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ABSTRACT

Generalized joint signal representations (JSRs) extend the
scope of joint time-frequency representations (TFRs) to a
richer class of nonstationary signals, but their use, just as
in the case of TFRs, has been primarily limited to quali-
tative, exploratory data analysis. To exploit their poten-
tial more fully, JSR-based statistical signal processing tech-
niques need to be developed that can be successfully ap-
plied in real-world problems. In this paper, we present an
optimal detection framework based on arbitrary generalized
quadratic JSRs, thereby making it applicable in a wide vari-
ety of detection scenarios involving nonstationary stochastic
signals, noise and interference. For any given class of gen-
eralized JSRs, we characterize the corresponding class of
detection scenarios for which such JSRs constitute canoni-
cal detectors, and derive the corresponding JSR-based de-
tectors. Our formulation also yields a very useful sub-
space-based interpretation in terms of corresponding linear
JSRs that we exploit to design optimal detectors based on
only partial signal information.

1. INTRODUCTION

Nonstationarity is a salient characteristic in many impor-
tant signal processing scenarios. Examples include radar,
sonar, speech, biological, geophysical and machine fault sig-
nals. Classical methods based on stationary spectral analy-
sis are inadequate in such applications; new tools are needed
to successfully tackle such problems.

Joint time-frequency representations (TFRs) facilitate a
time-varying spectral analysis and are widely used in non-
stationary signal processing [1]. However, new TFRs have
been developed primarily for exploratory data analysis:
that is, by using TFRs to get a visual display of the time-
varying spectral energy in the signal and using this qual-
itative information as a starting point for further analy-
sis/processing. Recently though, the need for detection in
nonstationary scenarios has spurred interest in the use of
TFRs as detectors [2, 3, 4]. However, most of the proposed
techniques are ad hoc and /or do not justify the use of TFRs
as detectors. Some very recent results have put TFR-based
detection theory on a firm footing [5], thereby extending
the use of TFRs to more quantitative application.
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Fundamental to the structure of TFRs is the concept of
time-frequency shifts, and this very property limits their
scope to a relatively small class of nonstationary signals;
qualitatively, TFRs are “well-matched” to a special, nar-
row class of signals. In an attempt to develop nonstation-
ary tools well-matched to a broader class of signals, re-
cent research in time-frequency analysis has yielded rapid
progress in the development of new joint signal representa-
tions (JSRs) that analyze signals in terms of variables other
than time and frequency. An important example is the
affine class of joint time-scale representations (TSRs). The
development is finally culminating in a fairly comprehen-
sive theory for generalized JSRs with respect to arbitrary
variables [1, 6, 7, 8].

Despite the proliferation of generalized JSRs, their de-
velopment has been limited primarily to qualitative, ex-
ploratory data analysis tools. To exploit their potential
more fully, JSR-based statistical signal processing tech-
niques need to be developed that can be successfully applied
to real-world problems involving random signals, noise and
interference. One promising framework is that of nonsta-
tionary signal detection in the presence of noise and inter-
ference, which has received substantial attention lately; for
example, in applications such as radar/sonar, engine knock
detection [4] and machine health monitoring [3, 2]. Owing
to the rich variety of signals involved in such applications,
techniques beyond TFR-based detection are desirable.

In this paper, we present a framework for optimum detec-
tion based on any arbitrary class of generalized quadratic
JSRs, thereby making it applicable in a broad class of non-
stationary detection scenarios. Since such JSR-based detec-
tors are canonical for detecting signals that have undergone
certain unitary transformations, a covariance-based theory!
for generalized JSRs is the appropriate vehicle for charac-
terizing such detectors. We adopt the development of [8] be-
cause of its simplicity? and provide a brief review in the next
section. In Section 3, we describe the JSR-based detection
theory: for any arbitrary class of covariance-based JSRs,
we characterize the corresponding class of detection scenar-
ios for which such JSRs form canonical detectors, and also
explicitly characterize the JSR-based detectors. A useful

!Based on the covariance of JSRs to certain unitary
transformations.

2We note that a covariance-based theory is also developed in
[7] but it involves a complicated remapping of coordinates that
is unnecessary from a detection viewpoint.
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subspace-based interpretation of the detectors in described
in Section 4, and concluding remarks are provided in Sec-
tion 5.

2. COVARIANCE-BASED JSRS

Consider a parameter set G C IR? and a family of unitary
operators {U(.p)}, (a,b) € IR?, defined on L*(IR); that
is, (U(a.5)8, Ua,py8) = (s,8) for all s € L?(IR) and for all
(a,b) € R The two “coordinates” a and b represent the
variables of interest, and, in a covariance-based approach,
we are interested in all bilinear JSRs, with respect to the
variables a and b, that are “covariant” to the unitary op-
erator U, ). For example, TFRs from Cohen’s class are
covariant to the time-frequency shift operator T,F,, where
(Tus)(t) = s(t — p) and (Fus)(t) = e 72™!5(t), and the
TSRs from the affine class are covariant to the time-scale
shift operator T,D., where (D.s)(t) = %s(t/c). Under
fairly natural assumptions, the family U, ;) must form a
group under composition [8]; that is, the parameter set G
is a group with the group operation e defined by [8]

Uw,0)Ur sy = U(ab)e(a,pr) (Within a phase factor). (1)

The appropriate covariance relation, then, is the group op-
eration; that is, the JSRs satisfy [8]

(PU(ar,51)5)(a,0) = (Ps)((a',0) 7" @ (a,0) ,  (2)

for all (a,b), (a',b’) € G, where the JSR is denoted by
the operator P. All quadratic JSRs that satisfy (2) can be
simply characterized as [§]

(PS)(O,, b7 (I)) = (q)U(a,b)_lSv U(a,b)_ls)u (0’1 b) € G: (3)

where @ : L?(IR) — L*(IR) is a linear operator characteriz-
ing the JSRs from the class.

3. GENERALIZED JSR-BASED DETECTION

As we mentioned in the Introduction, a covariance-based
approach to generalized JSRs is the appropriate vehicle for
a JSR-based detection framework. With the above charac-
terization of covariance-based JSRs, we are now in a posi-
tion to describe the JSR-based detection theory.

Consider an arbitrary family {U, )} of unitary opera-
tors satisfying (1) for some group G, and the corresponding
class C of covariant JSRs as characterized by (3). Such a
family of unitary operators could possibly model the effect
of a transmission medium that produces a nondissipative
signal distortion. Our objective is to characterize the class
of detection scenarios for which the JSRs from C consti-
tute canonical detectors, and also to characterize the corre-
sponding JSR-based detectors.

Signal detection is simply a binary hypothesis testing
problem:

Ho : z(t) =n(t)
Hi : z(t) = as(t) + n(t) (4)
where ¢ € T, the observation interval, z is the observed

signal, s is the signal to be detected, n is additive noise
and a is a positive parameter that may be unknown. Based

on the observed signal z, it has to be decided whether the
signal is present (H;) or not (Hp). The optimal decision
is made by comparing a real-valued function of data, L(z),
called the test statistic, to a threshold.

A key observation regarding JSR-based detectors is that
they can realize a different quadratic function of the ob-
served signal, z, at each (a,b) location. Thus, for opti-
mal JSR-based detection, we focus on scenarios in which
the optimal detector is a quadratic function of the observa-
tions. And, in order to exploit the degrees of freedom in a
JSR (a different detector at each (a,b) location) we resort
to composite hypothesis testing scenarios, analogous to the
approach in [5].

3.1. Quadratic Detection Scenarios

It is well-known that for detecting a Gaussian signal in
Gaussian noise, the optimal test statistic is quadratic.
Thus, we focus attention on Gaussian detection® and as-
sume that both n and s are zero-mean complex Gaussian
processes, independent of each other, and characterized by
their correlation functions R, (t1,t2) = E[n(t1)n*(t2)] and
Rs(t1,t2). To exploit the degrees of freedom in JSR-based
detectors, we consider composite hypothesis testing scenar-
ios in which, under H;, the signal, s, has two parameters
(a, B) that may be unknown or random:

H; :z(t) = as(t; o, B) + n(t) - (5)

The idea is to associate the parameters («, 3) with the vari-
ables (a, b) of the JSR.. The dependence of s(t; , 3) on (v, B)
is completely characterized by the signal correlation func-
tion, which we denote by R ). We consider three impor-
tant detection scenarios:

1. Arbitrary Gaussian signal in white Gaussian noise.

2. Arbitrary Gaussian signal in arbitrary Gaussian noise
(deflection optimal detector).

3. Small amplitude arbitrary Gaussian signal in arbitrary
Gaussian noise (locally optimal detector).

The optimal detector in all cases has the form [5, 9]*

L(z) = gg%L("’ﬂ)(aﬁ) = g%[(Q(“"”w,x) +F(a, B)], (6)

with Q*#) given by [9]

2N,
Cases 2 and 3

Q(a,B)_{ SRR 4 NoI) ! Case 1
R;lea’B)R;I

1
2

3 Although some of the detectors are also optimal, with respect
to the deflection criterion, for nonGaussian signals in Gaussian
noise [5].

4For a fixed value of the parameters (a, 3), the optimal detec-
tor is of the form (Q(®:#)z, ), derived from the likelihood ratio
(LR). For unknown or random parameters, a generalized LR test
(GLRT) is used. For unknown parameters, maximum likelihood
(ML) estimates of the parameters are used in the LR. For random
parameters, the optimal detector does not admit a closed-form
expression in general. In such cases, we propose MAP (maxi-
mum a posteriori probability) GLRT detectors in which MAP
estimates of the parameters are used (see [5, 9] for details).



and the function F'(«, 3) depends on the joint pdf of («, 3)
in the case of random parameters.

3.2. Signal Dependence on Parameters

Since the first term in (6) is a quadratic form, if the pa-
rameters («, 8) could be identified as the variables (a,b) of
a class of JSRs, the various detectors could be easily and
efficiently realized using those JSRs. How should the signal
s(t; a, B) depend on the parameters (a, 8) so that the opti-
mal detector (6) can be naturally realized using JSRs from
C? Not surprisingly, the answer is intimately related to
the family of unitary operators {U(,3)} defining the class
C. By equating the quadratic form in (6) with (3), we find
that for a given class of JSRs, characterized by the unitary
operator U(g 3 in (3), the test statistics can be naturally
realized by the JSRs if and only if the operator Q(*#) in
(6) is of the form ((a, B) < (a,b)).

QY = U poUy, (8)

for some nonnegative definite linear operator ¢.° Using (7),
it can be verified that the form for Q(*® in (8) translates
into the following signal model:

R = U pRoU,) € s(tia,0) = Ugpys®? (1) (9)

for some correlation function operator Ro, where, for each
(a,b), s‘? is any zero-mean Gaussian signal with corre-
lation function Ro.” TIn particular, s(t;a,b) could be one
particular Gaussian signal (with correlation function Ro),
say So, unitarily transformed by U, ;); that is, s(t;a,b) =
(U(a,b)so)(t)-

3.3. JSR-based Optimal Detectors

Substituting (9) in (7) and comparing (6) with (3), we note
that the optimal detectors in all the cases, corresponding to

the signal model (9) in (5), can be naturally realized using
JSRs from C' as

I(a) = max[(Py)(a,b:®) + F@b)] , (10
z Case 1
where y = { R,'z Cases2and 3 °’ (1)
the operator ® characterizing the JSR is given by
_ | Ro(Ro+ NoI)™*  Case 1
¢ = { iRo Cases 2and 3’ (12)

Np is the noise power in Case 1, and the function F'(a, b) is
given by

0 ML : Cases 1 and 2

I Trace(R, 'R{*?) ML : Case 3
F(a,b)=<logp(a,b) MAP : Cases 1 and 2 (13)

log p(a, b)+

%Trace(R;IRga’b)) MAP : Case 3

5Trace(-) denotes the trace of an operator (sum of
eigenvalues).

6Since the test statistics are nonnegative for all (a, b).

"The operator R corresponding to a correlation function R is
defined as (Rs)(t) = f R(t,T)s(T)dr.

Thus, an arbitrary family of unitary operators {U )}
satisfying (1) defines, on one hand, a class of JSRs covari-
ant to U, ) and, on the other, a corresponding class of
signal detection problems for which such JSRs form canon-
ical detectors. Essentially, any arbitrary second-order ran-
dom signal that has been transformed by U, ), with the
parameters unknown or random, can be optimally detected
via (10) by means of JSRs from the class C. In addition
to the simple structure of the JSR-based detectors, we note
that the (a,b) location at which the maximum occurs in
(10) is actually the ML or the MAP estimate of the signal
parameters (unknown or random parameters, respectively).

3.4. Example

Detection framework based on the hyperbolic class
[10]. The hyperbolic class is covariant to “hyperbolic time-
shifts” and scale changes: U, ) = HoD. where the hyper-
bolic time-shift operator, H,, is defined in the frequency do-
main as (H,Fs)(f) = e 727 !"(/)(Fs)(f). Thus, the TFRs
from hyperbolic class form canonical detectors for random
signals transformed by U, .); that is, the corresponding
family of spectral correlation functions is characterized as

Sga’c) = U(a,C)SOU(_al,C) ~

S (1, f2) = B{(Fs(a, ) (f1)(Fs(a,c))* (f2)}

=3 e IOV (e fr)e T UV (efa) (14)
k

where the ui’s are the eigenvalues and the Vi's are the
eigenfunctions (in the spectral domain) of the spectral cor-
relation function Sp. This framework should be contrasted
with that presented in [11] where the detection of fized
Gaussian signals (with no unknown parameters) is equiv-
alently formulated using the hyperbolic class, and optimal
detection of hyperbolic chirps with unknown parameters is
discussed. Our formulation provides optimal detection of
arbitrary nonstationary random signals with unknown (or
random) scale and hyperbolic time-shift parameters.

4. SUBSPACE-BASED INTERPRETATION

For a given “window” function g, the unitary operator
U¢q,p) defines a linear JSR T via

(TS)(a: b; g) = (U(a,b)gas) (15)

which is covariant to a-b shifts (the operator U, ;) and an-
alyzes the joint a-b content in the signal.® Moreover, T is
the optimal matched filter for detecting the unitarily trans-
formed deterministic signal, g,y = U(,p)g, in additive
Gaussian noise. Expressing the JSRs in terms of the eigen-
expansion of ® yields a structure in terms of such linear
transforms:

(Py)(a,b:@) = > i [(Ts)(a,b3u)* ,  (16)
k

8@Generalization of the short-time Fourier transform and the
wavelet transform.



where the eigenfunctions (ux’s) of ® are the same as those
of Ro and the eigenvalues (ux’s) are given by

Ak
= Ar+No
B =
© Ar

where the Ap’s are the eigenvalues of Ro. The quadratic
JSR detector in (16) is thus simply a weighted sum of the
magnitude-squared outputs of a bank of linear a-b trans-
forms corresponding to the eigenfunctions. This yields a
subspace-based interpretation: detection of any signal is
accomplished by taking a weighted (nonlinear) projection
onto the subspace spanned by the eigenfunctions of the sig-
nal correlation function. If the signal correlation function is
rank-1,° then the quadratic detector is effectively reduced to
the magnitude-squared output of a linear detector (matched
filter). The effect of the unknown or random parameters
(a, b) is taken into account by taking their ML or MAP es-
timates, and then using the optimal detector corresponding
to the estimated parameters.

The nonstationary structure of the signal in (9) is ef-
fectively determined by the eigenfunctions of Ry. Given
a set of eigenfunctions, different sets of eigenvalues gener-
ate a whole class of random signals with a similar under-
lying nonstationary structure.'® Given knowledge of the
eigenfunctions,!' we can exploit the subspace-based inter-
pretation to design optimal detectors for a class of random
signals with different (unknown) distribution of energy in
the different eigenmodes. More precisely, ML estimates of
the signal eigenvalues can be incorporated into the detector
structure, which, for Case 1, are given by [5]

Case 1

1
Cases 2 and 3’ (17)

A (@) = max{0, |(Ta)(a, bus) . (18)

For Cases 2 and 3, an energy constraint must be imposed
[5]
Trace(R{*?) = Trace(Ro) = Z A Zd, (19)
k

for some bound d > 0, under which the ML estimates for
the eigenvalues for Case 2 are given by [5]

~ 1 — . -1 “ay.
e = d if k = arg max; {|(TRn z)(a,b; u2)|} (20)
0 else
and those for Case 3 are [5]
y d if k = argmax; {Ai = |(TR;,; ') (a, b;u;)|?
Ap= — (U(apyui, Ry ' U pyui) + Ai > 0} (21)

0 else

These eigenvalue estimates can then be used as the combin-
ing weights for the matched-filter banks in (16) (via (17)) to
realize the various optimal detectors as described by (10).

90nly one term in the eigenexpansion.

10The eigenvalues correspond to the energy in the different
natural (eigen) modes of the random signal.

"'Which may, for example, be available from an estimate of
the signal correlation function, or, from a model for the signal
eigenfunctions (such as a wavelet basis [3]).

5. CONCLUSIONS

By developing an optimal detection framework based on
arbitrary covariance-based JSRs, the results of this paper
facilitate the design of optimal JSR-based detection proce-
dures for a rich variety of nonstationary scenarios. Such
JSR-based detectors can be used to detect (in the pres-
ence of noise/interference) arbitrary second-order random
signals that have been transformed by certain unitary trans-
forms that may model a wide variety of nondissipative (en-
ergy preserving) signal distortions. The structure of the de-
tectors yields a very useful subspace-based formulation that
can be exploited to design optimal detectors even in situ-
ations in which partial signal information about the eigen-
functions only may be available.
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