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ABSTRACT

In this paper, we propose a formalism, called vector �ltering of spectral

trajectories, which allows to integrate under a common formalism a lot

of speech parameterization approaches. We then propose a new �ltering

in this framework, called time-frequency principal components (TFPC) of

speech. We apply this new �ltering in the framework of speaker identi�-

cation, using a subset of the POLYCOST database. The results show an

improvement of roughly 20 % compared to the use of the classical cepstral

coef�cients augmented by their � coef�cients.

1. INTRODUCTION

Cepstral coef�cients [8] have been widely used for decades in

speech processing. Although they provide a good set of feature

vectors with nice properties, like a good decorrelation of the co-

ef�cients, or their ability to decorrelate in theory the vocal source

and the vocal tract �ltering [8], we are convinced that they are not

the ultimate solution to represent speech signals in most of the sit-

uations.

To �nd a good alternative to cepstral coef�cients, a lot of ap-

proaches have been adopted. In particular, the lack of ability of the

cepstral coef�cients to extract dynamic information from speech

suggested the use of � and �� coef�cients [2]. The Auto-Re-

gressive (AR) vector modeling was another attempt to capture dy-

namic information of speech [3].

A �rst aim of this paper is to integrate most of these approaches

under a common formalism. Actually, almost every approach as-

sumes spectral vectors as a starting point, and tries, in different

ways, to extract some information from these spectral vectors by

applying different transformations on them. Most of these ap-

proaches can then be seen as a vector �ltering of spectral trajec-

tories, that is, a function applied to the coef�cients of several con-

secutive spectral vectors.

However, most of the previous approaches apply the �ltering func-

tion only to one spectral vector, or to several of them but only

component by component. We propose a new �ltering, based on a

principal component calculation, which is applied to all the com-

ponents of several consecutive spectral vectors. Such a function

can be seen as a time-frequency function (or mask), that is, a func-

tion applied to all the components of a spectral vector (frequency

direction) and to its time context (time direction). Since the coef-

�cients are calculated through a principal component analysis, we

call these new coef�cients time-frequency principal components

(TFPC) of speech. We also show how the application of this �lter-

ing is an attempt to capture dynamic information from speech. We

�nally apply this new speech analysis in the framework of speaker

identi�cation, which allow us to improve considerably the results

compared to the classical cepstral parameterization augmented by

the� coef�cients.

2. VECTOR FILTERING OF SPECTRAL

TRAJECTORIES

2.1. Principle

Let fxtg1�t�M denote a sequence of spectral vectors. The prin-

ciple of the vector �ltering of spectral trajectories is to replace the

vector xt by a new vector ft, whose each component is obtained by

the application of a function to the coordinates of vector xt and of

the preceeding and following vectors (context of vector xt). This is

a convolution product, which can be interpreted as the application

of a time-frequency mask to a sequence of spectral vectors (see

Figure 1). We can see on this �gure that each component of ft is

obtained by the application of a different function. We can also see

that the �ltering is applied jointly in the time and the frequency di-

rections. Each function can thus be seen as a time-frequency mask.
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Figure 1: Principle of the vector �ltering of spectral trajectories

(after [5]).

The approach presented by Milner [7] is quite similar. However,

he adopts cepstral coef�cients as a starting point, whereas we work

directly on spectral coef�cients, which eases the interpretation of

the new coef�cients, and also simpli�es the whole process. He

also applies the �ltering only to the time dimension, and not to the

frequency dimension.

Figure 2 illustrates several classical approaches in term of vector



�ltering. The �rst example (a) represents the application of a �rst

derivative approximation function to the �rst coordinate of sev-

eral consecutive vectors, which corresponds to the calculation of

a � coef�cient on the �rst coordinate. The second example (b) is

also a � coef�cient but calculated on the second coordinate. The

third example (c) shows the application of a cosine transform to a

spectral vector, which corresponds to the calculation of a cepstral

coef�cient. The last example (d) shows the application of a cosine

transform to the �rst coordinate of several consecutive vectors.
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Figure 2: Examples of vector �ltering of spectral trajectories (af-

ter [5]): (a)� parameter on the �rst coordinate; (b)� parameter

on the second coordinate; (c) cepstral coef�cient; (d) cosine trans-

form of the �rst coordinate using 7 consecutive vectors.

Once again, we can notice that all these examples show a �lter-

ing which operates only in one direction, either the time one or

the frequency one, whereas the general approach, as illustrated in

Figure 1, operates jointly in both directions.

2.2. De�nitions and Notation

Let fx�t = xt � �xg1�t�M denote the sequence of centered vec-

tors corresponding to the sequence fxtg1�t�M , where �x is the

corresponding mean vector:

�x =
1

M

MX
t=1

xt

We also de�ne the sequence of vectors x�t between time t� q and

t+ q:

X
t+q

t�q =

2
6666664

x
�

t+q

.

..

x
�

t

...

x
�

t�q

3
7777775

By convention, x�t = 0 if t � 0 or t > M . The dimension of

vectorX
t+q

t�q is (2q + 1) p.

Let thenH be a �ltering operating onX
t+q

t�q:

H : (IRp)
2q+1 �! IR

r

X
t+q

t�q 7�! ft = H(Xt+q

t�q)

The dimension of ft is r.

In the following, we only consider the case of a linear �ltering. In

that case, the �lteringH can be expressed in a matricial form:

H = [ H�q j ::: j H0 j ::: j Hq ]

The dimension ofH is r � (2q + 1) p.

And we have:

ft = H �Xt+q

t�q

=

+qX
k=�q

Hk � x
�

t�k

The dimension of each matricial coef�cientHk is r � p.

2.3. Examples of Vector Filterings

2.3.1. Cepstral Analysis

The cepstral analysis [8] is one particular �ltering of the spectral

vectors, where the �ltering functions are applied only to the fre-

quency dimension, that is, only to x�t , thus q = 0. Each �ltering

function is a cosine transform. If we apply only the k �rst cosine

transforms to x�t , then r = k. And the lines of the matrix H are

the different cosine functions:

H =

2
64
c
T
1

...

c
T
k

3
75

We �nally obtain:

ft = H �Xt
t =

2
64
c
T
1

.

..

c
T
k

3
75 � x�t = ct

where ct is the cepstral vector corresponding to the spectral vector

x
�

t , and containing the cepstral coef�cients 1 to k.

2.3.2. � and �� Parameters

� and �� parameters [2] are also examples of vector �lterings.

They are applied to the time dimension only. If we use 5 frames to

calculate the � parameters, then q = 2. In fact, these parameters

can be calculated for different values of q. We classically use the

values q = 1; 2; 3. If the �ltered vector is composed of the original

vector augmented by its� coef�cients, then the dimension of the

new vector is r = 2p. If we also add the �� coef�cients, then

r = 3p. In that case,H can be, for instance:

H =

2
4

0p 0p Ip 0p 0p

�2Ip �Ip 0p Ip 2Ip
�Ip 0p 2Ip 0p �Ip

3
5

where 0p denotes the null matrix of dimension p � p and Ip the

identity matrix of dimension p.

The corresponding �ltered vector is:

ft = H �Xt+2
t�2 =

2
4

xt

�xt
��xt

3
5



2.3.3. Second-Order Auto-Regressive Vector Model

The application of a second-order auto-regressive model to a se-

quence of vectors [3] can also be interpreted as a vector �ltering.

In that case, we have q = 2, r = p, and the �ltering matrix is

given by:

H = [ 0p j 0p j Ip j A1 j A2 ]

whereA1 andA2 are the matricial coef�cients of the second-order

auto-regressive model.

The �ltered vector is the prediction error of the model at time t:

ft = H �Xt+2
t�2 = x

�

t +A1 � x
�

t�1 +A2 � x
�

t�2 = et

This �ltering apply to both the time and frequency directions.

2.4. Composition of Filtering

These different �lterings can also be composed together, that is,

the matrices H can be multiplied. This is the case for instance

when we compute the � cepstral parameters. We compose the

cepstral �ltering with the� �ltering.

3. TIME-FREQUENCY PRINCIPAL COMPONENTS OF

SPEECH

We have de�ned a formalism which allows to express a lot of ap-

proaches in terms of �ltering of spectral vectors. However, as it

has been seen, most of these classical approaches do not combine

the time and the frequency dimensions in the same �ltering (ex-

cept for the second-order AR-vector model). We propose a new

�ltering operating in both dimensions. This new �ltering also as-

sumes a set of training data on which to extract some principal

components, which means that it is a data-driven �ltering. We call

this new �ltering Time-Frequency Principal Components (TFPC)

of Speech.

3.1. Principle of the TFPC Filtering

The idea of the TFPC �ltering is to extract time-frequency pat-

terns which are characteristic of the sequence of training vectors,

that is, to summarize the evolution of the spectral content by a few

spectral sequences extracted from the entire sequence. The orig-

inal sequence has thus to be long enough, and representative of

the class we want to represent with the time-frequency patterns.

This strategy can be applied to any pattern recognition problem, as

long as we have enough vectors for each class to calculate the time-

frequency patterns. Once the patterns have been extracted, they are

used to �lter the spectral vectors of both the training and the test

datasets. And any modeling technique can then be applied on the

new vectors, as it is done usually on spectral vectors or cepstral

vectors, or any other vector representation of the original signal.

As an example, we apply the TFPC �ltering in the framework of

closed-set text-independent speaker identi�cation, and we extract

time-frequency patterns for each speaker of the training database.

3.2. De�nition and notation

Let fxtg1�t�M denote again a sequence of spectral vectors, and

fx�t g the sequence of the corresponding centered vectors.

LetX 0 denote the covariance matrix of the sequence fxtg:

X 0 =
1

M

MX
t=1

(xt � �x) � (xt � �x)T =
1

M

MX
t=1

x
�

t � x
�T
t

and X k the lagged covariance matrix at the order k:

X k =
1

M

MX
t=k+1

(xt � �x) � (xt�k � �x)T =
1

M

MX
t=k+1

x
�

t � x
�T
t�k

The dimension of the covariance matrix and of the lagged covari-

ance matrices is p� p.

We now de�ne a new matrix,X2q+1, by:

X2q+1 =

2
6664

X 0 X 1 ::: X 2q

X
T
1 X 0 ::: X 2q�1

..

.
..
.

..

.

X
T
2q X

T
2q�1 ::: X 0

3
7775

Note that this matrix is block-Toeplitz, and that its dimension is

(2q + 1) p � (2q + 1) p. This matrix can be interpreted as the

covariance matrix of the vectors fXt+q

t�qg1�t�M .

We now calculate the principal components of this matrix [4]. It

is equivalent to the extraction of eigenvalues and eigenvectors of

the matrix. The eigenvector associated with the largest eigenvalue

is then the direction of projection which conserves the maximum

of the variance; The eigenvector associated to the second largest

eigenvalue is the direction of projection which conserves the max-

imum of the variance uncorrelated (that is orthogonal) to the �rst

one; And so on. We have then:

X2q+1 = V2q+1 ��2q+1 �V
T
2q+1

with:

V2q+1 = (v1; :::;v2q+1)

�2q+1 = diag(�1; :::; �2q+1); �1 � ::: � �2q+1

The dimension of the matrix V2q+1 and of the matrix M2q+1 is

(2q+1)p� (2q+1)p. The dimension of each vector vi; 1 � i �
2q + 1, is (2q + 1)p.

3.3. Choice of the Components

Once the principal components have been calculated, we have to

decide which ones to keep. Since the decomposition is done ac-

cording to the maximum of the variance, the �rst components con-

tain a lot of information, and the last components correspond main-

ly to noise. The �rst components are usually kept, the number of

them depending on the experiment. Since the eigenvalues corre-

spond to a variance measurement, the criterion for keeping them

can be a percentage of the total variance, for instance 80 % [4].

Some other procedures can be used for the choice of the compo-

nents like the F-ratio or the knock-out procedure. Whatever the

method is, the choice of the components can only be done experi-

mentally.

4. APPLICATION TO SPEAKER IDENTIFICATION

4.1. Task

We have tested the TFPC of speech in the framework of closed-set

text-independent speaker identi�cation. There is a single reference

per speaker. The possibility of rejection is not taken into account:

the test speaker is always part of the set of references.

4.2. Database

We use a subset of the POLYCOST database [1], a telephone data-

base, containing 112 speakers (64 females and 48 males). For each

speaker, we use in average 90 seconds of speech for the training,

and several utterances of 5 seconds in average for the tests. The

total number of tests is 560.



4.3. Spectral Analysis

Each utterance is analyzed as followed : the speech signal is de-

composed in frames of 30 ms at a frame rate of 10 ms. A Hamming

window is applied to each frame. The signal is pre-emphasized

with a coef�cient 0.95. For each frame, a fast Fourier transform

is computed and provides 252 square module values representing

the short term power spectrum in the 0-4 kHz band. This Fourier

power spectrum is then used to compute 24 �lter bank coef�cients,

using triangular �lters placed on a non-uniform frequency scale,

similar to the Bark/Mel scale. We �nally take the base 10 loga-

rithm of each �lter output and multiply the result by 10, to form a

24-dimensional vector of �lter bank coef�cients in dB.

4.4. TFPC Filtering

Once spectral vectors have been extracted from a training utter-

ance, we calculate the TFPC corresponding to that sequence using

q = 1; 2; 3, and keep each time all the components. We then �l-

ter the spectral vectors by these components to obtain a new set of

feature vectors. Thus, for each speaker, we have a set of compo-

nents for the �ltering, and a sequence of �ltered vectors by these

components. For comparison, we also compute the �rst 12 cepstral

vectors (c1 to c12) [8], and the corresponding� parameters [2] us-

ing 3 or 5 frames. Since the TFPC approach can be applied to any

kind of vectors, we also apply it to the sequence of cepstral vectors

instead of the sequence of spectral vectors.

4.5. Modeling

Each training sequence is then modeled by a Gaussian mixture

model [6, 9] using 8 components and diagonal covariance matri-

ces.

4.6. Test Phase

During the test phase, before calculating the log-likelihood of a

test sequence of spectral vectors given a training model, we �rst

�lter this sequence by the corresponding time-frequency principal

components, which can be interpreted as a projection on a particu-

lar sub-space, and we then calculate the log-likelihood. The model

which gives the highest log-likelihood will determine the identity

of the test utterance.

4.7. Results and Discussion

Table 1 presents the results of our experiments.

Coeff. static static + delta TFPC �ltering

Context 1 vect. 3 vect. 5 vect. 1 vect. 3 vect. 5 vect.

Spec. 21.96 - - 9.82 9.11 9.82

Ceps. 15.71 12.32 11.43 10.00 9.29 10.71

Table 1: Percentage of identi�cation error.

The reference identi�cation error rate is the one obtained when us-

ing cepstral coef�cients augmented by the � parameters. In our

experiments, the best score is obtained with a � calculation over

5 vectors (11.43 %).

In both cases (when starting with spectral coef�cients or cepstral

coef�cients), the error rates obtained after application of the TFPC

�ltering are better, and are lower when the TFPC �ltering is ap-

plied using 3 vectors.

Finally, the best error rate is obtained when applying the TFPC

�ltering to spectral coef�cients (9.11 %) and outperforms the ref-

erence error rate of 20.3 %.

5. CONCLUSION

We have presented a new formalism, called vector �ltering of spec-

tral trajectories, which allows to integrate several speech param-

eterizations under a common formalism. We have also studied a

new speech parameterization called time-frequency principal com-

ponents. Applied in the framework of closed-set text-independent

speaker identi�cation, this new approach shows an improvement

in the identi�cation error rate of roughly 20 % when compared to

the use of the classical cepstral coef�cients augmented by their �
coef�cients.

6. FUTURE DIRECTIONS

In our experiments, we have kept all the TFPC extracted. It may

be interesting to study the degradation of the performance if we

keep only the �rst components. We may have a more compact rep-

resentation with a small loss in performance, or even a gain in per-

formance since the last components correspond mainly to noise.

The TFPC �ltering can also be tested in the framework of text-

independent speaker veri�cation. In that case, it must also be ap-

plied to the sequence of vectors used to train the background mod-

els. Then, during the test phase, before calculating the likelihood

ratio, the sequence of test vectors will be projected on two different

sub-spaces, the sub-space corresponding to the claimed identity

model, and the sub-space corresponding to the background model.

Finally, the TFPC �ltering can more generally be applied to any

pattern recognition problem where the task is to discriminate be-

tween classes, as in language recognition or speech recognition for

instance.
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