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ABSTRACT

The problem of speaker detection in audio databases is addressed
in this paper. Gaussian mixture modeling is used to build target
speaker and background models. A detection algorithm based on
a likelihood ratio calculation is applied to estimate target speaker
segments. Evaluation procedures are defined in detail for this task.
Results are given for different subsets of the HUB4 broadcast news
database. For one target speaker, with the data restricted to high
quality speech segments, the segment miss rate is approximately
7%. For unrestricted data, the segment miss rate is approximately
27%. In both cases the segment false alarm rate is 4 or 5 per hour.
For two target speakers with unrestricted data, the segment miss
rate is approximately 63% with about 27 segment false alarms
per hour. The decrease in performance for two target speakers
is largely associated with short speech segments in the two target
speaker test data which are undetectable in the current configura-
tion of the detection algorithm.

1. INTRODUCTION

The problem addressed in this article is the detection of one or
more target speakers in broadcast news programs. Detection, in
this context, means the estimation of a beginning and an end-
ing time for each segment in which a target speaker is speaking.
This problem is an emerging one which has been reported on re-
cently [6, 7, 8, 5]. It is a potentially important problem since,
as more and more audio and multimedia data are recorded and
archived, the need grows for useful cues to segment, classify, and
organize this data.

In this paper, two sets of experiments are described. In the
first, the detection of a single target speaker is addressed; the sec-
ond generalizes the problem to two target speakers. The evaluation
procedures are slightly different in each case, and are described in
detail in the article.

2. DATABASE

The HUB4 database [1] is composed of 174 broadcasts from 11
news and commentary programs. For each program, from 6 to 37
broadcasts corresponding to different dates are available. The du-
ration of the longest broadcast is 2 hours, the duration of the short-
est is 26 minutes. Speech portions of each broadcast have been
transcribed, segmented, and labeled in terms of speaker; mode
(spontaneous or planned); fidelity, classifying the quality of the
recording environment and transmission channel (High, Medium,
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or Low); and background, describing the nature of secondary au-
dio material mixed with the primary speech signal (Speech, Mu-
sic, or Other). Commercials and sports results have not been tran-
scribed.

For our experiments, the data are classified into 4 categories as
follows. The category high-fidelityrefers to speech labeled High
fidelity with no background; the category clean refers to speech
with all 3 quality categories but no background; the category all-
speechrefers to data of all quality categories with and without
background; and the category alldata refers to data including the
previous allspeechcategory plus all the untranscribed portions.
When experiments refer to test data belonging to the high-fidelity
category only, it means that, for each program, all the data be-
longing to the high-fidelity category are artificially concatenated
together, and similarly for the cleanand allspeechcategories. The
category alldata corresponds to the data as originally provided.

The one-target-speaker detection experiments are conducted
on the subset aABC NLI of the HUB4 database, which corre-
sponds to the program ABC Nightline. The target speaker is Ted
Koppel. 6 broadcasts are set aside for training the target model and
two background models. 12 broadcasts are used as test broadcasts.
The duration of the longest test broadcast is 35 minutes, the dura-
tion of the shortest is 26 minutes. The remaining 5 programs are
not used since they contain no data of the target speaker.

The two-target-speaker detection experiments are conducted
on the subset bABC WNN of the HUB4 database, which corre-
sponds to the program ABC World News Now. The target speak-
ers are Mark Mullen (T1) and Thalia Assures (T2). 8 broadcasts
are used to train the two target models and two background mod-
els. 16 broadcasts are used as test broadcasts. The duration of the
longest test broadcast is 31 minutes; the duration of the shortest is
29 minutes.

3. MODELING

To detect a target speaker in a program, at least two models need
to be built: a target speaker model and a background model which
is intended to represent speech from speakers other than the tar-
get speaker or other types of sounds. These models are built using
feature vectors extracted from labeled segments. In the case of
several target speakers, at least one model for each target speaker
is needed. Finally, more generally, there could be several back-
ground models, representing different types of non-target speaker
sounds, and several models for each target speaker, representing
different speech qualities. In the experiments presented in this ar-
ticle, only one model is built for each target speaker, and one or
two background models are used.

The feature vectors consist of cepstral and �-cepstral coeffi-
cients extracted in the following way: a Winograd Fourier Trans-



form (WFT) is computed on Hamming windowed signal frames
of 31.5 ms (504 samples) at a frame rate of 10 ms (160 samples).
For each frame, spectral vectors of 31 Mel-Scale Triangular Filter
Bank coefficients are then calculated from the Fourier Transform
power spectrum, and expressed in logarithmic scale. An algorithm
based on a bimodal Gaussian modeling of the energy (sum of the
31 coefficients) is then used to remove low energy vectors. This
algorithm removes between 10 % and 30 % of the frames. Cepstral
coefficients c1 to c20 are then calculated using cosine transforms.
The coefficient c0, which corresponds to the energy, is omitted. Fi-
nally, �-coefficients are calculated over 5 frames, providing 20 ad-
ditional coefficients. The feature vectors are thus 40-dimensional.

Gaussian mixture models (GMM) [3] are used for modeling
target speakers and backgrounds. These models have been used
successfully in text-independent speaker recognition [4]. The num-
ber of mixture components is set equal to 64, and diagonal covari-
ance matrices are used. The parameters of the GMM are estimated
using the Expectation Maximization (EM) algorithm [3], initial-
ized by a binary splitting Vector Quantization (VQ) algorithm [2].

Only high-fidelityspeech is used to build each target speaker
model. For each target speaker, three 90 second segments of speech,
extracted from 3 broadcasts uttered by the target speaker, are con-
catenated together. Feature vectors are then extracted, and a GMM
model is trained for each target speaker, as described previously.

For the first background model, high-fidelity speech only is
used. Samples from 4 female and 4 male speakers, 60 seconds
each, are concatenated together. The speakers for this background
model are chosen from different broadcasts. Feature vectors are
then extracted, and a GMM model is trained, as described previ-
ously. This background model is referred to as �B1.

For some experiments, a second background model is used.
Only non-speech segments are used for this second model, that
is music only (10 %), noise only (10 %), and commercials (80
%). Three 90 second segments, chosen from 3 broadcasts, are
concatenated together. Feature vectors are then extracted, and a
GMM model is trained, as described previously. This background
model is referred to as �B2.

None of the broadcasts and none of the speakers used to build
the target or the background models are used in the test data.

4. DETECTION ALGORITHM

The simplest experimental problem is the detection of one target
speaker, using only one target model (�T ) and one background
model (�B).

Given a test broadcast, the task is to detect the segments in
which the target speaker is speaking, that is to estimate the begin-
ning and the end of these segments. First of all, feature vectors
are extracted from the test broadcast, using the signal analysis de-
scribed previously. Let fxtg1�t�T denote the sequence of feature
vectors. For each vector xt, we calculate the likelihood of xt given
the model �T , denoted by L(xtj�T ), the likelihood of xt given the
model �B , denoted by L(xtj�B), and finally the likelihood ratio
of xt given �T and �B , denoted by R(xtj�T ; �B), whose loga-
rithm is expressed by:

logR(xtj�T ;�B) = logL(xtj�T )� logL(xtj�B)

Before applying the segmentation algorithm, smoothing is nee-
ded to attenuate variations of the logarithm of the likelihood ra-
tio. The smoothing is an arithmetic mean of a specified number
of consecutive values of the logarithm of the likelihood ratio. Two

parameters define the smoothing: the number of values used for
the average calculation, denoted by � ; and the delay between two
calculations, that is the number of feature vectors between two
average calculations, denoted by d. The smoothed value of the
logarithm of the likelihood ratio is:

logR(xt0�t0 ; ::;xt0+t0 j�T ;�B)

=
1

�

t0+t
0X

t=t0�t
0

logR(xtj�T ;�B)

= logL(xt0�t0 ; ::;xt0+t0 j�T )� logL(xt0�t0 ; ::;xt0+t0 j�B)

with � = 2t0 + 1. In our experiments, � is set to 100 vectors (1
second) and d to 20 vectors (0.2 second).

A segmentation algorithm is then applied on the average val-
ues previously calculated. The algorithm is described in detail in
the Block 1.

From first block to last block, do:
� If v > �

B
1 and detectF lag = 1 and endF lag = 1

endFlag = 0
� If v > �

B
1

and beginFlag = 0
Set the beginning time for a possible segment
beginFlag = 1 (a beginning time has been set)

� If v > �
B
2

and detectFlag = 0
detectFlag = 1 (a target speaker segment has been detected)

� If v < �
E
1

and beginF lag = 1 and detectF lag = 0

beginFlag = 0
� If v < �

E
1

and detectF lag = 1 and endF lag = 0

Set the ending time for the detected segment
endFlag = 1 (an ending time has been set)

� If v < �
E
2 and detectF lag = 1

Record the detected segment
beginFlag = 0 (reset of beginFlag)
detectFlag = 0 (reset of detectFlag)
endFlag = 0 (reset of endFlag)

Block 1: Segmentation algorithm.

v is the average value of the logarithm of the likelihood ratio
for a block, �B1 and �

B
2 are two thresholds used for the detection

of the beginning of a segment, and �
E
1 and �

E
2 are two thresholds

used for the detection of the end of a segment. In our experiments,
the values of the thresholds are the following: �

B
1 = 0, �B2 = 3,

�
E
1 = 0, and �

E
2 = �0:5.

Finally, the minimum duration for an estimated segment is set
to 2.5 seconds (every segment whose duration is smaller is omit-
ted), and the minimum interval between two consecutive segments
to 1 second (two consecutive segments are merged if the interval
between them is smaller).

The segmentation algorithm provides the estimated beginning
and end times for the target speaker segments.

In the general case, several background models are available
(�B1, �B2, ...), as well as several target speakers and several mod-
els for each target speaker (�T1, �T10 , ..., �T2, �T20 , ...). The
average value of the logarithm of the log-likelihood of a block is



Quality high clean allspeech alldata
Total duration 141 min 194 min 242 min 359 min

# target segments 137 257 318 354
Duration 61 min 69 min 78 min 78 min

Background B1 B1, B2 B1 B1, B2 B1 B1, B2 B1 B1, B2

# estimated segments 129 129 195 195 238 237 256 254
FMIR 3.90 % 4.01 % 4.92 % 5.07 % 6.73 % 7.23 % 8.89 % 9.57 %
FFAR 10.75 % 10.52 % 9.19 % 8.80 % 7.22 % 7.00 % 5.66 % 5.44 %
SMIR 7.30 % 7.30 % 19.07 % 19.46 % 25.16 % 26.42 % 27.40 % 29.66 %
SFAR 5.53 / hour 5.53 / hour 8.35 / hour 7.42 / hour 5.95 / hour 5.21 / hour 4.35 / hour 4.18 / hour

Table 1: Results of the one-target-speaker detection experiments.

then given by:

logR(xt0�t0 ; ::;xt0+t0 j�T1; �T10 ; ::; �T2; �T20 ; ::;�B1; �B2; ::)

= max
T2fT1;T10 ;::;T2;T20 ;::g

logL(xt0�t0 ; ::;xt0+t0 j�T )

� max
B2fB1;B2;::g

logL(xt0�t0 ; ::;xt0+t0 j�B)

In the case of several target speakers, each target segment is la-
beled with the identity of the detected target speaker.

5. EVALUATION

The performance of the detection algorithm has been evaluated
in two ways, one giving the performance at the frame level, the
other at the segment level. Each frame inside an estimated target
speaker segment is referred to as an estimated target frame, each
frame outside as an estimated non-target frame. The estimated
target frames and the estimated target segments are then compared
with those provided by the database. Each frame inside a labeled
target speaker segment provided with the database is referred to as
a labeled target frame, each frame outside as a labeled non-target
frame.

The Frame-level MIss Rate (FMIR) is the number of labeled
target frames which have not been estimated as target frames (that
is which have been estimated as non-target frames or as target
frames from another speaker in the case of several target speak-
ers), divided by the total number of labeled target frames.

The Frame-level False Alarm Rate (FFAR) is the number
of estimated target frames which are in fact labeled non-target
frames, divided by the total number of labeled non-target frames.

In the case of the detection of several target speakers, the pro-
portion of missed frames due to a confusion with another speaker
is also indicated in parentheses by the Frame-level COnfusion
Rate (FCOR), which is the number of labeled target frames which
have been estimated as target frames of another speaker, divided by
the total number of labeled target frames. FCOR is a component
of FMIR.

A missed segment is a labeled target segment for which the
proportion of frames estimated as target frames (of the correct tar-
get speaker in the case of several target speakers) is less than the
threshold of Frames Correctly Detected (FCD). For our experi-
ments, FCD has been set to 75 %. The Segment-level MIss Rate
(SMIR) is the number of missed segments divided by the total
number of target segments.

In the case of one target speaker, a false alarm segment is
an estimated target segment for which the proportion of labeled
non-target frames is greater than the proportion of labeled target

frames. The Segment-level False Alarm Rate (SFAR) is defined
as the total number of false alarm segments divided by the total
duration of the broadcast in hours.

The following definitions are needed to define the SFAR and
the Segment-level Confusion Rate (SCOR) in the case of the detec-
tion of several target speakers. A false-alarmframe is an estimated
target frame which is actually a non-target frame. A confusion
frame is an estimated target frame which is actually a target frame
of another target speaker. A hit frame is an estimated target frame
which is actually a target frame of the correct speaker.

A false alarm segment is an estimated target segment for which
the proportion of false alarmframes is greater than the propor-
tion of confusionframes and also greater than the proportion of
hit frames. The SFAR is then the total number of false alarm seg-
ments divided by the total duration of the broadcast in hours.

A confusion segment is an estimated target segment for which
the proportion of confusionframes is greater than the proportion
of false alarmframes and also greater than the proportion of hit
frames. The Segment-level COnfusion Rate (SCOR) is then the
total number of confusion segments divided by the total duration
of the broadcast in hours.

6. EXPERIMENTAL RESULTS

Table 1 reports results for the one-target-speaker detection exper-
iments. Results are reported for the 4 categories of sound: high-
fidelity, clean, allspeech, and alldata. For each category, the total
duration of test material, all 12 programs together, is indicated,
as well as the number of target segments and their total duration.
Results are given when B1 only is used as the background model,
and when B1 and B2 are used together. In both cases, the number
of estimated target segments is indicated, and the 4 error rates are
given.

There is not a lot of difference between the results obtained
when B1 is used alone, or when B1 and B2 are used together.
With B1 only, the FMIR is generally slightly lower, but the FFAR
is slightly higher. With data from the alldata category, the sum
of the two rates is better when B1 is used alone (14.55 % versus
15.01 %). At the segment level, the same trend can be observed.

The FMIR degrades through each category from the high-fide-
lity category to the alldata category, because of the increase of the
mismatch between the test data and the data used for the training
of the models. This problem might be solved by training the target
speaker model with data from different categories pooled together,
or training several models for the target speaker using data from
each category.

Conversely, the FFAR improves through each category from
the high-fidelitycategory to the alldata category. This may be be-



Target speakers T1 T2 T1, T2

Segt. duration > 4s > 2s All > 4s > 2s All > 4s > 2s All
# target segments 119 200 315 125 191 310 244 391 625

Duration 29 min 33 min 35 min 41 min 44 min 46 min 71 min 78 min 82 min

# est. segments – – 216 – – 183 – – 349
FMIR 14.06 % 19.34 % 22.70 % 17.40 % 21.42 % 23.90 % 36.52 % 38.79 % 40.27 %

(FCOR) – – – – – – (24.47 %) (24.55 %) (24.69 %)
FFAR – – 9.75 % – – 7.21 % – – 18.38 %
SMIR 23.53 % 42.50 % 58.10 % 28.00 % 45.03 % 64.19 % 42.62 % 52.69 % 62.88 %
SCOR – – – – – – – – 5.27 / hour
SFAR – – 17.41 / hour – – 12.59 / hour – – 27.51 / hour

Table 2: Results of the two-target-speaker detection experiments for the alldata category.

cause there is proportionally less and less high-fidelitydata through
each category, high-fidelitydata being more likely to be confused
with the high-fidelity target model than data from the other cate-
gories.

Similar observations can be made at the segment level.

Table 2 reports results for the two-target-speaker detection ex-
periments. The results are reported only for data from the alldata
category (total duration = 410 minutes), and when B1 only is used
as background model. (The experiments using B1 and B2 do not
give better results.) The results for each target speaker alone are
given first, and then the results for the two target speakers together.
The number of estimated target segments is indicated, and the 6 er-
ror rates are given. Because of the nature of the program, the two
target speakers are often engaged in a dialog. This produces a high
proportion of short target segments and also a small proportion of
overlap segments. (4.5 % of all the labeled target frames overlap
the other target speaker.) To study the effect of segment duration
on performance, FMIR and SMIR results are shown for different
values of minimum target segment durations.

Performance approaching the one-target-speaker results with
Ted Koppel are obtained only for target segment durations greater
than four seconds. In fact, most of the Ted Koppel segments (72 %)
are longer than 4 seconds. For Mark Mullen, only 38 % of the
segments are longer than 4 seconds, and 40 % for Thalia Assures.

Because the duration of most target segments is smaller than
four seconds, the choice of the smoothing block length may be
important. If this length is decreased, the FMIR and the SMIR
may be improved, at the expense of degrading the FFAR and the
SFAR. One solution to this problem could be a two-pass algo-
rithm, each pass with different smoothing parameters. Different
values for the minimum duration of an estimated segment have
also been tested (from 2.5 seconds to 1 second), but the results do
not change significantly. In fact, most of the very short segments
are completely missed, whatever the minimum duration of an esti-
mated segment is, due to the block smoothing. Some of them are
combined into longer estimated segments comprising two or more
short segments.

In some cases, short segments of one target speaker (particu-
larly those which are shorter than the block smoothing length) are
merged with longer adjacent segments of the other target speaker,
again because of the block smoothing. Because of that, the contri-
bution of the FCOR to the FMIR is high.

7. CONCLUSION

A new approach for detecting target speakers in audio databases
has been proposed. This approach, based on Gaussian mixture
modeling and a likelihood ratio calculation, gives good results if
the duration of the target speaker segments is long enough. How-
ever, in the case of short segments, performance degrades, particu-
larly at the segment level. More experiments are needed to provide
better understanding of this problem, and the detection algorithm
needs to be refined for the detection of short segments.

Further studies in speaker detection will also include the use
of more than one model for each target speaker, and the use of
other background models. The performance will also be studied
as a function of the smoothing parameters and the segmentation
algorithm parameters.
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