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ABSTRACT

Time-frequency based methods, particularly quadratic
(Cohen’s-class) representations, are often considered for
detection in applications ranging from sonar to machine
monitoring. We propose a method of obtaining near-
optimal quadratic detectors directly from training data
using Fisher’s optimal linear discriminant to design a
quadratic detector. This detector is optimal in terms
of Fisher’s scatter criterion as applied to the quadratic
outer product of the data vector, and in early simula-
tions appears to closely approximate the true optimal
quadratic detector. By relating this quadratic detector
to an equivalent operation on the Wigner distribution
of a signal, we derive near-optimal time-frequency de-
tectors. A simple example demonstrates the excellent
performance of the method.

1. INTRODUCTION

Time-frequency methods have long been used for de-
tection in applications such as sonar and radar. More
recently, extensive interest has arisen in time-frequency
based detection for new applications as diverse as ma-
chine fault detection, communications signal detection,
and heart attack risk assessment from ECGs [1] [2].
Time-frequency methods are of interest because of the
nonstationary nature of these signals or the interfer-
ence. However, unlike the classical matched filter the-
ory applied in radar and sonar, the methods developed
for these new applications are ad hoc, with no assur-
ance that the time-frequency methods employed even
approach the best possible performance.

Quadratic detection theory has recently been ex-
ploited to derive optimal quadratic time-frequency de-
tectors [3]. Unfortunately, these methods require sub-
stantial knowledge of certain statistics of the signals and
the interference. In many applications, such as machine
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fault detection and ECG analysis, the signals are com-
plex and poorly understood, the distinguishing features
are unknown, and the collection of the necessary statis-
tics may not be possible. However, the collection of
substantial amounts of labelled training data is often
feasible. A method based on deriving time-frequency de-
tectors directly from training data offers the best and,
perhaps, only hope for optimal detection in many of
these important new applications.

In this paper, we develop such a method by ap-
plying Fisher’s optimal linear discriminant to design a
quadratic detector from training data. Relating this
quadratic detector to an equivalent operation on the
Wigner distribution or the ambiguity function of a sig-
nal yields a time-frequency detector. If the training data
represents the signal/fault-present case for one partic-
ular time-frequency location, we derive under certain
circumstances an equivalent detector for components at
unknown time-frequency locations. A simple example
illustrates the near-optimal performance of the method.

2. QUADRATIC TIME-FREQUENCY
ANALYSIS

Most commonly used time-frequency representations
(TFRs) are members of Cohen’s class, which is the class
of quadratic time-frequency representations. All TFRs
in Cohen’s class can be represented as filtered versions
of the Wigner distribution (WD)

P(taw) = WD:E(ta w) * ¢(t7w)> (1)
where ¢(t,w) is the kernel in the time-frequency domain.
The WD is a linear transformation of the instantaneous
correlation function

R(t, 1) =x(t+7/2)z*(t — 7/2), (2)

where the Wigner distribution is defined as

WDy (t,w) = [ ~ R(tr)e T dr. (3)



Any quadratic functional, Q(z), of a signal can be
generated via an inner product,

Q(z) = (At,7), R(t, 7)) , (4)

between A(¢,7) and the instantaneous correlation func-
tion. This quadratic functional can equivalently be gen-
erated via an inner product with the WD as Q(z) =
(A, WD), where A is A(t,7) transformed according to
(3), or from any other invertible linear operator on
R(t,7). This includes most common TFRs in Cohen’s
class. We exploit this equivalence below to derive opti-
mal time-frequency detectors for signals with unknown
time-frequency shifts.

Note that in practice one usually processes sampled
data, in which case the usual discrete-time equivalents
of the above representations are used.

3. BLIND QUADRATIC DETECTION

A substantial body of techniques for the “blind” deriva-
tion of detectors/discriminators solely from training
data have been developed within the discipline of sta-
tistical pattern recognition [4]. Fisher’s linear discrimi-
nant designs a projection vector, A, that minimizes the
“scatter,” between two groups of labelled training data,
of the linear functional S(r) = (A, R); that is, it ap-
proximately maximizes the difference between the out-
put S(r) for the two hypotheses relative to the sum of
the standard deviations of the two groups. The detector
is implemented by computing the inner product of the
projection vector with the data to be classified and com-
paring this result to a threshold. The details of Fisher’s
procedure may be found in [4].

By applying Fisher’s method to the instantaneous
correlation function, R(t,7), a quadratic detector can
be designed. The projection vector produced by this
procedure corresponds to A in (4) above. Fourier trans-
formation in the variable 7 produces an equivalent de-
scription A in terms of the Wigner distribution. The
inner product Q(r) = (A4, R) is, furthermore, equiva-
lent to a TFR P(t,w) evaluated at (¢ = 0,7 = 0) with
the kernel ¢(t,w) = A(t,w). Equivalent expressions in
terms of any other TFR or the ambiguity function are
easily derived. Thus, this approach provides a means
of deriving, from training data, an “optimal” quadratic
discriminator.

We note that the quadratic discriminator derived
with this method is optimal only in the sense of maxi-
mizing the “scatter” of the training data. For Gaussian
inputs under both hypotheses and certain other condi-
tions, Fisher’s method converges asymptotically to the
optimal linear detector. However, we note that even
under these conditions on the sampled input signal,

x(n), the method we propose here does not converge to
the optimal quadratic detector, because the data seen
by the Fisher design algorithm are quadratic products
(z(n)x*(n + k)) of the data and are thus not Gaussian-
distributed. Nonetheless, at least in our simulations to
date, the proposed method converges to a nearly opti-
mal quadratic detector.

4. BLIND TIME-FREQUENCY DETECTION

For detection of random Gaussian signals with a fixed
correlation structure (which may be time-varying), or
for detection scenarios with a fixed time-frequency off-
set of the components of interest, a simple quadratic
detector suffices. While such detectors can equivalently
be implemented as inner products with the Wigner dis-
tribution or other quadratic TFRs, there is no particular
reason to do so. However, if the time-frequency offset
varies, as, for example, in a pulse-doppler radar system,
a separate quadratic functional at each time-frequency
location is required for optimal detection. In this case,
the detection problem becomes a composite hypothesis
problem with an unknown, or random, time-frequency
offset.

In the most general case, where the statistics of
the signal and/or interference change with the unknown
time and frequency location, a separate quadratic detec-
tor, Q¢ ¢(r) = (Ay4,7, R) must be designed for each loca-
tion. As a quadratic time-frequency representation, at
a given point (¢, f), corresponds to an inner product of
the kernel at that point with the WD, the time-varying
kernel simply corresponds to a transformed version of
At’fi

b7 (t,w) = /_oo Ay p(t,T)e 9 dr. (5)

A significant drawback in the general case is that
sufficient labelled training data must be available to de-
sign the unique kernel for each time-frequency location.
However, under certain conditions, the kernel will be
time and frequency invariant and can be designed from
training data consisting of signal-present training data
with only a single time-frequency offset. In the spe-
cial case where the second and fourth-order statistics of
the data under both hypotheses at any time-frequency
location are simply equivalently shifted time-frequency-
shifted versions of the statistics at other time-frequency
locations, the optimal kernels derived at each time-
frequency location will be identical (except for time-
frequency shifts). An example of such a situation is the
case where the noise is white and the signal is merely a
time-frequency shifted version of some prototype, such
as aradar signal. In this case, the optimal kernel is time-
frequency-invariant. Furthermore, training data from



only a single time-frequency location is needed to de-
sign a kernel, and this kernel can then be applied in a
TFR to generate an optimal detector for components at
any time-frequency location.

In some important applications, the signal and/or
noise statistics may be invariant with time, but not with
frequency. In intermediate cases such as these, a dif-
ferent quadratic kernel must be designed for each fre-
quency, but for a given frequency, the kernel will be
time invariant. the detector corresponds to a bank of
(frequency-varying) quadratic filters.

5. EXAMPLE

The following simplistic example illustrates the pro-
posed method. Figure la shows 32 samples of a tran-
sient signal z(n) = ne %257, Its Wigner distribution
is shown in Figure 1b. The method described above is
used for the blind design from training data of a detector
for this signal in white Gaussian noise. The optimal de-
tector of a deterministic signal in white Gaussian noise
is well known to be the matched filter; however, the best
purely quadratic detector uses the squared magnitude of
the matched filter output. By Moyal’s relationship, this
corresponds to the inner product of the WD of the signal
with that of the noisy data. Thus, the optimal quadratic
detection kernel in this example, in the time-frequency
plane, is the Wigner distribution of the signal. 10,000
realizations of the signal plus noise, and noise only, were
generated to train the kernel as described above. The
resulting kernel is shown in Figure 1c, and it closely re-
sembles the WD of the signal, which is known to be the
optimal quadratic kernel in this simple example.

The kernel can be applied at other time-frequency lo-
cations to detect similar transients with unknown time
and frequency shifts. Figure 1d shows a realization with
a time and frequency shifted version of the transient;
Figure 1le shows the TFR of this representation using
the kernel shown in Figure 1c. The presence of the com-
ponent, at the correct time and frequency location, is
apparent.

The classification performance of the method was
tested by applying the resulting detector to 1000 real-
izations each of signal present and signal absent, with
the decision threshhold set for equal false alarm and miss
probabilities. Using the matched filter, the best possible
detector, the error probability was 8.5%. With the op-
timal quadratic detector (a non-coherent matched filter
in this case) the error probability was 11.6%. The per-
formance of the quadratic detector designed using the
method developed here was 12.9%, which is very close
to the performance of the best possible purely quadratic
detector. In an experiment with unknown time and fre-

quency shifts, the error probability was 19.3% for the
non-coherent matched filter and 23.0% for the blind
quadratic detector. These results conform with theory
and demonstrate the ability of the proposed blind train-
ing to closely approach the performance of the optimal
quadratic method.

6. CONCLUSION

The method developed here for designing quadratic and
time-frequency detectors requires only training data; it
requires no prior knowledge of the signal or interference
characteristics. This is potentially of great benefit in
the many applications of current interest, such as ma-
chinery monitoring, in which the physical systems are
so complex that there is little hope of well modeling (or
sometimes even understanding), the phenomena to be
characterized. In such applications, blind methods such
as these may offer the only realistic hope for obtaining
near-optimal detection.

As explained above, even under simple Gaussian as-
sumptions on the data, the proposed detector does not
in general converge asymptotically to the exactly opti-
mal quadratic detector. While initial simulations indi-
cate convergence to detectors that are nearly optimal,
questions regarding the size of the performance gap un-
der more general conditions, and the development of
alternative discriminator design procedures tailored for
quadratic inputs, warrant further research.
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Figure 1: Time-frequency based detection using Fisher’s
linear discriminant derived from labelled training data.
(a) Unknown transient signal to be detected from train-
ing data. (b) Wigner distribution of the transient.
(c) Wigner distribution of Fisher’s kernel. (d) Time-
frequency shifted and noisy realization of the transient
signal. (e) TFR of the noisy realization based on
Fisher’s kernel; peak occurs at unknown time-frequency
offset.
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