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ABSTRACT

Reliable detection of engine knock is an important issue
in the design and maintenance of high performance inter-
nal combustion engines. Cost considerations dictate the
use of vibration signals, measured at the engine block, for
knock detection. Conventional techniques use the energy
in a bandpass filtered version of the vibration signal as a
measure. However, the low signal-to-noise ratio (SNR) in
the vibration measurements significantly degrades the per-
formance of such bandpass energy detectors. In this pa-
per, we explore the design and application of more general
quadratic detection procedures, including time-frequency
methods, to this challenging problem. We use statistics
estimated from labeled training data to design the detec-
tors. Application of our techniques to real data shows that
such detectors, by virtue of their flexible structure, improve
the effective SNR, thereby substantially improving the de-
tection performance relative to conventional methods.

1. INTRODUCTION

For more than 60 years, knock has been recognized as a
major problem limiting the development of fuel efficient,
high compression ratio, spark ignition engines [1]. During
these years, a considerable amount of work has been done in
order to understand the complex knock phenomenon with
the aim of increasing efficiency, reducing noise and pollu-
tion, and increasing engine life. The paper by Leppard [2] is
probably one of the best introductions to the fundamental
issues involved in knock detection in internal combustion
engines.

A large number of today’s passenger automobiles are
equipped with knock control systems which depend on ac-
curate knock detection. Most knock detection schemes em-
ploy one or more accelerometers, often tuned to the nominal
first knock resonance mode of the engine, mounted on the
engine block. The measured vibration signal is usually fil-
tered, rectified and integrated, and the resulting measure of
the energy of the knock vibration is compared to a threshold
dependent on the operating state of the engine (especially
engine speed) to make a decision as to whether knock is
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present or not. Mathematically, the detection statistic of
the bandpass filter energy detector is equivalent to

fa
Lpr(r) = / | Fr(f) |2 df (1)

f1

where F.(f) is the Fourier transform of the observed signal
r(t). The main shortcoming of this scheme is that the spec-
trum of the noise overlaps with the frequency band in which
the knock signal energy is contained. Unfortunately, the vi-
bration signal measured by the accelerometers suffers from
poor signal-to-noise ratio (SNR) at high engine speeds due
to the high level of background noise and extraneous vibra-
tions signals. The poor SNR can significantly degrade the
detection performance of the bandpass filter energy detec-
tor. A more sensitive measurement can be obtained if the
combustion pressure is directly measured in each cylinder.
However, the cost and complexity of an individual-cylinder
pressure sensing scheme makes this option infeasible in pro-
duction vehicles at this time. Nevertheless, the ability to
measure combustion pressure in a laboratory setting is very
important in assessing the performance of different detec-
tion methods.

As mentioned above, the bandpass filtered vibration
signal suffers from low SNR (especially at high engine
speeds), and thus new detection methods that exploit
other characteristics of the knock signal are needed for
reliable knock detection based on the vibration measure-
ments. Knock signals exhibit transient, nonstationary char-
acteristics that could potentially be exploited using time-
frequency-based methods [3]. Recently, a time-frequency-
based quadratic detection theory has been developed [4]
which seems promising for applying to the knock detection
problem. However, the techniques developed in [4] require
knowledge of certain statistics that need to be estimated.
Fortunately, in the knock detection problem, labeled train-
ing data is usually available from which the required statis-
tics can be estimated and used to design optimal quadratic
detectors.

In this paper, we discuss the design of such training data-
based quadratic detectors and assess their performance rel-
ative to the conventional bandpass filter energy detector.
As we will see, such training data-based quadratic detec-
tors, by virtue of their more general structure, can yield
a substantial improvement in detection performance, espe-
cially in low SNR situations. In the next section, we briefly
describe relevant quadratic detection theory and discuss the
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issue of designing the optimal detectors from training data.
The experimental set up is described in Section 3, and the
results of applying the proposed detectors are presented in
Section 4. Section 5 concludes the paper with a summary
of the paper and implications of the results presented.

2. REVIEW OF QUADRATIC DETECTORS

Engine knock detection can be cast as a binary hypothe-
sis testing problem in which, based on a measured signal,
r(t), it has to be decided whether the hypothesis H; is true
(knock present) or Hyp is true (knock absent). A decision
is made by comparing a real-valued “test statistic” of the
data, L(r), to a threshold. We are interested in detectors
of the form

La(r) = (Qr,r) = / / Qt, uyr(u

where Q is a linear operator, and hence Lq(r) is quadratic
in the data. The detector Lq is a generalization of the
bandpass energy detector Lgpr since it is a weighted sum
of the magnitude-squared outputs of a bank of linear (time-
varying) filters determined by the eigenfunctions of Q:

rr(t)dtdu , (2)

La(r) =) e ux, m)? (3)
k

where the Ap’s are the eigenvalues and the ug’s are the
eigenfunctions of Q.

The motivation for using quadratic detectors stems from
the fact that if the measured signal is Gaussian under both
hypotheses, the optimal test statistic L(z) is quadratic. In
particular, if!

Ho:r(t) ~ N(0,Ry)
H1 : r(t) ~ N(O, Ro) (4)

then the optimal test statistic based on the likelihood ratio
(LR) is given by

Lir(r) =(Qurr,ry = ((Rg' —R{") r,7) (5)
where Ry ! is the inverse of the linear operator Ry whose
kernel is the correlation function Ry

(Ros)(t) = / Ro(t, w)s(u)du (6)

and similarly for R7*. An important special case is the “sig-
nal plus noise” scenario in which Hy : Ry = R, (noise only)
and Hi : Ri = Rs + R, (signal plus noise). In this case,
an alternative to the LR-based detector is the quadratic
detector that maximizes “deflection” defined as [5, 4]

_ (Ba[L(r)] = Eo[L(r)))’
Q) = =) )

!The notation 7(t) ~ N(0,R) means that r(t) is a zero-
mean Gaussian signal with correlation function R; R(t1,t2) =

Elr(t1)r (t2)]-

where L(r) is of the form (2), E; denotes expectation oper-
ator under hypothesis ¢, and Varo denotes variance under
Hy. The deflection-optimal detector is given by

(Qor,7) = (R 'ReR; 7, 7)
= {((Ri—Ro)Ry'rRy'r) . (8)

LD(T‘)

The effect of the operator R, ! can be interpreted in terms
of a time-varying prewhitening filter that decorrelates the
noise. One attractive feature of Lp is that it is optimal
(with respect to the deflection criterion?) for detecting an
arbitrary second-order signal (not just Gaussian) in Gaus-
sian noise.

In this paper, we explore the performance of Lp, rela-
tive to that of the bandpass filter detector Lspr, for engine
knock detection. As mentioned in the Introduction, the
knock signals have a dominant harmonic structure. De-
pending on the conditions, the frequencies of the different
harmonics can vary to some extent. Moreover, the onset of
knock within each cycle can occur at slightly different times
from cycle to cycle. The time-frequency-based quadratic
detection framework developed in [4] is ideally suited for
such unknown or random time/frequency shifts in the sig-
nal. Thus, we also explore the application of such time-
frequency detectors which can be described as [4]

Lrr(r) = max (Pr)(t f; @) 9)

(¢, f)eST

where STF is a region representing possible time-frequency
offsets in the signal, and P(®) is a quadratic time-frequency
representation from Cohen’s class defined as [3]

- [ (=3)

e "V d(u — t,v — f)drdudv  (10)

(Pr)(t, f; ®)

where the kernel @ is related to the kernel @Qp of the oper-
ator Qp by

@(t,f):/QD (t+g,t—

Since the quadratic detectors require the knowledge of
R1 and Rp (or Rs and Ry), labeled training data is used to
estimate these correlations. In particular, if N; knocking
training vectors, {zg,1 : 1 < k < N1}, and Ny non-knocking
training vectors, {zro : 1 < k < Ny}, are available, we
estimate the correlation functions as®

g) e I dr (11)

- 1
R1 = Vl sz,lmﬁl (12)

| .
Ry = Vozmk,omk,o (13)

2Deflection is also interpreted as a measure of SNR.
3For Gaussian data, the estimates in (12) and (13) are maxi-
mum likelihood estimates [5].



where ™ denotes Hermitian transpose of z. These esti-
mates can then be used to design the detectors. The per-
formance of the resulting training-data based detectors is
assessed by applying them to new test data and computing
the receiver operating characteristic (ROC) curves.

3. EXPERIMENTAL SET UP

To validate the concepts outlined in the preceding sections,
an experimental study was conducted in collaboration with
Chrysler Corporation. A 3.5 £ V-6 engine coupled to a wa-
ter brake dynamometer was used in all of the experiments.
The engine was tested at different speeds under normal op-
erating conditions and under increasing knock conditions.
Knock was induced by varying the spark advance with the
engine running at wide open throttle (see [6, 7] for details).

Figure 1. Typical bandpass filtered signals. (a)
Non-knocking pressure signal. (b) Knocking pres-
sure signal. (c¢) Non-knocking vibration signal. (d)
Knocking vibration signal.

Figure 1(a) depicts a typical bandpass filtered pressure
signal corresponding to a normal combustion. Figure 1(b)
depicts a typical signal acquired during a knocking combus-
tion. The increase in the amplitude of the oscillation is very
evident, suggesting that if a direct measurement of pressure
were available, the very high SNR would make the detec-
tion problem nearly trivial. As we mentioned earlier, it is
standard practice to use an accelerometer mounted on the
engine block to detect the occurrence of knock in produc-
tion engines. Figures 1(c) and 1(d) depict the accelerometer
signals corresponding to the pressure signals of Figures 1(a)
and 1(b). It is virtually impossible to detect by the naked
eye which of the two vibration signal traces corresponds to
a knocking cycle, even with a priori knowledge. Moreover,
we note that the engine operating conditions were relatively
favorable in this case (background noise increases at higher
engine speeds).

4. APPLICATION OF QUADRATIC
DETECTORS

To evaluate the performance of various detectors, we used
vibration data collected at 2000 rev/min and sampled at 50
kHz. Each combustion cycle corresponded to 250 samples
which were used to determine the presence or absence of
knock in that cycle. That is, for the bandpass energy detec-
tor, the magnitude-squared output of the filter was summed
over 250 samples, and for the quadratic detectors the oper-
ator Qp corresponded to a 250 x 250 matrix. Since only
about N=100 cycles each of knocking and non-knocking
cycles were available to us, there was not enough data to
use different samples to design the detectors and to eval-
uate their performance. Thus, we used cross-validation to
assess the performance of the designed quadratic detectors:
for each pair of knocking/non-knocking cycles, we used the
remaining data to design the detector and then used it to
detect the presence of knock on the chosen pair (that was
not used in the design). ROCs were generated by averaging
the performance over the N corresponding pairs of training
vectors.
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Figure 2. Spectrum of typical pressure and (corre-
sponding) vibration signals. (a) Pressure: knock-
ing. (b) Pressure: non-knocking. (c) Vibration:
knocking. (d) Vibration: non-knocking.

Figure 2 shows the spectrum of typical pressure and cor-
responding vibration signals. The strong harmonic compo-
nent at around 6kHz carries much information about the
knocking behavior.? The bandpass filter used for Lppr had
a passband between from 5kHz to 8kHz to capture most of
the information in this harmonic while suppressing broad-
band noise. A highpass filtered version of the signal, with a
cutoff frequency at about 5kHz, was used for the design and
performance evaluation of the quadratic detectors. How-

4The amplitudes of the knocking and nonknocking signals are
typically not as disparate as in Figure 2; the figures only illustrate
the spectral structure of the various signals.
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Figure 3. Data with higher SNR: Comparison of
the ROCs of the quadratic detector, with and with-
out prefiltering/prewhitening, and a conventional
bandpass energy detector.
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Figure 4. Data with lower SNR: Comparison of the
ROC:s of the quadratic detector, time-frequency de-
tectors, and a conventional bandpass energy detec-
tor.

ever, in some cases, using raw (unfiltered) data yielded bet-
ter performance.

Figure 3 shows the results for one data set. The SNR in
this case is relatively high, and the performance of the pre-
filtered, nonprewhitened quadratic detector, (Qp = R.),
is comparable to that of Lepr. Applying prewhitening
(Qp = R,'R;R;!) to the prefiltered data results in a
degradation in performance. However, using prewhitening
on unfiltered (raw) data results in substantial improvement
in performance compared to the bandpass filter detector.
These results indicate that the lower frequencies do con-
tain some discriminating information. However, we found
that using a lowpass filter energy detector, as opposed to a
bandpass one (Lspr), hurts performance. Thus, the richer
structure of the general quadratic detector has the capacity
to exploit both the low and high frequency information.

Figure 4 shows the ROCs for a different data set with
lower SNR. We note that the performance of Lp is sub-

stantially better than that of Lepr. Moreover, additional
improvements in performance are obtained by incorporat-
ing time and frequency shifts in Lp as suggested by the
time-frequency detection framework of [4]. The improved
performance yielded by time-frequency quadratic detectors
also demonstrates that the underlying data does indeed
have different time and frequency offsets for different cy-
cles. Note that such time-frequency offsets were not taken
into account in the design of the quadratic detector kernel
Qp; they were used only in the application of the quadratic
detector. Further improvements could result from incorpo-
rating time-frequency shifts in the design of Qp.

5. CONCLUSIONS

The results presented here have shown that general
quadratic detectors, designed from labeled training data,
can yield substantially better detection performance com-
pared to the conventional bandpass energy detector used
for knock detection. Time-frequency-based quadratic de-
tection schemes, which can account for unknown or random
time-frequency shifts, also yield a significant improvement
in performance.

Owing to their rich structure, such training data-based
quadratic detectors have the ability to capture discriminat-
ing features without the aid of any a priori information or
preprocessing. However, with limited and noisy training
data, judicious preprocessing can result in an improvement
in performance.

In addition to reliable knock detection from low-cost vi-
bration data, such training data-based detectors, owing to
their flexible structure, are applicable in a wide variety of
applications where labeled training data is available.
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