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Abstract—Recently, Cohen has proposed a construc-
tion for joint distributions of arbitrary physical quan-
tities, in direct generalization of joint time-frequency
representations. Actually this method encompasses
two approaches, one based on operator correspon-
dences and one based on weighting kernels. The litera-
ture has emphasized the kernel method due to its ease
of analysis; however, its simplicity comes at a price. In
this paper, we use a simple example to demonstrate
that the kernel method cannot generate all possible
bilinear joint distributions. Our results suggest that
the relationship between the operator method and the
kernel method merits closer scrutiny.

I. INTRODUCTION

By representing signals in terms of several physical
quantities simultaneously, joint distribution functions can
reveal signal features that remain hidden from other
methods of analysis. Distributions measuring joint time-
frequency content, such as the Wigner distribution and
the spectrogram from Cohen’s class [1,2] have a long his-
tory and continue to play an important role in nonstation-
ary signal analysis. More recently, distributions measur-
ing joint time-scale [3,4], scale-hyperbolic-time [4-7], and
warped time-frequency and warped time-scale [8,9] con-
tent have been proposed for measuring quantities other
than time-frequency.

With this proliferation of new distribution classes, it
seems natural to search for general methods for generating
all possible joint distributions. In the most successful effort
to date, Cohen has extended the formulation of his class of
time-frequency distributions to arbitrary variables [2,10].
When interpreted appropriately this method is quite gen-
eral; however, it does have some heretofore undocumented
limitations. In this note, we focus on one of them. We
begin with a brief review of the general method.

II. CoHEN’s KERNEL METHOD

The roots of joint distribution theory lie in quantum
mechanics, where physical quantities are associated with
operators on a Hilbert space (see [2] for more details).

The distribution of a single physical quantity is easily
derived. Given the Hermitian operator A representing a
quantity a of interest, the density of a in a signal s corre-
sponds to the square of the projection of s onto the eigen-
functions u? of A. We term this projection the A-Fourier
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transform [8] and denote it by

(Fas)(a) =

An alternate route direct to the density employs the expo-
nentiated operator e/27®A in the characteristic function!

<S | ej27rozA | 8> = <S, ej27roz.AS>

= [s@ @A) @) da.

Given the characteristic function of a, the density of a can
be obtained by simple Fourier transformation [1,2]

[(Fas)(a)]* = /<5|ej27””4|5> eiimaada. (1)

The primary advantage of this second approach to densi-
ties is that it generalizes immediately to the multi-operator
case.

Cohen’s pioneering construction for bilinear joint distri-
butions generalizes the prescription (1) to two and higher
dimensions. Given two operators A and B representing
two physical quantities a and b, the joint distribution of a
and b is formed as (see [2,10] for more details)

(Cs)(a,b) = // <5 ‘ gl 2m(eA+5B) ‘s> e~I2m(@atBh) g0 4.
(2)

Like a true density, (Cs)(a, b) marginalizes to the individ-
ual densities of @ and b

/ (Cs)abydb = [(Fas)(a)l, 3)

/(Cs)(a,b)da = |(IFgs)(b)|*. 4)

Unlike single-variable distributions, joint distributions
are not unique. In general, the operator representations .4
and B do not commute (AB # BA). Hence the exponen-
tiated operator e/27(@A+5B5) in the characteristic function
of (2) can be evaluated in many ways to obtain different
distributions that satisfy the same marginals. The three
simplest evaluation or correspondence rules are [1,2]: the
Weyl correspondence e/27(@A+08) where the sum A+B
is exponentiated ensemble, the normal correspondence

1Here we adopt the physicists’ notation of inner products linear
in their second element. The exponentiated operator el2maA cap

be evaluated formally using the Taylor series expansion gi2mad —
oo (j2raA)”
n=0 n! :

[2].

Exponentiated Hermitian operators are unitary



ei2meA ¢i2mBB - where A and B are exponentiated sepa-

rately and then composed, and the antinormal correspon-
dence €/27PB ¢i2maA where the order is reversed. Despite
the ordering differences, every correspondence rule yields
a distribution that marginalizes as in (3), (4).

Since keeping track of all possible correspondence rules
is an arduous task, Cohen has developed a simplified char-
acteristic function method known as the kernel method
[1,2,10]. This method fixes a single correspondence rule
and then introduces a kernel function ¢(a, 8) in (2) in an
effort to take care of the other possible orderings. The
resulting class of bilinear distributions is given by?

(C's)(a,b) =

/¢

where the “fixed” in the characteristic function reminds
us that the correspondence rule used to evaluate the ex-
ponential remains fixed. Each kernel generates a different
a-b distribution; kernels obeying the constraint ¢(«,0) =
#(0,8) = 1 V «, 3 correspond to distributions satisfying
the marginals. Other kernels generate generalized distri-
butions that do not satisfy the marginals yet in some sense
still measure joint a-b energy content.

Cohen originally developed his kernel-based character-
istic function method for studying distributions of time
and frequency (or position and momentum in a quan-
tum mechanics setting) [1,2]. The Hermitian operators
representing time and frequency, (7s)(z) = zs(x) and
(Fs)(z) = ]% $(z), exponentiate to the time shift and
frequency shift operators (e/27Fs)(z) = s(z + t) and
(ejz’rfTs)(a:) = 217 5(z) [2].
commute, with 7F — F7T = 2]—7r Fixing the Weyl corre-
spondence in (5) yields the classical formulation of Cohen’s
class of time-frequency distributions [1,2]

waen = [ff-epeler o

x el 2m0u=01=71) 4y dg dr,

ej 2m (e A+6B)fixed

5) 6(a, ) 72T+ da dg, (5)

These operators almost

(6)
whose marginals of time |s(¢)|* and frequency |S(f)|? cor-

respond to signal projections onto the impulse and sinusoid
eigenfunctions of 7 and F.

II1I. A LiMITATION OF THE KERNEL METHOD

While the kernel method is simple, it has its limitations.
In particular, it cannot generate all possible bilinear joint
distributions. To show this, we now present a simple coun-
terexample to demonstrate that a single fixed correspon-
dence rule coupled with a kernel weighting cannot simulate
all possible rules.

Consider joint distributions of time and Mellin (called
“scale” by Cohen [2,11]) generated by the operators 7 and
‘H, where

T T
(Hs)(z) = <f;7f 5) (2).

2While Cohen has left open the possibility of signal-dependent
kernels from the beginning [1, 2], restricting our scope to bilinear
distributions limits us to signal-independent kernels.

For single-sided signals s(z) defined on o > 0, the
IF7, transform corresponds to the Mellin transform
M(y) = [s(z)e 2™ m@g=1/2dy  hence our terminol-
ogy. Exponentiating H yields the unitary scaling operator
(e22mo M s) (z) = e?!? s(e%x).

Using 7 and H, we now construct two bilinear charac-
teristic functions that are not equivalent modulo a multi-
plicative kernel. Form the characteristic function Ns using
the normal correspondence e/ 2707 gi2moH

(Ns)(0,0) <5 | el 2T gi2mo | 5>

= 60/2/3*(:13) s(e7x) el ?™ dx.

Form the characteristic function As using the antinormal
correspondence el 2mH ¢i2m8T

(As)(0,0) = <s | GJ2moM j2meT | 5>

= 712 / s*(x) s(e’x) eI2m0e% e gy

Taking bidimensional Fourier transforms of (Ns)(6, o) and
(As)(0, o) with respect to f and o yields corresponding dis-
tributions of time ¢ and Mellin variable 4. For the normal
correspondence, we have

(CYs)(t,7) = M(y)s (@22 150,

while for the antinormal correspondence, we have

(CA5)(t,y) = M*(y)s(t)t=2e-i2mnt 450,
A simple computation verifies that both of these bilinear
distributions possess the desired time |s(¢)|? and Mellin
|M(y)]? marginals.

The foundation of the kernel method rests on the as-
sumption that (Ns)(#,0) and (As)(0, o) are equivalent up
to weighting by a simple signal-independent kernel func-
tion

(As)(0,0) = ¢(0,0)(Ns)(0,0) Vs.

Equivalently, the quotient As/Ns must be constant and
signal-independent

(As)(0,0)

(Ns)(0,0) Vs

¢(0,0) (7)

Now consider two rectangular pulse signals: s;(z) = 1
for 1 <z < 2 and so(z) = /2 for 1/2 < z < 1. (Both sig-
nals are zero outside their range of definition.) A straight-
forward calculation gives

(Ns1)(0,0) =
;‘27% (6]'471'68‘7 _ ej27r9) . —In2<0<0
Je;/rz (ej“e — ejz”gey) , 0<o<In2
0, otherwise,



(Asy)(0,0) =
% (6]'471'682” _ ej27r€e”)  —In2<o<0
ej—2+/: (6j47r€e‘7 _ €j27r€e2‘7) . 0<o<In2
0, otherwise,
and
(Ns1)(f,0) = (Ns3)(20,0),
(As1)(0,0) = (Asz)(20,0).

These relations form the basis for a contradiction: While

(7) requires that As;/Ns; = ¢ = Asy/Nsa, we have in-

stead that
(As1)(0,0)
(N31)(0,0)

(As2)(26,0)
(Ns2)(20,0)

(As2)(0,0)
(Ns2)(8,0)

Therefore Ns and As cannot be related by a single signal-
independent kernel function.

The blame for this contradiction lies with the opera-
tors 7 and H; since they do not commute, the antinor-
mal correspondence operator €277 7277 cannot be ex-
pressed as a weighted version ¢(f, ) e/2™7 ¢i277M of the
normal correspondence operator. In contrast, since the
time and frequency operators almost commute, we have
€j27r€T €j27r7']-' — €—j27r97' €j27r'r]-' ej27r€T [2] Similar coun-

terexamples can be constructed for many operator pairs

besides (7,H) — try (7, F?), for example.

IV. DiscussioN AND CONCLUSIONS

While it plays a deservedly dominant role in the the-
ory of joint distributions of arbitrary variables, the ker-
nel method does have its limitations. Our counterexample
demonstrates that in general, the functional relationship
between different correspondence rules cannot be captured
by a simple kernel weighting.

Our results indicate that in order to realize the full po-
tential of the characteristic function method we must ei-
ther develop a more complete theory for signal-dependent
and nonstationary kernels (as foreshadowed by Cohen
[1,2]) or forgo kernels entirely and work directly with the
operator representations and correspondences themselves.
Given the difficulty of both of these solutions, we may well
ask for which operator pairs is this complicated machinery
unnecessary; that is, for which operator pairs is the kernel
method sufficient?

Unfortunately, the answer turns out to be: not many.
In [12], Sayeed extends the result of this paper by show-
ing that the kernel method is sufficient only for the time-
frequency pairing (7, F) and the warped time-frequency
pairing (U~17U, U~ FU), with U a unitary transforma-
tion [8,9,13].
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