1: If E{XXT} is invertible, then E{jijiT}
is invertible if and only if H is full rank. If ¢ = m, then

: zq:nigN, n; €{0,1,...,N} }. (2)
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the invertibility of E{/%/%T} is also a necessary condition.

The proof of Theorem 4.1 is given in Appendix B. Recall
that Lemma 1.1, Lemma 1.3, or Theorem 3.1 can be used
to establish the invertibility of E{.5c'.5C’T}. Also note that,
in general, Y3, ...,Y, are correlated.

Next, Corollary 4.1 gives conditions for the invertibility
of the 2n-th order homogeneous moment matrix and fol-
lows directly from Theorem 4.1. Here we only require that
X has finite cross moments of order 2n. For n > 1 define
the vectors X(®) and Y(*) whose elements are the random
variables,
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respectively.

Corollary 4.1: 1f E{}_{(”)}_{(”)T} is invertible, then
E{Y(")Y(”)T} is invertible if and only if rankH = ¢. If ¢ =
m, then the invertibility of E{X(”)X(")T} IS a necessary
condition. O

V. EXTENSION TO PoLYNOMIAL TRANSFORMATIONS

In the previous section we considered linear transforma-
tions of random variables. The results easily generalize
to polynomial transformations. Let {Z; : 1 < j < r} be
real-valued random variables. Set X; = ngjgr Zf”j, 1<
i <m with p;; € {0,1,...,n}, 2;21 pi; < n for each i,

and assume that the {X;}2, are unique products of the
{Zj};—;. Now Y = HX defines a polynomial transfor-
mation of the underlying {Z;}7_,. Note that in this case
E{/%/%T} is composed of cross moments of {Z;}7_, up to
order 2N n. Provided these moments exist, Theorem 4.1 is
applicable. If Z = (Z1, ..., Zr)T has a density and H is full

rank, then Theorems 3.1 and 4.1 indicate that E{j’j’T} is
invertible. However, note that in general X defined in this
manner does not have a density.

VI. APPLICATION TO ADAPTIVE FILTERING
AND SYSTEM IDENTIFICATION

Let Z denote the set of integers and let {Xy : k € Z} be
a stationary random process. Let

X = [Xp, Xpo1, - I

i) Xk—m+1
Technically, the process need only be 2N-th order station-
ary, for appropriate N, where 2N-th order stationary is the
obvious generalization of wide sense stationarity (N = 1).

Definition 5.1 [10]: If the 2N-th order correlation matrix

E{;V.;VT} exists and is invertible then {Xj}grez is called
persistently exciting of order N and degree m or p.e.(N, m)
for short.

Remark 5.1: Theorem 3.1 implies that if

X = [Xp, Xp—1, - I

oy Xk—m+1
has a density, then {Xj}rez is p.e.(N, m) for any finite N
provided the required moments exist.

Remark 5.2: For practical system identification exper-
iments, one needs to consider the sample moment matrix
obtained from finite set of observations. If X has a density,
then satisfaction of the p.e. condition implies the sample
moment matrix is invertible! with probability 1 provided at
least r,, observations of X are used to form the sample
moment matrix. However, in general, there is a non-zero
probability that the sample moment matrix is singular.

Example 1 - Moving Average Processes: Theorem
4.1 implies that a p-th order moving average (MA) of a
p.e.(N,p+ q) process is p.e.(N, ¢). Suppose

P
Y = thXk—i
i=1
with h; € R, 1<i<p. LetY = [Yk, Yeo1, ..., Yk_q+1]T.
Define the ¢ x (p + q) matrix
hy hy - h,
hy hy -+ h,

Provided h; # 0 for some 1 < i < p the matrix H is full
rank. Thus if {Xj}rez is p.e.(N,p+ q), then {Yi}rez is
p.e.(N,q). O

L This follows directly from Remark 3.1 in Appendix A.



Ezample 2 - Static Polynomial Transformations: Let
n > 1 be an integer and suppose Yy = > ., ¥ X}, with
v €R, 1 <i<n. Let

X = [Xp, X7, ooy XPy Xpor, XPoq, oo, XP )t
Y = [Yi, Yic1, ..., Yeom41]?, and define the matrix H
by

"}/1 B "}/n
H = e S @)

Y1 o Yn

Provided v; # 0 for some 1 < ¢ < n the matrix H is full
rank. Thus, by Theorem 4.1, if {Xj}rez is p.e.(nN, m),
then {Y }rez is p.e.(N,m) .0

The results in Examples 1 and 2 can be further gener-
alized to establish conditions under which the output of a
Volterra filter driven by {X}} is p.e. Following from the
discussion in section V, if a p.e.(nN, m + ¢) process {X}
is the input to a non-zero n-th order Volterra filter with
memory ¢, then the output process is guaranteed to be
p.e.(N,m).

Remark 5.3: Lemma 1.3 implies that a Gaussian white
noise (GWN) is p.e.(N,m) for any positive integers N, m
[10]. Hence, polynomial transformations (i.e., Volterra fil-
ters) of GWN processes are p.e.(N, m) for any positive in-
tegers N, m.

In fact, GWN driven ARMA processes are also p.e.(N, m)
for any positive integers N, m.

Ezample 3 - ARMA Processes: Let {Yi}lrem be a
stationary ARMA process driven by GWN. Let
Y =[Ye, oo, Yiemr)h

and R = E{YY7T}, the second-order correlation matrix of
{Yi}rem. It is well known that R is invertible [14]. Let H
be an m X m matrix whose columns are the orthonormal
eigenvectors of R. If X = H-'Y, then the elements of X
are uncorrelated Gaussian random variables and hence are
independent. Since X is vector of independent Gaussian
random variables, Lemma 1.3 indicates that E{XXT} is
invertible. Y = HX and H is invertible so, by Theorem
4.1, {Yi }rem is p.e.(N,m) for any positive integers N, m.
Alternatively, it can be shown that an ARMA process has
a density and hence Theorem 3.1 applies. O

VII. CONCLUSIONS

It is shown that a large class of correlated random vari-
ables lead to invertible moment matrices. If X has a density
with respect to Lebesgue measure, then the corresponding
moment matrix E{;Y;YT} is invertible. Linear and poly-
nomial transformations of random variables are also con-
sidered. Necessary and sufficient conditions are given for
the invertibility of the corresponding moment matrices. In
the context of adaptive filtering and system identification,
invertibility of moment matrices implies that the under-
lying random process is persistently exciting. It is shown

that many common types of linear and polynomial trans-
formations preserve the excitation properties of stationary
random processes.

APPENDIX A

The following well-known fact is used to prove Theorem
3.1.

Remark 3.1 [15, pp. 28-29]: Let p : R™ — IR be a
polynomial, p # 0, and A denote Lebesgue measure on
IR™. The set of real zeros of p has zero Lebesgue measure;
that is

A{x e R™ : p(x) = 0}) = 0.

Proof of Theorem 3.1: We proceed by establishing that
E{;V.;VT} is a positive definite matrix. Let a € IR"™ be ar-
bitrary. Positive definiteness requires aTE{jf.ifT}a > 0or
E{(aTXx)?} > 0 for all a # 0. In general, E{(a”X)?} >0
with equality if and only if a”’ X = 0 almost surely, that is
P(aTXx = 0) = 1, where P is the probability measure on
the underlying probability space. However, a’ X is a poly-
nomial in the elements of X and since X has a density f,
Remark 3.1 implies P(a” X = 0) = 0 for all a # 0. Hence,
E{(aTx)?} > 0 for all a # 0 and E{XXT} is positive
definite. O

APPENDIX B

The proof of Theorem 4.1 involves Kronecker products.
Let XM 2 X, YO =2 v, HY 2 H, and for n > 2
recursively define the n-fold Kronecker products X(™) =
Xe-DeX, Y 2Yr-DgY and H® 2 H?-1 gH.
The identity Y(») = H)X(?) ig easily derived using Y =
HX and Kronecker product identities [6]. Also, it can be
shown that rankH(") = (rankH)".

For N > 1 define X 2 [1, XV . XM |7 and y 2
[1, Y(l)T, .. .,Y(N)T]T. The vectors X and Y contain all
random variables in (1) and (3) respectively. However, due
to the Kronecker product construction, X and Y contain
redundant random variables, e.g., X1 X2 and X5 X;. Define
full rank matrices P, and P, that eliminate the redundant
products so that P,, X = X and Py = )7, where X and
Y are the vectors defined from (1) and (3). Finally define
the block diagonal matrix H = diag{l, H®Y) ... HWM}
where the operator diag is defined such that the rows and
columns of each rectangular block matrix are nonoverlap-
ping. The next two properties follow directly from the
previous definitions.

Property B.1: rankH = Ef\;o(rankH)i. O

Property B.2: Y ="HX. O
We now prove Theorem 4.1.

Proof: First consider the case ¢ = m. Using the defini-
tion of P,, and Property B.2,

E{yy"'} = B{P,,YyY'PL} =P, HE{x X" }H"PT .
Sufficiency is established as follows. Note that

rank E{X X7} < r,,,



with equality if and only if E{XXT} is invertible. Also,
by Property B.1, H is invertible if and only if H is in-
vertible. Hence, if E{.;V.;VT} and H are invertible, then
E{YY'} = HE{xX"}H" has rank r,,. The action of

P,, and P! removing duplicate rows and columns does not
affect the rank so E{j’j’T} has rank r,, and is invertible.
On the other hand, if E{/?/?T} is singular, then E{j’j’T}

is singular since

Tm > rankE{i’i’T},
= rankE{xXx7’},
> rankP,,HE{xXXT}H'PL,
= rankE{j’j’T}.

Therefore, in this case the invertibility of E{XXT} is a

necessary condition for E{j’j’T} to be invertible. Also
note that if H is not invertible and has rank s < m, then
HX lies in an s-dimensional subspace of IR™. It follows
that rank HE{X X1 }HT < (*tN) < r,,. Thus, the invert-
ibility of H is necessary as well.

For the case ¢ < m, the sufficiency is established in a sim-
ilar fashion. Assume rankH = ¢ and let H be an m x m
matrix with the first ¢ rows identical to H and with the
remaining m — ¢q rows chosen such that H is invertible. De-
fine H = diag{I:I(O),I:I(l), . ..,I:I(N)}. Let Y = HX and
51 = Pm’f-(z\:'. Y contains all random variables in Y and
additional random variables involving the last m — ¢ ran-
dom variables of Y. Define a full rank matrix P such that
PY=Y.1If E{.5C’.5C’T} is invertible, then the result for the

. . i 3 T - T T . .
q = m case implies R = E{P,,HX X" H P. } is invert-
ible. Hence, E{j’j’T} = PRP7 is invertible since P is full
rank. Necessity of the condition rankH = ¢ is established
in the same manner as given for the case ¢ = m. O
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