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ABSTRACT

Recently, Cohen has proposed a method for constructing joint
distributions of arbitrary physical quantities, in direct general-
ization of joint time-frequency representations. In this paper,
we investigate the covariance properties of this procedure and
caution that in its present form it cannot generate all possible
distributions. Using group theory, we extend Cohen’s con-
struction to a more general form that can be customized to

satisfy specific marginal and covariance requirements.

1. INTRODUCTION

Joint distributions of arbitrary variables extend the notion
of time-frequency analysis to quantities such as scale, Mellin,
chirp rate, and inverse frequency. Two complementary ap-
proaches to constructing distributions have been developed.
Covariance-based methods [1-4] concentrate on certain canon-
ical signal transformations that leave the form of the distri-
bution unchanged, while marginal-based methods [5, 6] aim
for the property that integrating out one variable leaves the
valid density of the other. Both approaches have their mer-
its, but also their limitations. Covariance approaches rely on
a group structure that may not be present in general, while
the generality of marginal methods makes characterizing the
resulting distributions difficult. In particular, the difficulties
introduced in dealing with the noncommuting operators that
represent most physical quantities has lead to a simplified
marginal method, the kernel method of Cohen and Scully-
Cohen [5, 6], that if not used carefully can limit the range of
possible joint distributions.

S
The

The case of time |s(t)|* and inverse frequency
distributions illustrates the essence of our discussion.
kernel method yields a class of distributions [6, p. 239]

Zs)(tr) = / / D(a, 8) Aula, §) e +5501) 4 g,

parameterized by a kernel function ® that is assumed to
contain all distributions having time and inverse frequency

marginals. (Here A. is the narrow-band ambiguity func-
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tion of s.) However, this class does not contain all of
them, one notable outcast being [1], [6, p. 240] (Ps)(t,r) =
& [S*(A(u)/r) S(A(—u)/7) AT 2 (w) du, with A(u) =
=== and 12 (1) = Mu)A(—u). In contrast to the time and
frequency shift covariance forced on distributions of the form
This

paper aims to understand the connections between marginals

Zs, Ps is covariant to time shifts and scale changes.

and covariance in the context of this powerful method for gen-
erating joint distribution classes.

2. ENERGY DENSITIES

An energy density measures the content of a physical quantity
(time, frequency, scale, for example) in a signal st

2.1. Density of a Single Variable

Hermitian Representations. From quantum mechanics we
appropriate the association of physical quantities with Her-
mitian operators on the vector space LQ(IR) of square inte-
grable signals. We use script letters to represent these opera-
tors, with A and B corresponding to the arbitrary variables a
and b. Examples include [6-8]: Time (7 s)(z) = = s(z); Fre-
quency (Fs)(z) = 217]5(:6), Time Scale (Log Time) (Ds)(z) =
(log Ts)(z) = log(z) s(z), ¢ > 0; Frequency Scale (Log Fre-
quency) (D's)(z) = (logFs)(z) = F~'log(f)S(f), f > 0;
Mellin (Hs)(z) = %(TT—I—T’]—); Fourier-Mellin H' = F~'HIF;
and Power Frequency(Chirp) F", including Inverse Frequency
R = F~1. (We use the symbol IF to denote the usual Fourier
transform S(f) = (IFs)(f).)

Averages of a physical quantity a can be computed
using the operator representation .4 through (s|A|s) =
(s, As) = [s*(z)(As)(z)dz.?
(mean) frequency of a time signal s is given by (s|F|s) =
fs*(z) S(z)dz/2mj = ff|S(f)|2 df. This generalizes in the

obvious way to the average value of a function g(a).

For example, the average

Densities. The square of the expansion onto the eigen-
functions eaA(z) of the Hermitian representation measures
the quantity of the associated concept in the signal. De-
fine (Fas)(a) = <s,ef> for the variable @. The trans-

forms measuring the quantities introduced above are [6, 7]:

1See [6-8] for detailed discussions on this topic.
2We adopt the physicists’ notation of inner product linear in
second element.



Time (F7s)(t) = s(t); Frequency (Frs)(f) = S(f); Time
Scale (Fps)(d) = ed/2s(ed); Frequency Scale (Fpis)(d) =
IF_leq/QS(eq); Mellin (IFys)(R) = fs(z) e_ﬂ”hh’gxd—i;
Fourier-MellinFyy = IFyIF and Power Frequency (IFr=s)(r) =
'rl/"S(rl/n).

Unitary Representations of physical quantities are ob-

tained by exponentiating Hermitian representations, via
2ma A _ oo (j2raA)™

e =) e - Note

that |IFas|? is invariant to the unitary operator /274 —

the formal Taylor series

[IF4 €774 5|2 = |IF4 5> — and thus €’2™** cannot correspond
directly to the physical quantity a. (In fact, it corresponds to
some “orthogonal” concept [7].) To find the unitary operator
representing the variable a, we solve the operator equation
FiAa, = Tj’llFA, with (TFs)(z) = s(z — k) the additive
translation operator [8]. The density IF4 is covariant to A,
and thus a, A, and A are equivalent representations of the
same physical concept. Covariances other than additive can
be handled by group methods [8]; covariance via multiplica-
tive translation is defined using (7 s)(z) = s(z/k)/Vk in the
above. We will use boldface letters to denote unitary opera-
tors. Continuing the examples from above, we have for unitary
representations: Time (T:s)(z) = s(z —t) = (e 772" 5)(z);
Frequency (Fys)(z) = €*™%s(z) = (eﬂﬁfTs)(z); Time
Scale (Dgs)(z) = e_d/2s(:ce_d) = (e2*™Ms)(2); Frequency
Scale D, = D_g; Mellin (Hps)(z) = eﬂ”hl"grs(z) =
(e??™"Ps)(z); Fourier-Mellin H), = F~'HyIF; and Power Fre-
quency (R7s)(z) = IF_ls[(f" — T)l/"] (f" - T)l/" .

Characteristic Functions provide a direct route to densities
(Fas)(a)l?
its inverse Fourier transform defines a characteristic (ambigu-
ity) function (Ms)(a) = [|[(IFas)(a)|®€’*"**da. Since the

right side of this expression corresponds to an average of the

circumventing eigenanalysis [5,6]. Given a density

= ¢/2™% with respect to the density of a, it

quantity g(a)
can be computed directly from the signal via (see “Averages”
above) (Ms)(a) = <s | gl2mad | s>. Combining these two equa-

tions yields |(IFas)(a)]® = f<s | gI2mad |s> e—J2maa g

2.2. Joint Densities Via Characteristic Functions

Joint densities attempt to indicate the simultaneous content
of two (or more) physical quantities in a signal. Scully and
Cohen, guided by the one-dimensional characteristic function
method, derived a formula for the joint density of a and b [6]

(Cs)(a,b) = // <s | I2m(aA+BE) | s> eI2m(aath) 4o 4.
(1)

Like a true density, this functional marginalizes to the indi-
vidual densities of a and b; that is, integration over b yields

/(Cs)(a, b) db = /<s |27 | s) e 72" dov = |(Fas)(a) |,

with a similar result for integration over a.

Joint distributions are not unique. Since in general A and B
do not commute (AB # BA), the exponential eI2m(aA+BB)

(1) can be evaluated in many ways, giving different distribu-
tions satisfying the same marginals. The three simplest corre-
spondence rules are [5,6]: the symmetric Weyl correspondence

9272 A+88)  where the sum A-+8B is exponentiated ensemble,

a
Ae]27'r,88 8]27T2A, where

the distributed correspondence e’?>7%
A and B are exponentiated separately and then composed, and
the similar simpler correspondence e/27*4 ¢7275  Degpite the
ordering differences, every correspondence rule yields a distri-

bution marginalizing to |IFas|® and [IFss|*.

Since keeping track of all possible correspondence rules is an
arduous task, Cohen fixes a single correspondence and then in-
serts a fixed kernel function® ®(«, 8)in (1) to take care of the
other possibilities [5,6]. Constraining ®(«,0) = ©(0,3) =1
Y «a, # generates distributions with correct marginals. Leav-
ing ¢ unconstrained generalizes the concept of distribution to
representations that may not have correct marginals yet in
some sense still measure joint a-b energy content.

Example. Time and Frequency: Employing the operator pair
7, F in (1) yields the classical Cohen’s class of time-frequency
representations having time and frequency marginals [5, 6].
Included among the generalized distributions that do not
marginalize are such workhorse representations as the spec-
trogram and the smoothed pseudo Wigner distribution.

2.3. Extended Covariance

The a—indicating transform IF4 can be covariant to multi-
ple operators in addition to A. For instance, we might have
FiA!, = TSIF4 with A’ # A and 7€ a unitary group trans-
lation different from addition. Thus, in addition to A content,
IF4 also measures A’ content, in a subtlely different way. In
certain applications, this extended covariance of the transform

IF4 can be more important than A covariance.

Time and frequency provide an excellent example of this
behavior, since both the signal s(¢) and its Fourier transform
S(f) are covariant to scale changes Dy by multiplicative trans-
lation. Thus, s(t) and S(f) can each be interpreted as in some
sense measuring the “scale content” of the signal in the time
and frequency domains [9].* The scale covariance of the power
and inverse frequency transform IF r» proves far more useful
than its complicated additive covariance to R .

3. COVARIANCE OF DISTRIBUTIONS

In many applications, the covariance of a distribution rivals
the marginals in importance. A joint distribution Cs is covari-
ant to a unitary operator X, if (CX;s)(a,b) = (Cs)(a’,d’),
where a’, b’ are functions of a, b, and =, preferably a group law.

3We consider only signal-independent kernels in this paper.

% Scale: Covariance and Confusion. Since the Fourier transform
IFx is invariant to time shifts T; in a signal, we know that it does

not measure time content. Similarly, since the Mellin transform IF4;
is invariant to scale changes Dy, it does not and cannot measure
the scale content of signals, contrary to popular belief. The density
that is covariant to D43 — and thus measures scale content — was
derived in [9] as precisely the transform |(Fps)(z) = e®|s(e®)|?
indicating the amount of signal stretching required to move the
point z to the reference point zo = 1.



With joint distributions, it seems reasonable to expect covari-
ance to two operators X and Y, one relating to each variable.
Since Cs simply “shifts” in response to s — X;Y s, it can be
interpreted as somehow measuring the X-Y content of signals
in addition to the a-b content. Options for the pair X,Y in-
clude various combinations of e/27*4 275 A B and any
extended covariance operators for I[F4 and IFz. Cohen’s class
of time-frequency distributions provides a fine example of co-
variance; since (CT;Fys)(t, f) = (Cs)(t — z, f — y), changes
in the time-frequency origin do not affect the properties of the
distributions.

Covariance is deemphasized in the characteristic function
method of Scully and Cohen (Section 2.2.). While (1) can
construct all distributions with correct marginals irrespective
of the choice of variables, the covariance properties of the re-
sults are neither predicted nor ensured. Furthermore, recall
from the Introduction that there exist variables a, b (time and
inverse frequency, for example) for which a simple weighting
of one fixed correspondence rule with a kernel ®(«, 3) cannot
mimic all possible rules. In order to explain this apparent
inconsistency, we now undertake a study of the relationship
between the marginal and covariance properties of the char-
acteristic function method.

The Hermitian operators A, B that determine the marginal
properties of the distributions constructed by the charac-
teristic function method also control the covariance proper-
ties, through the unitary operator G(a, ) = gI2m(aA+BE)
that anchors the characteristic function in (1) [3,8]. Covari-
ance depends almost entirely on whether this operator is a
representation of some 2-d group [10]; that is, on whether
G(ai1, f1) G(az, 32) = G(a1, 51) ec (az, B2)] with group law
os. Equivalently, covariance demands that the sum .4+ B gen-
erate a 2-d group representation.®

Examples. The CBH expansions (see footnote 5 below) of
the pairs T+F, log T4+H, and log F+H' all terminate after
three distinct terms, with the third a simple phase factor. The
group action, (ozl, /5‘1) . (0/2, /5‘2) = (a1 + ag, 1 —1—/5'2) neglecting
the phase, is that of the Weyl-Heisenberg group. The pairs
T+H and F+H each generate the “az+b” affine group, with
(0/2,6’62) = (a1 + ePlag, ePt 6’62). The CBH

expansion of the pair 7+F? terminates after three distinct

action (a1, eﬁl) .

terms in 7, F2, and F. Thus, while these three operators
generate a 3-d group, 7+F? does not generate a 2-d group
on its own. Similarly, the expansion of 7+R comprises terms
in 7, R, 72 and F~° The expansion of log 7+F becomes

a complicated mess after three terms.

5A useful test of whether A+B generates a group entails ex-
panding G(c, 3) using the Campbell-Baker-Hausdorff (CBH) The-
orem [10], which states that

GAFB _ (A B SIAB]  AIALAB  TEBIABI A IBIALABN

If this expansion terminates after N distinct terms, then A+ gen-
erates a subset of an N-parameter group.

4. COVARIANCE VS. MARGINALS

We are now in a position to classify the covariance properties
of the characteristic function method. Owur discussion par-
titions naturally into three cases, depending on what type of
group structure the operator representations .4 and B can sup-
port. In addition to providing new insight into Scully and Co-
hen’s construction, our analysis indicates its limitations and
suggests modifications and extensions.

4.1. Best Case: A+ B Generates a 2-d Group

In this, the best of all worlds, the characteristic function
method coincides with the group-based approach of Shenoy
and Parks [3] and succeeds both on the marginal and covari-
ance fronts. All distributions constructed from the various
correspondences boast covariance to the operator G appear-
ing in the characteristic function. The covariance is of the
form (CG(u,v)s)(a,b) = (Cs) [(a, b) o (u, 'U)], with e the
coadjoint group action [3]. It is interesting to note that the
Cs are covariant to the operators e?27** and e/2™#" to which
the marginal distributions |IF4s|* and |IFsa|® are invariant,
rather than covariant to A and B. In fact, A;B is not even
a valid group representation in general,® which has some inter-
esting ramifications for operator pairs not unitarily equivalent

to 7 and F [7].

sion of the characteristic function method that will generate

The group structure of G elicits an exten-

not only all distributions with correct marginals but also all
distributions covariant to the signal transformation s +— Gs:

Step 1. The
?2m(@A+55) yiclds a unitary distribution [3]. (Note that some

symmetrical Weyl correspondence rule
correspondences yield nonunitary distributions, so this choice
is nonarbitrary.) To evaluate 2 (2A+BB) iy terms of /2724
and €’2"P5 either employ the group symmetrization proce-
dure of Kirillov [3], solve an eigenequation [6], or use the CBH
Theorem. Because of the strong parallel to the time-frequency
case, we will call this special distribution the a-b Wigner dis-
tribution (Ws)(a,b).

Step 2. To generate a class of distributions covariant to G,
“smooth” the Wigner distribution. The coadjoint group law

supports two types of smoothed distributions. The first,
(C;s)(a, b) = //(Ws) [(a, b) *s (u, U)] é1(u,v) d(u,v),

with ¢1 € L'(IR?) and d(u,v) the invariant measure, remains
in the a-b domain, while the second,

(Chs)(u,v) = //(Ws)[(a,b) o (u,v)] ¢2(a,b)d(a, b),

lives in the domain of the parameters o, of the covariance
operators €27 and €/2"P%. With Cbs, the marginal distri-
butions are obtained by integrating along curves in the (u,v)
plane. Since W is a unitary map, these constructions reach

6 For example, 7+H generates a representation eI2mfT gi2mdH —
F;Dg of the affine group, but the operators T: and Hj to which
the IF7 and IF3; marginals are covariant do not represent any group.



all distributions having G covariance, including all those with
IF4 and IF3 marginals.

Alternative Step 2.
tions of Step 2 can be rewritten using the 2-d Fourier trans-

In many cases, the group convolu-

form in terms of a kernel ®(«,8; a,b) weighting the charac-
teristic function in (1).7 In this case, the functional form of
®(a, 3; a,b) can be determined directly by imposing the req-

uisite covariance constraints on this generalized version of (1).
Analogous to the spectrogram in the time-frequency case,
this class of distributions contains the squared magnitude of
a linear “group transform” (La)(u,v) = (s|G(u,v)|g) that
corresponds to (C5s)(u,v) from above with ¢, = Wy.
Examples. Time and Frequency: T+F generates the Weyl-
Heisenberg group, the usual Wigner distribution, and the clas-
sical Cohen’s class of time and frequency covariant distribu-
tions. In this case, the two smoothing methods coincide, with
T and F serving simultaneously as invariant and covariant
transformations for the marginals. This follows because time
and frequency are in a sense orthogonal concepts [7]. Kernels
of the form ®(a, ) can reach all distributions in this class.

Frequency Scale and Fourier-Mellin: log F+H' generates
the Weyl-Heisenberg group, the Altes Q distribution, and the
prehyperbolic class [4, 7] of scale and hyperbolic time-shift
(H') covariant distributions. Kernels of the form ®(«, 3) can

reach all distributions in this class.

Frequency and Fourier-Mellin: F+H' generates the affine
group, the Bertrand distribution [1], and two classes of time
and scale covariant distributions. Distributions Cjs have fre-
Distributions Chs

have time and scale coordinates, and hence inhabit the “affine

quency and Fourier-Mellin coordinates.

class” defined in [1,2]. Both parameterizations require kernels
more general than ®(«,); for example, ®; must be of the
form ®2(ae™%, Be?), with d the scale variable.

4.2. Worst Case: A+ B Does Not Generate a Group

Unfortunately, .A and B must be very well matched in order
to generate a 2-d group, as only two 2-parameter groups ap-
pear in nature: IR? (essentially the Weyl-Heisenberg group)
and the affine group. Thus, group theoretic approaches break
down in the general case for arbitrary variables, meaning that
the characteristic function has no guaranteed covariance prop-
erties. In most cases, the best we can do is either keep track
of all correspondence rules or introduce a generalized kernel
function ®(«,B;a,b) in (1) and hope for the best.

Examples. Since the pair 7 + F2? generates a nongroup
subset of a three-parameter group requiring F, we cannot
expect covariance from time and chirp distributions without
also including frequency shift as a (third) variable. The pair
log T + F likewise does not appear to support any useful co-

variances.

"In general the kernel will not take the form ®(a,3). While
Cohen anticipated the value of a-b-dependent kernels in even his
original paper [5], such kernels have not been identified as critical
for some choices of A, B until now.

4.3. Intermediate Case: A + B Salvageable

In some cases, we can rescue variables that do not generate
groups by dividing their associated distributions into sub-
Although

the characteristic function operator G is not a group repre-

classes that obey certain alternative covariances.

sentation in general, it is potentially compatible with another
unitary operator pair X;Y, (there might exist several) that
simultaneously: (1) represents a 2-d group, and (2) is physi-
cally reasonable in that it acts as an invariance, covariance
or extended covariance operator for the marginal distribu-
tions. In this case, given a unitary distribution having both
the marginals and this alternative covariance, smoothing via
the group convolution induced by X,Y, will generate a useful
class of distributions. Each such class will contain all distribu-
tions covariant to X;Y, as well as some of the distributions
having @, b marginals. Different operator pairs will generate
different, potentially nonoverlapping, distribution classes. A
procedure for generating a covariance-based subclass of distri-
butions runs as follows:

Step 1. Construct an a-b Wigner distribution using the Weyl
or symmetrical correspondence. The eigenanalysis method of
Cohen [6] can be applied to reduce the characteristic func-
tion operator G into manageable components. The resulting
distribution is unitary and has correct marginals.

Step 2. Find a 2-d unitary group representation X;Y, such
that X and Y transform the marginals in meaningful ways
Verify that the Wigner
distribution shares these covariances. (If not, recompute us-

(this is where the art comes in).

ing another correspondence, being sure to verify unitarity.)
Smooth Ws over the corresponding group as in Section 4.1.
In certain cases, the smoothing operation can be implemented
in the characteristic function domain by inserting a kernel
®(a, f;a,b) in (1).

The resulting class contains distributions covariant to XY,
some of which will have the correct IF4 and IF3 marginals.

Examples. Time and Inverse Frequency illustrate the trade-
off of marginals for covariance. Since the operator pair 7+R
does not generate a 2-d group, the covariance of ¢-r distribu-
tions rests on shaky ground. However, in addition to repre-
senting the affine group, the time-scale operator T:Dg per-
forms a natural transformation in (¢, r) coordinates, with IF7
covariant to T and D and IFg invariant to T and covari-
ant to D. Smoothing over the affine group induces the affine
class [1,2] centered about the distribution P's from the Intro-
duction. This class also contains the popular scalogram [2],
the squared magnitude of the continuous wavelet transform
(Lis)(t,r) = | fs(z) h* (252) da |,

The time-frequency operator T;F; performs similar du-
ties for the operator pair 7+R. Smoothing over the
Weyl-Heisenberg group induces the reparameterized Co-
Included in
this class is the remapped spectrogram (Lg2s)(t,r) =

US(f)g*(z — t)eI2mfolT gy 2

hen’s class Zs from the Introduction.



5. CONCLUSIONS

By ranging through every possible correspondence rule repre-
senting G(a, §) = eI2m(aA+BB) i (1), the characteristic func-
tion method of Scully and Cohen can generate every possible
distribution having a and b marginals. While certainly gen-
eral enough, this approach lacks practicality, however, because
studying distribution classes through their correspondence
rules would be exasperating. Furthermore, this approach can
construct only distributions satisfying the marginals, leaving
external to the theory most of the useful distributions (spec-
trogram, scalogram, pseudo Wigner distribution, etc.) em-
ployed in practice. Cohen’s elegant kernel method takes care
of many of these practical issues, but since it introduces limi-
tations of its own, it must be approached with caution.

The three-way classification of the operators .4 and B rep-
resenting the variables has significant ramifications for joint
distribution design. When .A+B generates a 2-d group, then
a generalized version of the kernel method will succeed and
generate a single unique class containing marginalizing and
covariant distributions. Since there are only two 2-d groups in
nature, most of the work for this case has already been com-
pleted: Cohen’s class represents the Weyl-Heisenberg group
[5] and the affine class represents the affine group [1-3]. Sim-
ple coordinate changes (unitary equivalence) can generate all
other distribution classes resembling these two [7].

When A+B fails to generate a group, the kernel method
does not appear foolproof. The approach of imposing order
on the chaos of correspondences through alternative “pseudo-
covariances” appears promising, because it has generated the
affine class, an important representation class that has re-
mained outside the marginal-based theory until this time.®
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