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Abstract

Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and
image processing. The hidden Markov tree (HMT) model captures the key features of the joint
probability density of the wavelet coefficients of real-world data. One potential drawback to
the HMT framework is the need for computationally expensive iterative training to fit an HMT
model to a given data set (using the Expectation-Maximization algorithm, for example). In
this paper, we greatly simplify the HMT model by exploiting the inherent self-similarity of
real-world images. This simplified model specifies the HMT parameters with just nine meta-
parameters (independent of the size of the image and the number of wavelet scales). We also
introduce a Bayesian universal HMT (uHMT) that fixes these nine parameters. The uHMT
requires no training of any kind. While extremely simple, we show using a series of image esti-
mation/denoising experiments that these two new models retain nearly all of the key structure
modeled by the full HMT. Finally, we propose a fast shift-invariant HMT estimation algorithm
that outperforms other wavelet-based estimators in the current literature, both in mean-square

error and visual metrics.
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1 Introduction

In statistical image processing, we view an image x as a realization of a random field with joint
probability density function (pdf) f(x). Viewing x as random allows us to take a Bayesian approach
to image processing: we can incorporate knowledge of an image’s characteristics into f (). Solutions
to problems such as estimation, detection, and compression rely on f(x); the more accurately it
can be specified, the better the solutions. Of course, we rarely have enough information to specify
the joint pdf exactly. Our goal is to construct a realistic model that approximates f(x) and allows
efficient processing algorithms.

There have been several approaches to model the local joint statistics of image pixels in the
spatial domain, the Markov random field model [1] being the most prevalent. However, spatial-
domain models are limited in their ability to describe large-scale image behavior. Markov random
field models can be improved by incorporating a larger neighborhood of pixels, but this rapidly
increases their complexity.

Transform-domain models are based on the idea that often a linear, invertible transform will
“restructure” the image, leaving transform coefficients whose structure is “simpler” to model. Real-
world images are well characterized by their singularity (edge and ridge) structure. For such images,
the wavelet transform provides a powerful domain for modeling [2].

The wavelet transform records the differences in the image at different scales (resolutions). As
such, the portions of the image which do not vary significantly from scale to scale (the “smooth”
regions) will be captured by a few large values at coarse scales. The portions of the image which
do vary from scale to scale are typically regions around edges, and are represented by large values
at each scale in the wavelet transform.

The following primary properties of wavelet transforms make wavelet-domain statistical image

processing attractive [2,3]:

P1. Locality: Each wavelet coefficient represents image content local in space and frequency.
P2. Multiresolution: The wavelet transform represents the image at a nested set of scales.

P3. Edge Detection: Wavelets act as local edge detectors. The edges in the image are repre-

sented by large wavelet coefficients at the corresponding locations.

P4. Energy Compaction: The wavelet transforms of real-world images tend to be sparse. A

wavelet coefficient is large only if edges are present within the support of the wavelet.
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Figure 1: (a) Cameraman image. (b) The 2-D wavelet transform represents an image in terms of

(lowpass) scaling coefficients and 3 subbands of (bandpass) wavelet coefficients that detect edges in
the horizontal (LH), vertical (HL), and diagonal directions (HH). (c) The wavelet subbands form
three multiscale quad-trees, with each (parent) coefficient having four child coefficients in the next

finer scale band. The child wavelets divide the support of the parent wavelet in four.

P5. Decorrelation: The wavelet coefficients of real-world images tend to be approximately decor-

related.

Properties P1 and P2 lead to a natural arrangement of the wavelet coefficients into three
subbands representing the horizontal, vertical, and diagonal edges. Fach of these subbands has a
quad-tree structure; regions of analysis in the image at one scale are divided up into four smaller
regions at the next (finer) scale (see Fig. 1). The Compaction property P4 follows from two facts:
that edges constitute only a very small portion of a typical image, and that a wavelet coefficient
is large only if edges are present within the support of the wavelet. Consequently, we can closely
approximate an image using just a few (large) wavelet coefficients. Finally, the Decorrelation
property (P5) indicates that the dependencies between wavelet coefficients are predominantly local.

The primary properties give the wavelet coefficients of natural images significant statistical

structure, which we codify in the following secondary properties [4]:

S1. NonGaussianity: The wavelet coefficients have peaky, heavy-tailed marginal distributions [5,

6).

S2. Persistency: Large/small values of wavelet coefficients tend to propagate through the scales

of the quad-trees [7,8].

NonGaussianity follows immediately from Energy Compaction (P4). Persistency follows from the
Edge Detection (P3) and Multiresolution (P2) properties.
These secondary properties give rise to joint wavelet statistics that are succinctly captured by

the wavelet-domain hidden Markov tree (HMT) model [4]. The HMT models the nonGaussian



marginal pdf (S1) as a two-component Gaussian mixture. The components are labeled by a hidden
state signifying whether the coefficient is small or large. The Gaussian component corresponding
to the small state has a relatively small variance, capturing the peakiness around zero, while the
component corresponding to the large state has a relatively large variance, capturing the heavy tails
!, The persistence of wavelet coefficient magnitudes across scale (S2) is modeled by linking these
hidden states across scale in a Markov tree (see Fig. 4 below). A state transition matrix for each link
quantifies statistically the degree of persistence of large/small coefficients. Given a set of training
data (usually in the form of one or more observed images), maximum likelihood estimates of the
mixture variances and transition matrices can be calculated using the Expectation-Maximization
(EM) algorithm [4]. These parameter estimates yield a good approximation of the joint density
function f(w) of the wavelet coefficients and thus f(x).

In general, the HMT model for an n-pixel (N x N) image has approximately 4n parameters.
This large number of parameters makes the HMT model cumbersome for some applications. To
accurately specify 4n parameters for an n-pixel image requires significant a priori information (often
times in the form of training data) about the image. If this information is not available, we run
the risk of over-fitting the model. In [4], the total number of HMT parameters was reduced to
approximately 4.J, with J the number of wavelet scales (~ logy N, typically 4-10), by assuming
that the model parameters are the same at each scale. This makes it possible to reliably fit a model
to one n-pixel image. While a significant reduction, 40 parameters can still be a large number for
some applications. Training algorithms (such as the EM algorithm) are computationally prohibitive,
especially for large data sets. This makes the wavelet HMT models impractical for applications
requiring computational efficiency. Moreover, in many applications training data is unavailable. In
such cases, a model can be fit to the data that is to be processed (an empirical Bayesian approach).
While straightforward, if the observed data is corrupted (by noise, for example), then training may
not be robust and the model parameters will not characterize the joint image pdf accurately.

In this paper, we leverage additional wavelet domain image structure not yet exploited by the
HMT to obtain a reduced-parameter HMT model. This new model is derived from two tertiary
properties of images in the wavelet domain. These tertiary properties reflect the self-similar nature

of images and their resulting generalized 1/f spectral behavior (see Section 4.1 below):

LOf course, no Gaussian density has heavy tails in the strict sense. Here a Gaussian with a large variance captures

the shape of the heavy-tailed density in the region where large values are likely.



T1. Exponential decay across scale: The magnitudes of the wavelet coefficients of real-world

images decay exponentially across scale [2].

T2. Stronger persistence at fine scales: The persistence of large/small wavelet coefficient

magnitudes becomes exponentially stronger at finer scales.

Using T'1 and T2, we will develop a reduced-parameter HMT model that is described with just
9 meta-parameters (independent of the size of the image and the number of wavelet scales). As
an added bonus, we will observe that these 9 parameters take similar values for many real-world
images, allowing us to fix a “universal” set of parameters, resulting in a universal HMT (vHMT).
The uHMT model eliminates the need for training.

While the uHMT is certainly less specific in its modeling of a particular image, it captures the
statistics of a broad class of real-world images sufficiently for many applications. To demonstrate
the effectiveness of the uHMT, we performed uHMT denoising of images (see Table 1 and Fig. 2)
corrupted with white Gaussian noise and compared the results to other techniques in the literature,
including the HMT-based empirical algorithm of [4], which is reviewed in Section 3.5. We take a
Bayesian approach to the estimation problem, treating f(w) as a prior for the wavelet transform
of the image. Since we have incorporated prior knowledge about the nature of images into f(w),
we can outperform non-model based techniques such as soft-thresholding [9].

We observe in Fig. 2 that the image estimation (denoising) performance of the uHMT model is
extremely close to the more complicated HMT model. Furthermore, the simplicity of the uHMT
model allows us to apply it in situations where the cost of the HMT would be prohibitive. For
instance, we will develop an O(nlogn) shift-invariant uHMT based estimation scheme in Section
5 below that offers state-of-the-art denoising performance, as seen from Fig. 2 and column 1 of
Tables 1-3.

In contrast to other hidden Markov model techniques in the literature, the uHMT is simple and
easy to use. The uHMT offers the performance of a complicated model with the computational
efficiency of a simple model. In [5], shrinkage rules are introduced using a two state independent
Gaussian mixture model for the prior on the wavelet coefficients. A Generalized Gaussian distribu-
tion (GGD) with auto regressive dependencies between neighboring coefficients (both within and
across scales) is used to model wavelet coefficients in [6]. In [10], maximum a posteriori estimation
for GGD models and its equivalence to hard thresholding and MDL estimation is discussed. An

independent two state mixture model, where the “low” state is a point mass at zero, is analyzed



Figure 2: Images from the denoising experiment corresponding to the third row of Table 2. (a) Orig-
inal 256 x 256 “Boats” image. (b) Noisy boats image, with o, = 0.1, PSNR=20dB. Boats image de-
noised using (c) spatial domain 3 x 3 Wiener filter (wiener2 command in MATLAB), PSNR=26.1dB;
(d) soft thresholded discrete wavelet transform with threshold in [13], PSNR=22.5dB; (e) hard
thresholded redundant wavelet transform (RDWT) with threshold chosen in [13], PSNR=26.3dB;
(f) the empirical Bayesian HMT estimator of Section 3.5, [4] PSNR=26.5dB; (g) the uHMT

of Section 4.4, PSNR=26.4dB; (h) the shift-invariant uHMT estimation algorithm of Section 5,
PSNR=27.4dB. 5



in [11] with relations between realizations of this model to functions in Besov spaces. In [12], the
wavelet coefficients are modeled as Gaussian, with the variance estimated from neighbors at the
same scale. Finally, a HMT model with parameters estimated from a noisy observation of an image
is used in [4].

After reviewing the wavelet transform in Section 2 and the HMT model in Section 3, we intro-
duce the HMT meta-parameters and the uHMT in Section 4. Bayesian estimation with the HMT is
reviewed in 3.5, and revisited in 4.4 with the uHMT. Section 5 develops the new redundant wavelet

estimation technique. We close in Section 6 with a discussion and conclusions.

2 Discrete Wavelet Transform

The 2-D discrete wavelet transform (DWT) represents an image z(s) € L?(IR?) in terms of a set of
shifted and dilated wavelet functions {ip"H L pHH} and scaling function ¢p% [14]. When these
shifted and dilated functions form an orthonormal basis for L?(IR?), the image can be decomposed

as

5) = z ujo,kd)yl';), + Z Z Z j,kd)], (1)

keZ’® beBjzjo e 7?
with ¢ff = 21¢10 (275 — k), ¢b, = 274(27s — k), and b € B := {LH,HL,HH}. The LH, HL,
and LL denote the subbands of the wavelet decomposition. The expansion coefficients, called the

scaling coefficients and wavelet coefficients, respectively, are given by

wor = [ Lo w(6)0els) ds @)
w?’k = /selR2x(8) g’k(s) ds. (3)

To keep the notation manageable, we will use an abstract index for the DWT coefficients and the
basis functions, wz’-,k — w; and 1/);?,,6 — 1);, unless the full notation is required.

In practice, the image will be discretized on an N x N grid. This imposes a maximal level
of decomposition J := logy N > j > jo, with 4/~! wavelet coefficients in each subband and 47!
scaling coefficients at each scale. The n := N? scaling and wavelet coefficients in (2)—(3) for an
N x N discrete image can be calculated using a 2-D separable filter bank [15] in O(n) computations.

A wavelet coefficient w? ik at a scale j represents information about the image in the spatial
region around 27k (k € Z?) [2]. At the next finest scale j + 1, information about this region is

represented by four wavelet coefficients; we call these the children of wgyk. This leads to a natural



quad-tree structuring of each of the 3 subbands, as shown in Fig. 1 and Fig. 4(a) [16]. In light of
this natural tree structure, we will often refer to the wavelet coefficients as a DWT tree with w; as
a node in the tree. We also denote p(i) as the parent and c¢(z) as the set of children of node i. As j
increases, the child coefficients add finer and finer details into the spatial regions occupied by their
ancestors [16].

The Haar wavelet basis functions at a given scale are disjoint square waves [14]. In this case,
the spatial divisions made by the wavelet quadtrees are exact (see Fig. 4(a)). For longer wavelets,
the supports of adjacent wavelets at a given scale overlap. However, the wavelet coefficients still
represent information in the 277 x 277 dyadic squares to a good approximation.

The orthogonal wavelet transform is not shift-invariant. In fact, the wavelet coefficients of two
different shifts of an image can be very different [13]|, with no simple relationship between them.
We will find it useful to analyze and process the wavelet coefficients for each shift of the image.
The resulting representation is called the redundant wavelet transform (RDWT) [16]. The RDWT

is overcomplete, with nlogn wavelet and scaling coefficients for an n-pixel image.

3 Wavelet-domain Hidden Markov Tree Models

In the Introduction, we made the notion of real-world image wavelet-domain structure precise with
the secondary properties S1 and S2. The hidden Markov tree (HMT) model, introduced by Crouse
et al. in [4] and reviewed in this section, captures these properties simply and accurately. To match
the non-Gaussian nature of the wavelet coefficients (S1), the HMT models the marginal pdf of each
coefficient as a Gaussian mixture density with a hidden state that dictates whether a coefficient
is large or small. To capture the dependencies between the wavelet coefficients, the HMT uses a
probabilistic tree to model Markovian dependencies between the hidden states. Using S2 above,
this graph connects each parent to its four children and has the same quad-tree topology as the

DWT tree discussed in Section 2.

3.1 Capturing NonGaussianity: Mixture Models

The form for the marginal distribution of a wavelet coefficient w; comes directly from the efficiency
of the wavelet transform in representing real-world images: a few wavelet coefficients are large, but
most are small. Gaussian mixture modeling runs as follows. Associate with each wavelet coefficient

w; an unobserved hidden state variable S; € {S,L}. The value of S; dictates which of the two



components in the mixture model generates w;. State S corresponds to a zero-mean, low-variance

Gaussian. If we let
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g(w; p,0%) = L exp{—M} (4)

denote the Gaussian pdf, then we can write

f(wilS; = S) = g(w;;0,08,;). (5)
State L, in turn, corresponds to a zero-mean, high-variance Gaussian

f(wil8i = L) = g(wi; 0,0%,;) (6)

with o > 0'%. The marginal pdf f(w;) is obtained by a convex combination of the conditional

densities
f(w;) = p} g(w;0,08,;) + pr g(wi;0,0t,), (7)
with pf’ =1 —p%‘. Let
S
p.
ps; = :_ . (8)
p;

be the state value probability mass function for S;. The pZs and piL can be interpreted as the prob-
ability that w; is small or large (in the statistical sense), respectively. The independent Gaussian
mixture model (IM) is parameterized by a {pt, ag;i, UE;Z-} triad for each wavelet coefficient w;.
Wavelet coefficients have often been modeled as realizations from a zero-mean Generalized
Gaussian distribution (GGD) [6,10]. In fact, the GGD models the marginal densities of the wavelet
coefficients more accurately than the Gaussian mixture, shown in Fig. 3, especially in the tails
of the distribution. However, the Gaussian mixture model discussed above can approximate the
Generalized Gaussian density arbitrarily well by adding more and more hidden states. Of course,
as the number of states in the model increases, the model becomes more computationally complex
and less robust. As can be seen in Fig. 3, we are matching the marginal histogram very closely
using only two states. We can think of this two-state mixture model as an approximation to the
Generalized Gaussian model, and will see that it is realistic enough for our purposes. The primary
advantage of the Gaussian mixture model, as we will see in the next section, is it sets up a framework
for conveniently modeling the dependencies between wavelet coefficients. Although independence is
a reasonable first-order approximation to the structure of the wavelet coefficients, significant gains

are realized by modeling the dependencies between coefficients.



(a) Histogram of wavelet coefficients (b) Log histogram of wavelet coefficients

Figure 3: (a) Histogram and (b) log-histogram of the wavelet coefficients in one subband of the
“Fruit” image. The dotted line is a Generalized Gaussian approximation (v = 0.5). The solid line
is a two-component Gaussian mixture model fitted to the data. Although the Generalized Gaussian
density is a better fit, by using only two states in the Gaussian mixture model, we achieve a close
fit to the histogram. The Gaussian mixture model is not exact, but it allows simple and efficient

algorithms, especially for capturing dependencies between wavelet coefficients.

3.2 Capturing Persistence: Markov Trees

Secondary property S2 states that the expected magnitude of a wavelet coefficient is closely related
to the magnitude of its parent. This implies a type of Markovian relationship between the wavelet
states, with the probability of a wavelet coefficient being “large” or “small” affected only by the
size of its parent. The HMT models the dependence as Markov-1: given the state of a wavelet
coefficient Sj, the coefficient’s ancestors and descendents are independent of each other.

The HMT captures these dependencies by using a probabilistic tree that connects the hidden
state variable of each wavelet coefficient with the state variable of each of its children. This
leads to the dependency graph having the same quad-tree topology as the wavelet coefficients (see
Fig. 4). Each subband is represented with its own quad-tree; this assumes that the subbands are
independent.

Each parent—schild state-to-state link has a corresponding state transition matrix 2

S—S S—L
e )
piﬁ pz'ﬁ

S—L—1q S—S L—S _ 1 L—L
2

with p —p77> and p; —-p; -

2This state transition matrix is the transpose of that presented in [17].



(a) (b)
Figure 4: (a) Quad-tree organization of the wavelet coefficients (black nodes) in one subband of the
wavelet transform. Four children wavelet coefficients divide the spatial localization of the parent
coefficient. (b) 2-D HMT model. Each black node is a wavelet coefficient; each white node is the

corresponding hidden state (S; in (6)—(7)). Links represent dependencies between states (quantified
by (9)).

S—S

The parameters p; (p;'_’") can be read as “the probability that wavelet coefficient w; is small

(large) given that its parent is small (large)”. We call these the persistency probabilities. We call
piL_’s and pis_’L the novelty probabilities, for they give the probabilities that the state values will
change from one scale to the next. Having large and small wavelet coefficient values propagate

down the quad-tree (recall S2) requires more persistence than novelty, that is, pf_’s > pf_’L and

L—L L
pi—> >pi—>5.

In the Introduction, we interpreted the wavelet basis functions as local edge detectors: if there
is an edge inside the spatial support of the basis function, then the corresponding wavelet coefficient
tends to be large. Since the same edge is within the spatial support of at least one of the children
wavelet coefficients, the idea of persistency follows.

If, however, there are two edges inside the spatial support of a wavelet basis function, then their
effects can cancel out, making the corresponding wavelet coefficient small. At some fine scale down
the tree, however, the two edges are guaranteed to bifurcate, since the spatial resolution will be fine
enough so that each edge is represented by its own (large) wavelet coefficient [7]. These wavelet

coefficients will be large even though their parent is small. This is the idea behind novelty.

3.3 HMT Parameters
An HMT model is specified in terms of:
1. the mixture variances ag;i and O'E;i,

2. the state transition matrices A;,

10



3. the probability of a large state at the root node for each 7 in the coarsest scale piL.

Grouping these into a vector ®, the HMT provides a parametric model for the joint probability
density function f(w|®) of the wavelet coefficients in each of the 3 subbands (we treat the subbands
as independent [18]).

In general, these parameters can be different for each wavelet coefficient. However, this makes
the model too complicated for some applications. For example, if there is only one observation of an
image, then there are more parameters to estimate than data points, and over-fitting is inevitable.
To reduce the HMT complexity, each parameter can be assumed to be the same at each scale of

the wavelet transform:

2 _ 2
9S5b,5,k — 9535

UE;b,j,k = aﬁ;j Vk,m € Z, Vb € B. (10)
Apjk = Aj
This processes is referred to as tying within scale [4]. Parameter invariance within scale makes a

tied HMT model less image-specific. Tying within scale keeps the model from expecting smooth

regions or edges at certain spatial locations a priori.

3.4 HMT Algorithms

The HMT is a tree-structured hidden Markov model (HMM). Thus, the three standard problems
of HMMs [19] apply equally well to the HMT:

Likelihood Determination. While the HMT is a model for the joint pdf of the wavelet coef-
ficients, there is no closed form expression for f(w|®). Fortunately, there is a fast O(n)

algorithm to compute f(w|®) for a given w and © called the upward-downward algorithm

[4,19-21].

State Path Estimation. Given a set of observations w and a model ®, we can determine the
probability that node i is in a given state (large or small), and the most likely sequence of
hidden states. Using by-products of the upward-downward algorithm, we can calculate the
probability p(S; = ¢g|w, ®) that an observed wavelet coefficient w; has corresponding hidden
state g € {S,L}. The hidden state sequence problem is solved by the Viterbi algorithm [19,20],

also of O(n) complexity.

11



Model Training. In many situations, we would like to fit the parameters ® for the HMT model
to a given set of training data, i.e. we would like to find the most likely ® that could give rise

to the training observations w:
Ouy = arg m(gxf(w|®). (11)

Since the state values are unknown (hidden), finding the ML estimate directly is intractable.
However, if the states are known, finding Oy, is easy, since the coefficients are just indepen-

dent Gaussian random variables.

The Expectation-Maximization (EM) algorithm attacks this sort of “hidden data” problem
[4,19-21]. We start with an initial guess ®° of the model parameters, and then for each
iteration [ we calculate E[log f(w,S|®)|w, ®']. Finding this expectation, called the “E step”,
amounts to calculating the state probabilities p(S; = ¢|w, ®!), for which we use the upward-
downward algorithm. The maximization, or “M step” consists of relatively simple, closed
form updates of the parameters in ®' to obtain @1, As [ — oo, ®! approaches a local

maximum of the likelihood function f(w|®). The EM algorithm is O(n) per iteration.

While simple, EM training for the HMT has several drawbacks. Being a hill-climber, the EM
algorithm is guaranteed to convergence only to a local maximum of f(w|®). Nevertheless, we
obtain reasonable estimates in general. More importantly, convergence can be relatively slow. For
large images, this can make training very computationally expensive. Even though each iteration
of the algorithm is O(n), there is nothing to limit the number of iterations it takes to converge. For
example, convergence on a 512 x 512 image can take anywhere from minutes to hours to converge

on a standard workstation.

3.5 Application: Empirical Bayesian Estimation

To demonstrate the effectiveness of the HMT as a model for an image’s wavelet coefficients, we es-
timate an image x submerged in additive white Gaussian noise. This is a straightforward extension

to 2-D of the work in [4]. Given a noisy observation
v=x+n, (12)

with n is a Gaussian random field whose components are independent and identically distributed

(i.i.d.) with zero mean and known variance o2, we would like to estimate the underlying image x.

12



Translated into the wavelet domain, the problem is as follows:

given y =w+ 17, estimate w, (13)

where 7 is again Gaussian i.i.d. with variance o2.

Since we are viewing w as a realization of a random field whose joint pdf f(w|®) is modeled
by the HMT, we take a Bayesian approach to this estimation problem. The conditional density
f(y|w) is given by the problem; it is an independent, Gaussian random field with mean w. Using
the HMT model for f(w), we can solve the Bayes equation for the posterior f(wly).

To obtain the parameters @ for the prior f(w|®), Crouse et al. [4] take an empirical Bayesian
approach. The HMT parameters used to model f(w|®) are first estimated from the observed noisy
data y, and then “plugged-in” to the Bayes equation (after accounting for the noise). A strictly
Bayesian approach would require that we take the parameters as known (see Section 4.4 below) or
assign them a hyper-prior [5,22].

For the Bayes estimator, we calculate the conditional mean of the posterior f(wl|y,®) using

the pointwise transformation

2
w; := Elw;|y, ® Z p(S; =qly, ®) 2+ 2 Yi (14)
ge{S,L}

to obtain the minimum mean-square estimate (MMSE) of w.

The results of this procedure for a number of test images are summarized in the third column
of Tables 1-3, and an example is shown in Fig. 2(f). The HMT empirical Bayesian estimator
outperforms other DWT wavelet shrinkage techniques in terms of MSE, and in visual terms it is
far superior, boasting estimates with sharper and more accurate edges. In fact, its MSE and visual
performance are quite competitive with RDWT wavelet shrinkage [13] (the current state-of-the-art
in performance).

The estimator (14) is just one of the possible approaches to denoising using the HMT. Although
(14) gives the estimate with the MMSE under the HMT model, the choice of squared error loss is
somewhat arbitrary. Another Bayes estimator, e.g., a MAP estimator for 0/1 loss, could be used
in its place. Alternatively, the model could be used outside the strict Bayesian framework. For
instance, a thresholding technique based on the Viterbi algorithm could be used to determine which
large wavelet coefficients are likely a part of the edge structure and should be kept (coefficients with

associated hidden state L), and which ones are due to noise and should be killed [23].
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4 A Reduced-Parameter HMT Image Model

By design, the HMT captures the main statistical features of the wavelet transforms of real-world
images. In its raw form, however, the 4J parameters needed to model an image can make it
unwieldy, even when tying within scale. This poses a number of problems. Directly specifying 4.J
parameters requires a tremendous amount of a priori information about the image, but without
this information we run the risk of over-fitting the model. Training the parameters can be time
consuming and may not be robust under unfavorable conditions. The empirical Bayes estimator
of Section 3.5 works well, but requires the use of the EM algorithm, which at O(n) computational
complexity per iteration, can be very time consuming. All of these make the HMT inappropriate
for applications with minimal a priori information available or requiring rapid processing.

To address these problems, we must reduce the number of parameters in the HMT model.
Because of this reduction in complexity, less a priori information is needed to specify model pa-
rameters. However, the HMT model will become less accurate; two images that have different
parameterizations with the general form of the HMT may have the same parameterization in a
reduced-parameter model. As fewer parameters are used to specify a model, the model becomes
less image-specific; the class of images a given parameter set models becomes larger. The amount of
parameter reduction which is appropriate depends on the application and the amount of informa-
tion known about the images to be modeled. For example, in estimation/denoising the assumptions
are usually very broad; that is, the noise-corrupted image is assumed “photograph-like.” The es-
timator needs only to differentiate between image and noise. These entities have very different
structure and hence can be modeled by very different HMTs (and thus differentiated using only
a small set of parameters). In detection and classification, on the other hand, the differences in
structure between the two hypotheses may be more subtle, and the models may need to be more
specific and thus described by more parameters.

In [4] and in Section 3, the modeling paradigm was to assign a different set of HMT parameters
to each image, with the 4J parameters being specified by training on an observation. In this
section we take a different approach. By taking advantage of image properties not yet explicitly
recognized by the HMT, we will specify a set of (only 9) meta-parameters that determine the 4.J
HMT parameters.

These additional properties, introduced as the tertiary properties of wavelet coefficients in the

Introduction, can be easily derived by examining 1-D cross-sections (slices) of images (similar to the

14



approach of [24]). These 1-D slices consist of piecewise smooth (Lipschitz regular) regions separated
by a finite number of discontinuities. The extension of these properties to 2-D is not exact— they
hold for images with only vertical, horizontal, and 45° diagonal edges— but still remains a good

approximation.

4.1 Tertiary Properties of the Wavelet Coefficients: Self-Similarity

The wavelet transforms of real-world images exhibit additional strong statistical properties in ad-
dition to the primary (P1-P3) and the secondary (S1,S2) properties. In designing our reduced-
parameter HMT model, we will use the tertiary properties of wavelet transforms stated in the
Introduction: the magnitude of the wavelet coefficients decreases exponentially (T1) and persis-
tence becomes stronger (T2) as the scale becomes finer. The tertiary properties follow from the
statistical self-similarity of images across scale. Zooming in on an image adds detail at every step,
and since the statistics of these new details have predictable properties, we can use this fact to
reduce the model complexity.

The exponential decay property (T1) stems from the overall smoothness of images. Roughly
speaking, a typical grayscale image consists of a number of smooth regions separated by discon-
tinuities. This results in a generalized 1/f-type spectral behavior, which leads to an exponential
decay of the wavelet coefficients across scale (see Fig. 5(a) and (b)).

We can obtain intuition behind the persistence property (T2) by considering a piecewise smooth
1-D image slice containing a finite number (say M) of discontinuities. Since there are a finite number
of discontinuities and the spatial resolution of the wavelet coefficients becomes finer as the scale j
increases (P2), there exists a scale jeit such that for all j > jii; each wavelet basis function has at
most one discontinuity inside its spatial support. We call this condition isolation of edges. Given
no a priori information on the locations of the discontinuities, the fact that the spatial resolutions
of the wavelet coefficients become finer exponentially implies that the probability that every edge
is isolated goes to 1 exponentially (see Fig. 5(c) and (d)).

By P3 (edge detection), for fine scales such that j > jeit, there will be approximately M
wavelet coefficients that are “large” when compared to other coefficients at the same scale (exactly
M if we are using the Haar wavelet). Each of these large coefficients will also have a large child,
since the children wavelet basis functions simply divide up the spatial support of the parent. Each

of the small coeflicients’ children will have small children, since there is no chance for any of them
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to encounter an edge.

In 2-D, the situation is similar except that instead of a discontinuities at points, we now have
discontinuities along curves. At jeit, all wavelet basis functions that have spatial support inter-
secting this curve will be “large.” Again, each of these coefficients will also have at least one large
child, while the small coefficients will spawn small children.

Similar ideas were used to construct the lacunary wavelet series models in [25] and [26].

4.2 HMT meta-parameters

Based on the tertiary properties of wavelet transforms, we can specify functional forms for the
parameters of an HMT model. The coefficient decay and change in coefficient persistence are easily
modeled by imposing patterns how the mixture variances and state transition probabilities change
across scale. Because the characterized tertiary properties are common to many real-world images,

the resulting model describes the common overall behavior of real-world images in wavelet-domain.

4.2.1 Modeling wavelet coefficient decay

We can easily model the exponential decay of wavelet coefficients (T1) through the mixture vari-
ances of the wavelet HMT model. Since the HMT mixture variances characterize the magnitudes
of the wavelet coefficients, we will require that they decay exponentially across scale as well (see

also Fig. 5):
O-g;j = 00_52—]'045, (15)

oty = Cy2770 (16)

Since the wavelet coefficients representing edges in an image decay slower than those representing
smooth regions, we need ag; ;< O'E; j for all scales, and thus require as > oy . The result is an HMT
for images with a generalized 1/f power spectrum.

The 4 meta-parameters Cy, as, C,, , and o characterize the marginal densities of the wavelet
coefficients. Having marginals of this form not only meshes with the statistical self-similarity of
images, but is also related to smoothness characterization using Besov spaces. Roughly speaking,
a Besov space B, (L") contains functions with s derivatives in L?, with ¢ making finer smoothness
distinctions [27]. For s < 1, By(LP) contains functions that are uniformly regular but have isolated
discontinuities [2]. These properties are similar to those of real-world images; we expect images to

belong to Besov spaces.
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Figure 5: Universal HMT parameters against trained parameters for images. The solid lines are
the parameters for the baby, camera, fruit, and lenna images plotted across scale. The dotted lines

represent the uHMT parameters presented in Section 4.3. Reliable estimates for pJL-_’L require more

data than the other 3 parameters, so the behavior is shown from scale 5 onwards.
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The fact that wavelets form an unconditional basis for all Besov spaces Bj(LP) means the
Besov norm can be computed equivalently (subject to the constraint that the analysis wavelet 1) is

smoother than the image itself) as a simple sequence norm on the wavelet coefficients [28]:

q/p] 14

- ot
||zl Bs zr) = collwjollp + | D 2779 D [whal? (17)
Jj>jo k,b

where “<” denotes equivalent norm, s’ = s — 1/p + 1/2,q < oo, and ¢y = 21/2-1/p We say

x € B3(LP) if ||af

Bs(LP) < 0.

For (17) to be finite, the p-norm of the wavelet coefficients at each scale must fall off exponen-
tially. The exponential decay of the variances in the HMT model captures this fact. In fact, it
has been shown that a realization from an independent Gaussian mixture model having variance
parameters of the form (15)-(16) lies in Bj(LP), au. > s + 1/2, with probability 1 (a proof for a
very similar statement can be found in [29]). The equivalence between Besov spaces and wavelet
domain statistical models is discussed in [30].

This connection between the form of the marginals of the wavelet coefficients and Besov spaces
leads us to an important point. Modeling an image as lying in a certain Besov space is equivalent
to assuming that the wavelet coefficients are independent. However, we have already noted that
dependencies between wavelet coefficients of images do indeed exist, so the Besov space characteri-
zation is not entirely accurate. Saying that an image lies in a particular Besov space tells us about

the overall smoothness of the image, but nothing of the edge structure.

4.2.2 Modeling coefficient persistence

The edge structure of images manifests itself as dependencies between the wavelet coeflicients.
These dependencies are represented in the HMT model by the state transition matrix (9). In this
section, we will show that these dependencies also exhibit self-similar structure from scale to scale.
Taking advantage of this fact, we simplify the HMT model further by assigning an exponential
form to the transition matrix.

Again, consider analyzing a 1-D signal consisting of smooth regions having M jump disconti-
nuities with the Haar wavelet. The isolation of edges at fine scales controls the persistency and
novelty probabilities (and hence the form of the transition matrix) in the HMT. If each of the M
edges in the 1-D slice is isolated, then there is no opportunity for a novel large coefficient to come

from a small parent; the only way a coefficient can be large is if its parent is large. Thus, pjs-_"- -0
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exponentially as j — oo. In other words, pjs-_’s — 1 exponentially, since once a basis function lies
over a smooth region, all of its children also lie over that smooth region.

The persistence of large values is somewhat more complicated. Consider a wavelet coefficient z
lying over an isolated edge (S, = L) in the 1-D slice at scale j > jeit- Call 2’s children a and b.
Since the edge is perfectly localized in space, one and only one of a and b will be large, since the

Haar basis functions corresponding to a and b have disjoint supports. This means that

p(Sa =L,5 =S5[S,=L) = 1/2, (18)
p(Sa=S,8=L|S,=L) = 1/2, (19)
p(Sa=S,5=5|S,=L) = 0, (20)
p(Sa=LS=L|S,=L) = 0. (21)

Because the HMT does not jointly model the state values of the children given the state of the
parent, it cannot capture the property that exactly one and only one of ¢ and b is large. In fact,
given S,, under the HMT S, and S are independent. Instead of modeling the joint distribution of
S, and Sy given S, (18)-(21) exactly, the HMT approximates it as the product of the marginals
P(Sa|S.) and p(S|S.) with

p(Se=L|S,=L)=p(S, =L,S, =S|S, =L)+p(Se =L,S, =L|S,=L) = 1/2, (22)
p(Sb = L‘Sz = L) Zp(Sa = S,Sb = L|SZ = L) —i—p(Sa = L,Sb = L‘Sz = L) = 1/2. (23)

As a result, the HMT persistency probability pt=?t — 1/2 as j — oco. This is an imperfect model,

J
since for all values of j, there is a chance that the edge will disappear (since p(S, =S, Sy = S|S, =
L) = 1/4 under the HMT) or bifurcate [2] (since p(S, = L, S, = L|S, = L) = 1/4). Capturing the
exact behavior of (18)-(21) would necessitate the use of a joint model for the states of the children
coefficients given the state of the parent coefficient.

For wavelets other than the Haar, the basis functions of the children are not necessarily disjoint.
However, (18)—(21) hold within a reasonable approximation. Extension of this analysis to 2-D is
also not exact, except for horizontal, vertical, and diagonal edges. In 2-D, edges lie on curves in
space, and the curve could conceivably intersect the spatial support of the basis functions of any
of the children of a coefficient that has isolated the curve. However, the curves become straight

lines asymptotically inside the support of the wavelet and so they encounter only two children in

the limit.
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The localization probability going to 1 exponentially means that the asymptotic values for
persistency and novelty parameters are approached exponentially. This suggests an exponential

form for the state transition matrix (9) specified by four parameters (see Fig. 5):

1 — Cec2 757 Clec2sJ
A= SS | SS . (24)
% —CLL2 I % +CLL 2

The transition matrix has the asymptotic form

1 0
Ay = RE (25)
2 2

4.2.3 HMT meta-parameters

The only parameter in the HMT not yet accounted for is the probability mass function on the
hidden state value of the root coefficients (just one number in our case, p'JTO, since the hidden state
can only take two different vales). Taking this parameter as is, we can specify all of the HMT

parameters with 9 meta-parameters:

(')m = {aSaCosaaLaCULa’YSaCSS,’YLaCLLap]l'E)}' (26)

The self-similarity of images is reflected in the self-similarity of the HMT model parameters.
The fact that the model parameters can be captured by these functional forms means that statistical
behavior of images at a fine scale is predictable from the statistical behavior at a coarser scale. Not
only does the introduction of the HMT meta-parameters reduce the complexity of the model, but

it integrates a key property of real-world images.

4.3 A “Universal” Grayscale Image Model: The uHMT

Now that we have an image model specified by a small set of meta-parameters ®,,, we must find
a way of specifying them. The first possibility would be to derive a constrained EM algorithm to
give pseudo-MLE estimates of @y, given an observation. Deriving the steps for this algorithm is
difficult, and there is no guarantee that the training would be any faster than in the unconstrained
case.

Another possibility is to fix the meta-parameters directly. This yields an HMT model for a class

of images, with each member in the class being treated as statistically equivalent.
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To see how much variation in the HMT meta-parameters there is across photograph-like im-
ages, we trained HMT models for a set of wavelet transforms (using the Daubechies-8 wavelet) of
normalized photograph-like images and examined their parameters. The variance and persistence
decays were measured by fitting a line to the log of the variance vs. scale for each state. The
decays were very similar for many of the images (see Fig 5). Since the images were normalized, the
range over which the variances decayed was similar as well. These observations confirm that we can
use a specific, “universal” set of HMT meta-parameters to reasonably characterize photograph-like
images.

The universal parameters obtained by (jointly) fitting lines to the HMT parameters of four

images (see Fig. 5) are given by

as = 3.1
Cpe = 21
a = 225
C,, = 911
O,:=¢ v = 1 (27)
Css = 223
w = 04
CL = 205
[ P = 5

The lines were fit to the HMT parameters starting at scale 5 = 4 (j = 5 for the p-—L measure-
ment). There are two reasons for this: 1) before this scale there is not enough data for an accurate
estimate of the decays, and 2) these decay rates are really asymptotic properties. The parameter
that is the most similar across all images is ay . This is to be expected, since «y corresponds to the
decay rate of the wavelet coefficients lying over an edge, and hence is automatically independent of
the image we are analyzing.

Although we clearly lose accuracy by viewing all images we are interested in as statistically
equivalent, this process totally eliminates the need for training. This can save a tremendous amount

of computation, making real-time HMT processing possible.

4.4 Application: Bayesian Estimation with the uHMT

With the utHMT parameters, we have a fixed prior on the w; and the estimation problem in Section

3.5 can be approached from a purely Bayesian standpoint. To find the conditional mean vector,
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the state probabilities p(S; = q|y, ®m) are calculated using the upwards-downwards algorithm and
used to evaluate (14). Since we have eliminated training, the estimation algorithm is truly O(n) and
takes only a few seconds to run on a workstation, slightly longer than simple wavelet thresholding
algorithms, but much faster than the empirical Bayesian algorithm of Section 3.5 [4].

To test this new Bayesian estimator, we denoised the test images using the uHMT parameters
presented in the last section. The estimation results are summarized in the second column of
Tables 1-3, and an example is given in Fig. 2(g). The results are almost identical to the much
more complicated empirical Bayes HMT approach, suggesting that we have lost almost nothing by

completely eliminating training.

5 Shift-Invariant HMT Image Estimation

Image estimates based on orthogonal wavelet transforms (DWTs) often exhibit visual artifacts,
usually in the form of ringing around the edges. These artifacts result from the lack of shift-
invariance in the DWT [31]. As we mentioned before, two different shifts of an image can have
very different wavelet transforms. In particular, the wavelet domain characteristics of a singularity
change as it shifts around.

For a shift-invariant estimation algorithm, we turn to the redundant wavelet transform (RDWT).
Ideally, we would like to model the RDWT coefficients using an HMT in a similar fashion as in the
orthogonal case. Unfortunately, the redundant transform does not have a tree-like structure, and
capturing all of the important dependencies would require a complicated graph that would make
Bayesian inference hard or impossible [4, 32].

Another way to make the image estimate shift-invariant is to follow the “cycle-spinning” pro-
gramme proposed by Coifman and Donoho [31]. The estimation algorithm is applied to all shifts of
the noisy image, and the results are averaged. The shift-invariant estimate of an N x N (n-pixel)

image x that has been corrupted by noise, v = x + n, is given by
~ 1 ~
X = m Z Xk,'rn (28)
k,m

where Xy, is the estimate of x using the (k,m) shift of v (there are N? possibilities, one for each
pixel in the image). To calculate the estimate X ,,,, shift the observation v by (k,m), apply the

estimator, and unshift the result:
Xp,m = S—k,—m(D(Sk,m(v))) (29)
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where Sy, ,,(v) = v(s—k,t—m) is the 2-D shift operator and D denotes the estimator of Section 3.5
or 4.4.

This approach fits closely into the Bayesian framework. Since the estimate depends on the
shift (k,m) of the data, (k,m) can be viewed as an unknown random variable. Since we have no
a prior information about (k,m) except that 0 < k,m < N — 1, we use a non-informative prior
p(k,m) = %, meaning each possible shift is equally likely. Then the Bayes-optimal estimator
becomes a weighted average over all shifts [22]

Z=3 p(k,m|y)S_,—m(D(Skm()))- (30)

km
Since (28) makes the additional assumption that p(k,m|y) is uniform, the estimator derives no
information about the underlying shift given the observed data; equal weight to the estimates at
each shift. If we calculated p(k,m|y), we could use (30) and weight the estimate at each shift by its
likelihood, but this is an expensive operation that lead to no significant gains in our experiments.

The algorithm (28), if implemented directly, would be computationally expensive, O(n?). How-
ever, if we assume that the same HMT model applies to all shifts (an assumption tacitly made in
deriving the uHMT parameters), then the complexity can be reduced substantially. While the DWT
tree for each shift of the image is unique, wavelet coefficients are shared between trees. There are
nlogn unique wavelet coefficients among the n DWT trees of an n-pixel image [31]. These nlogn
unique coefficients are the RDW'T coefficients, as mentioned in Section 2, and can be indexed by
scale and shift. The DWT tree of a particular shift is embedded into the RDWT coefficients (see
Fig. 6 for a 1-D example).

From the figure, we see that each node now has two parents and two children, each parent
coming from a different DWT tree (in the 2-D case, each node will have 4 parents and 4 children).
Averaging the estimates of the image at different shifts in the spatial domain is equivalent to
averaging together the estimates for each node from all trees in which it is included. Since each
node still has two children, the downwards binary tree structure is preserved, and an O(nlogn)
algorithm can be obtained by a modification to the upward-downward algorithm [23].

Our results using the uHMT parameters from Section 4.4 in the shift-invariant estimator are
summarized in the first column of Tables 1-3, with an example shown in Fig. 2(h). As we see in the
figure, the shift-invariant transform smoothes out the visual artifacts in the smooth regions of the
image while keeping the edges sharp. We have also picked up an extra ~ 1dB MSE performance
over the uHMT and empirical Bayesian HMT models.
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(a) DWT tree (b) 1-D RDWT graph with DWT tree superimposed

Figure 6: (a) DWT tree, (b) DWT tree at one shift (shift 6) in relation to the trees at other shifts.
Note that the trees overlap — the same coefficient appears in more that one tree. There are nlogn
unique coefficients for a length-n signal. Also note that each node now has two parents as well
as two children, and is included in 27 different trees. In 2-D, the RDWT consists of overlapping

quad-trees; each node has four parents and four children and is included in 47 different trees.
6 Conclusions

Modeling lies at the core of any statistical image processing problem. An accurate model is of
paramount importance for applications such as estimation, detection, compression and segmen-
tation. Not only are models of great practical importance, but they also offer insight into the
underlying natural structure of images.

Hidden Markov trees capture the primary aspects of image structure in the wavelet domain.
In this paper, we have shown that the HMT parameters themselves have a certain form, described
by the nine HMT meta-parameters, derived from the self-similar nature of real-world images. By
constraining the HMT with these meta-parameters, we not only have a simpler, more concise image
model, but we also incorporate more a priori information about the structure of images into the
model.

The form of the HMT parameters not only agrees with the Besov space model of images, it
expands on it. Besov space models capture the overall smoothness of images, a property which is
reflected by the exponential decay of the mixture variances in the HMT. By including a character-
ization of dependencies between wavelet coefficients, the HMT also captures the edge structure of
images, thus narrowing down the space of images represented by the model.

The “universal” HMT parameters (uHMT) arise naturally from the form of the HMT and

accurately model a wide range of images. These nine numbers completely specify a HMT model
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for a large class of real-world images, eliminating any need for training and thus greatly simplifying
processing algorithms and allowing real-time implementations.

With the uHMT parameters, we have specified a prior for photograph-like images. This allows
us to take a Bayesian approach to statistical image processing problems; specifically, estimation in
the presence of noise. Using a Bayesian approach, we are able to incorporate our knowledge of image
structure into a “smart” wavelet shrinkage rule that takes into account coarse scale information
while processing fine scale wavelet coefficients. The model helps predict which wavelet coefficients
represent key features in the image (and thus should not be affected) and which ones represent
noise (and thus should be shrunk).

Finally, the uHMT model also allows us to implement a shift-invariant estimator; a task that
would be too computationally intensive if we had to train a model for every shift of the image. The

shift-invariant uHMT estimator offers state-of-the-art performance in MSE and visual quality.

References

[1] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, and the Bayesian restora-

tion of images,” IEEE Trans. on Pattern Anal. Machine Intell., vol. 6, pp. 721-741, 1984.
[2] S. Mallat, A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.

[3] M. Vetterli and J. Kovacevi¢, Wavlets and Subband Coding. Englewood Cliffs, NJ: Prentice
Hall, 1995.

[4] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing
using hidden Markov models,” IEEE Trans. Signal Proc., vol. 46, pp. 886-902, Apr. 1998.

[5] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, “Adaptive Bayesian wavelet shrinkage,”
J. Amer. Stat. Assoc., vol. 92, 1997.

[6] E. P. Simoncelli, “Statistical models for images: Compression, restoration and synthesis,” in

Proc. 81st Asilomar Conf., (Pacific Grove, CA), pp. 673-678, Nov. 1997.

[7] S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. on
Pattern Anal. Machine Intell., vol. 14, pp. 710-732, July 1992.

[8] J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans.

Signal Proc., vol. 41, pp. 3445-3462, Dec. 1993.

25



Table 1: Image estimation results for 256 x 256 images corrupted with additive white Gaussian
noise of o, = 0.05. Entries are the the peak signal-to-noise ratio (PSNR) in dB, PSNR :=
—201og¢(||Z — z||2/N) (larger numbers mean better performance). Pixel intensity vales were
normalized between 0 and 1. All results use the Daubechies-8 wavelet. “Si-HMT” is the shift-
invariant estimator from Section 5; “uUHMT” uses the “universal” parameters presented in Section
4.4; “Emp-HMT” uses the empirical Bayesian estimator of Section 3.5; “RDWT-Thresh” uses a
hard thresholded redundant wavelet transform using the thresholds in [13]; “DWT-Thresh” uses a
thresholded orthogonal wavelet transform using the thresholds in [13]; and “Wiener2” is the 2-D
spatially adaptive Wiener filter command from MATLAB.

Image Si-HMT | uHMT | Emp-HMT | RDWT-Thresh | DWT-Thresh | Wiener2
Baby 33.1 32.4 32.6 32.7 28.6 32.1
Birthday 29.6 28.9 29.1 27.5 24.4 28.1
Boats 31.4 30.4 30.6 30.3 25.6 29.8
Bridge 28.9 28.1 28.3 26.2 23.1 27.0
Buck 33.7 32.5 32.8 33.8 27.8 33.0
Building 30.4 29.7 30.0 29.0 24.8 28.9
Camera 31.1 30.3 30.5 29.8 25.4 29.8
Clown 31.7 30.6 30.9 30.6 25.8 30.7
Fruit 33.3 32.2 32.6 32.8 27.8 32.6
Kgirl 32.6 31.6 31.8 31.5 27.5 31.7
Lenna 31.3 30.4 30.5 29.7 25.6 30.2

26



Table 2: Estimation PSNR results for images corrupted with o, = 0.1.

Image Si-HMT | uHMT | Emp-HMT | RDWT-Thresh | DWT-Thresh | Wiener2
Baby 29.6 28.9 29.2 29.5 25.6 27.2
Birthday 26.4 25.8 25.8 25.3 22.4 25.5
Boats 27.4 26.4 26.5 26.3 22.5 26.1
Bridge 25.3 24.6 25.0 23.7 21.2 24.7
Buck 29.6 28.4 28.6 29.7 24.2 27.6
Building 26.6 25.9 26.3 25.8 22.2 25.6
Camera 27.0 26.2 26.4 26.3 22.7 26.1
Clown 27.8 26.8 26.8 26.5 22.8 26.5
Fruit 29.7 28.5 28.6 29.0 24.6 27.2
Kgirl 29.3 28.3 28.3 28.4 24.8 26.8
Lenna 27.6 26.7 26.7 26.3 23.0 26.2

Table 3: Estimation PSNR results for images corrupted with , = 0.2.

Image Si-HMT | uHMT | Emp-HMT | RDWT-Thresh | DWT-Thresh | Wiener2
Baby 26.3 25.8 25.4 26.1 23.0 21.3
Birthday 23.7 23.1 23.0 23.0 20.3 20.8
Boats 24.1 23.3 23.3 23.1 20.0 21.0
Bridge 22.7 22.0 22.2 214 19.4 20.4
Buck 25.8 24.7 24.5 25.6 21.1 21.3
Building 23.5 22.8 23.0 23.0 19.9 20.8
Camera 23.7 23.1 23.2 23.2 20.4 20.8
Clown 24.5 23.7 23.6 23.2 20.2 21.1
Fruit 26.4 25.3 25.0 25.3 21.8 21.3
Kgirl 26.4 25.4 25.3 25.3 22.4 21.1
Lenna 24.5 23.8 23.8 23.5 20.7 20.9

27




[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shrinkage: Asymp-
topia?,” J. Royal Stat. Soc., Series B, vol. 57, pp. 301-369, Feb. 1995.

P. Moulin and J. Liu, “Analysis of multiresolution image denoising schemes using generalized
gaussian and complexity priors,” IEEFE Trans. on Info. Theory, vol. 45, pp. 909-919, Apr.
1999.

T. S. F. Abramovich and B. W. Silverman, “Wavelet thresholding via a bayesian approach,”
J. Royal. Stat. Soc. Ser. B, vol. 60, pp. 725-749, 1998.

K. Mihcak, I. Kozintev, K. Ramchandran, and P. Moulin, “Low complexity image denoising
based on statistical modeling of wavelet coefficients,” IEEE Sig. Proc. Letters, vol. 6, pp. 300—
303, Dec. 1999.

M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. W. Jr, “Noise reduction using
an undecimated discrete wavelet transform,” IEEE Sig. Proc. Letters, vol. 3, pp. 10-12, Jan.
1996.

I. Daubechies, Ten Lectures on Wavelets. New York: STAM, 1992.

S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,”

IEEFE Trans. on Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.

C. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms:
A Primer. Prentice Hall, 1998.

J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian tree-structured image modeling using
wavelet-domain hidden Markov models,” in Proc. 44th SPIE Conf., vol. 3816, (Denver, CO),
pp- 3144, July 1999.

H. Choi and R. G. Baraniuk, “Multiscale image segmentation using wavelet-domain
hidden Markov models,” Submitted to IEEE Trans. Image Proc. - Awvailable at

www.dsp.rice.edu/publications/, 1999.

L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recog-

nition,” Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.

B. J. Frey, Graphical Models for Machine Learning and Digital Communication. Cambridge,
MA: MIT Press, 1998.

28



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

O. Ronen, J. R. Rohlicek, and M. Ostendorf, “Parameter estimation of dependence tree models

using the EM algorithm,” IEEE Sig. Proc. Letters, Aug. 1995.

M. A. T. Figueiredo and R. D. Nowak, “Bayesian wavelet-based signal estimation using non-

informative priors,” in Proc. 32nd Asilomar Conf., 1998.

J. K. Romberg, “A universal hidden markov tree image model,” Master’s thesis, Rice Univer-

sity, 1999. available at www.dsp.rice.edu/ jrom/msthesis.ps.

A. Cohen and J. P. D’Ales, “Nonlinear approximation of random functions,” SIAM J. Appl.
Math., vol. 57, April 1997.

S. Jaffard, “Oscillation spaces: Properties and applications to fractal and multifractal func-

tions,” J. Math. Phys., vol. 39, pp. 4129-4141, Aug. 1998.
R. G. Baraniuk and K. Berkner, “Tree-structured lacunary wavelet series,” preprint, 1998.

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform

coding,” IEEE Trans. Info. Theory, vol. 38, pp. 719-746, Mar. 1992.
Y. Meyer, Wavelets and Operators. Cambridge Univ. Press, 1992.

F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresholding via a Bayesian

approach,” J. Royal Stat. Soc., Series B, vol. 60, pp. 725-749, 1998.
H. Choi and R. Baraniuk, “Wavelet-domain statistical models and Besov spaces,” Preprint.

R. Coifman and D. Donoho, “Translation-invariant de-noising,” in Wawvelets and Statistics

(Antoniadis/Oppenheim, ed.), vol. 103 of Lecture Notes in Statistics, Springer-Verlag, 1995.

H. Lucke, “Which stochastic models allow Baum-Welch training?,” IEEE Trans. Signal Pro-
cessing, vol. 44, Nov. 1996.

29



