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ABSTRACT

We propose a new method for the time-varying
spectrum estimation of non-stationary random pro-
cesses. Our method extends Thomson’s powerful mul-
tiple window spectrum estimation scheme to the time-
frequency and time-scale planes. Unlike previous ex-
tensions of Thomsom’s method, in this paper we iden-
tify and utilize optimally concentrated window and
wavelet functions and develop a statistical test for ex-
tracting chirping line components. Examples on syn-
thetic and real-world data illustrate the superior per-
formance of the technique.

1. INTRODUCTION

Many methods exist for estimating the power spectrum
of stationary signals. However, these methods are in-
sufficient for the non-stationary signals that occur in
important applications such as radar, sonar, acoustics,
biology, and geophysics. These applications demand
time-frequency representations that indicate how the
power spectrum changes over time. To date research
in time-frequency analysis has focused on determinis-
tic signals. Only recently has attention turned to non-
stationary random processes [1-5].

Unlike the power spectrum for stationary random
processes, there is no unique definition for the time-
varying spectrum of a non-stationary random process.
Because it satisfies a number of desirable properties,
we choose the Wigner-Ville spectrum (WVS) [1] as our
definition of the time-varying spectrum in this paper.
The WVS can be written as the expected value of the
Wigner distribution [6] of one realization of the process

x(t)
W (t, f) = E{Wz(t, )}
=E{fa*(t—1/2a(t+71/2) e ¥ dr} . (1)
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The problem of time-varying spectrum estimation can
be stated as the estimation of W (¢, f) given only one
realization of the non-stationary process z(t).

A number of different WVS estimates have been
proposed. The simplest is the empirical Wigner distri-
bution Wy (¢, f) itself. However, while it is unbiased, it
has infinite variance. Smoothing reduces the variance
of the empirical Wigner distribution. Two-dimensional
convolution of the Wigner distribution with a signal-
independent smoothing kernel yields a distribution in
the time and frequency shift-covariant Cohen’s class
[1,6]. Two-dimensional affine convolution yields a dis-
tribution in the time and scale covariant affine class [7].
Sayeed and Jones [2] have developed a method for opti-
mal kernel design for WVS estimation when the statis-
tics of the process are known.

Unfortunately, the large amount of smoothing re-
quired to obtain a low variance WVS estimate can dam-
age the resolution of line components in the data. Line
components are deterministic chirping signals of the
form €/27™() whose ideal time-frequency representa-
tions have the form 6(f —~'(2)).

Realizing that random and deterministic spectral
components must be dealt with separately, Thomson
introduced a powerful multiple window (MW) spec-
trum estimator for stationary signals in [8]. Because of
its excellent performance, several groups have applied
this technique, ad hoc, to non-stationary signals in a
piecewise fashion [3-5,9]. In this paper we refine these
methods into an improved time-varying MW spectrum
estimate for non-stationary signals. Our method pre-
serves the resolution of line components, has low vari-
ance, and offers fine control over the bias-variance trade-
off. We begin with a review of Thomson’s MW method
for stationary signals.



2. THOMSON’S MULTIPLE WINDOW
METHOD

2.1. Summary of the Method

Thomson’s MW method can be summarized in three
steps [8]:

1. Detect and extract all significant sinusoids (sta-
tionary deterministic line components) in the data
z(t)! using a statistical significance test (see Sec-
tion 2.2) to obtain the part y(¢) of the data having
a continuous spectrum

y(t) = z(t) — {sinusoids}. (2)

2. Average K “orthogonal” periodogram estimates
of y(t) using prolate spheroidal data windows

{ve(t)} [10]

2

Pr(f) = 3 dy(f) \ [uw oy
3)

The orthogonal prolate spheroidal windows are
perfectly suited to stationary spectrum estima-
tion, because they are simultaneously compactly
supported in time and optimally concentrated in
frequency. This concentration property results in
a low bias estimate of the spectrum. The weights
di(f) can be chosen adaptively to further reduce
the bias [8].

3. Reshape the spectrum Pr(f) to account for the
sinusoids excised in Step 1.

2.2. Thomson’s F-test For Sinusoids

Before we can extract the significant sinusoids from the
data z(?) as in (2), we must detect their presence and
estimate their parameters.

We assume the signal model

+Z#

with y(t) zero mean and Gaussian. Define the k-th
eigenspectrum xi(f) as the Fourier transform of the
windowed data

6]27rf7,‘ (4)

xe(f) = /m(t) vg(t) e~I2mIt gy, (5)

!In [8], Thomson sets up the spectrum estimation problem in
discrete-time.

The expected value of x1(f) at f; is given by

Elx (i)l = u(fi) Vi (0) (6)

where Vi (f) is the Fourier transform of vi(¢). Thus,
using a simple linear regression, the complex amplitude
u(fi) of each possible sinusoid can be estimated as

Z Ve(0
Kzlv (0)

The eigenspectra yield a simple statistical test for
whether sinusoids are really present in the data. As-
suming that a sinusoid is present at frequency f, we
subtract it from the data to obtain an estimate of the
“background” continuous spectrum around f. Com-
paring this power in the background spectrum with the
power in the assumed sinusoid results in an F' variance-
ratio test [8] with 2 and 2K — 2 degrees of freedom for
the significance of the estimated line component

Xk fz

u(fi) = (7)

(K~ D) AH* 3 Ve(0)?
F(f) = 5 =2 : (8)
e (f) = ) Vi (O)F

k=0

If F'(f) exceeds a significance threshold, we say that a
sinusoid exists at frequency f.

The probability of a miss increases with the thresh-
old. On the other hand, the false alarm probability in-
creases with decreasing threshold. When F(f) exceeds
the threshold when no sinusoid is present at frequency
f, we say a spurious peak occurs.

Averaging orthogonal periodogram estimates re-
duces the variance of the MW power spectrum estimate
by approximately K times compared to the variance of
a single periodogram (in which K = 1). Furthermore,
concentrated windows, adaptive weights, and sinusoid
extraction keep resolution very high. These properties
make Thomson’s MW method the tool of choice for
estimating the power spectrum of stationary random
processes.

3. MULTIPLE WINDOW
TIME-FREQUENCY ANALYSIS

The excellent performance of Thomson’s MW method
has led several groups to apply the method to time-
varying spectrum estimation by simply sliding the es-
timate (3) along the signal and computing a MW spec-
trogram estimate about each time point [3-5,9]. While



reasonably effective on certain classes of piecewise sta-
tionary signals; this approach suffers from two primary
drawbacks. First, prolate spheroidal window functions
have no inherent optimality properties in the joint time-
frequency domain. Second, Thomson’s F'-test sinu-
soid extraction procedure fails on chirping line compo-
nents of rapidly changing instantaneous frequency. In
this section, we will properly extend Thomson’s MW
method to the time-frequency and time-scale planes by
identifying sets of optimal windows/wavelets, and by
developing a linear-chirp extraction algorithm that bet-
ter matches non-stationary line components.

3.1. Hermite Windows

The foundation of the stationary MW method rests on
the fact that the prolate spheroidal functions are op-
timal windows for estimating the spectrum of a time-
limited signal. This optimality does not carry over into
time-frequency, however, since the prolate spheroidal
functions treat the time-frequency plane as two sepa-
rate spaces rather than as one geometric whole [11-13].

For time-frequency signal analysis, it is natural to
average over multiple orthogonal windows that are op-
timally concentrated in an appropriate time-frequency
domain. To date, optimal orthogonal functions of this
kind have been found only for a few very special do-
mains. For instance, the Hermite functions are opti-
mally concentrated in a circular time-frequency region
and thus treat all time-varying spectral features in the
same fashion [11-13]. The k-th order Hermite function,
defined as

k
hi(z) = 7~/ 4(2F k1) =172 (:g - di> e~ 2 (9)
T

fork =0,1,2,- -+ is concentrated in the circular region
R={(tf): *+f <0} (10)

with C' a constant. The first four Hermite windows
and their concentration region are shown in Figure 1.
Hermite functions concentrated in elliptical regions are
easily obtained by compressions and dilations of the
above functions.

3.2. Multiple Window WVS Estimate

Thomson’s MW spectrum average (3) estimates the en-
ergy content of the signal at frequency f by projecting
onto the windowed sinusoids vy (t) e/27/*. By analogy,
we estimate the energy content of a non-stationary sig-
nal at time ¢ and frequency f by projecting onto the
sliding windowed sinusoids hy (7 —t) e/2™/7. The result

O
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Figure 1: (a) The first four Hermite functions in the
time domain, and (b) their concentration region in
time-frequency.

frequency

can be written as the average of K Hermite-windowed
spectrograms of the data

. K-1
Wx(taf): E dk(taf)x
k=0
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This WVS estimator has low variance thanks to the
averaging but also minimized bias due to the opti-
mal concentration of the Hermite windows. The bias-
variance trade-off can easily be controlled and opti-
mized by changing the number of windows K and by
tuning the adaptive weighting functions dj (¢, f) as in [8].

3.3. Cohen’s Class Interpretation
The MW WVS estimate (11) belongs to Cohen’s class

of time-frequency distributions, each of which can be
written as

Wl‘(t:f) * ok ¢(t:f) (12)

with ¢(t, f) a kernel function. The kernel generating
the spectrogram is precisely the Wigner distribution of
the window function. Furthermore, the Wigner distri-
bution of the k-th order Hermite function is the k-th
order Laguerre function [14]

Li(t, f) = e 5P+ &

i

m!
m=0

Therefore, we have a closed form expression for the
kernel corresponding to the MW WVS estimate (11)
as a weighted sum of K Laguerre functions; in this
interpretation, the MW WYVS estimate reads

K-1

Wo(t, f) = Walt, f) *+ > di(t,f) Le(t, ). (14)

k=0



Since the weight functions di(¢, f) are tuned for each
signal, we see that the MW WVS estimate employs a
signal-dependent kernel.

3.4. Extraction Of Line Components

As in Thomson’s method for stationary signals, the av-
eraging inherent in (11) will degrade the resolution of
line components. Following Thomson’s programme, we
will first detect and extract all line components in the
data before performing (11), and then reshape the es-
timate. We assume the signal model

z(t) = y(t +Eu

with y(t) zero mean and Gaussian.

A straightforward application of Thomson’s sinu-
soid extraction algorithm to z(t) as in [4, 5] relies on
an assumption that the chirp functions e277:(*) can
be closely approximated locally as sinusoids. Unfor-
tunately, this is not the case for most chirping com-
ponents; in these cases, the approach fails. In order
to detect and extract highly non-stationary chirps, we
have developed a statistical significance test for linear
chirps of the form el 27(ft+et®)  Linear chirps can closely
approximate all but the most rapidly changing chirp
functions.

The test for linear chirp components flows as in Sec-
tion 2.2, except that a test like (8) must be performed
at each time ¢, frequency f, and chirp rate ¢. This re-
sults in a three dimensional F'-test statistic F'(¢, f, ¢).

Due to the repeated application of the test, the
number of spurious peaks in F' increases far beyond
that seen in Thomson’s method for stationary signals.
These peaks must be suppressed in order to create a
readable time-frequency image.

To suppress spurious peaks that peek above the sig-
nificance threshold, we employ the following nonlinear
cleaning algorithm:

1. Threshold the data volume F'(¢, f, ¢) and slice it
along the chirp-rate dimension c.

6]'2”%(0 (15)

2. For each fixed ¢;, apply a nonlinear filter to
F(t, f,¢;) to remove peaks that have not coa-
lesced into a region larger than the Heisenberg
uncertainty principle mandates. (Intuition: spu-
rious peaks are isolated in F(Z, f,¢;); true peaks
lie along curves in F'(t, f, ¢;).)

3. Combine the results from each ¢; to obtain the
final test statistic.

Although the linear chirp detection and extraction al-
gorithm is computationally expensive, it is readily par-
allelizable.

4. MULTIPLE WINDOW TIME-SCALE
ANALYSIS

For random processes containing high frequency com-
ponents of short duration and low frequency compo-
nents of long duration, time-frequency techniques are
not appropriate. These types of processes are better
matched by time-scale representations from the affine
class [7]. The smoothing kernels in the affine class
change with frequency to accommodate high frequency
components of short duration and low frequency com-
ponents of long duration. The regions of smoothing at
different parts in the time-frequency plane for Cohen’s
class and the affine class are shown in Figure 2.
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Figure 2: Smoothing regions in the time-frequency

plane in (a) Cohen’s class, (b) Affine class.

frequency
frequency

The Morse wavelets [15-17] play a role in time-scale
analogous to that of the Hermite windows in time-
frequency. They are defined in the frequency domain
as the generalized Laguerre functions

dP dB+k
" [ef e (17 e—f)], (16)

with k the order of the Morse wavelet, and 3 the de-
gree of flatness at f = 0. The Morse functions are mu-
tually orthogonal and maximally concentrated in the
tear-drop shaped time-frequency region [15-17]

:{(t,f): +ﬁ+1<()} (17)
]
with C1 and C5 constants. The first four Morse wavelets
and their concentration region R are shown in Figure 3.
We form a time-scale MW WVS estimate of the
data z(t) as the weighted average of the squares of K
wavelet transforms using the Morse wavelets

K-1
= Y di(t,a) x
k=0

a_l/z/:v(r) ¢k<Ta_t) dr

Wi(f) = PRI o

2

(18)
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Figure 3: (a) The first four Morse wavelets in the fre-
quency domain, and (b) their concentration region in
time-frequency.

where ¢ is the k-th order Morse wavelet expressed
in the time domain. The resulting estimate belongs to
the affine class of time-scale covariant distributions. Its
kernel is the weighted sum of the Wigner distributions
of the K Morse wavelets.

As in the time-frequency case, averaging degrades
the resolution of chirping line components. Using the
algorithm of Section 3.4, we can detect and extract the
line components from the data before computing the
estimate (18).

Lilly and Park have also considered multi-wavelet
spectrum estimation [18]. In their work, they employed
different wavelets and did not consider line component
extraction.

5. EXAMPLES

In Figure 4, we illustrate the performance of the MW
WYVS estimate using a test signal composed of a chirp
with sinusoidal instantaneous frequency in an additive
bandpass Gaussian noise of linearly rising center fre-
quency. It is not possible to identify the components of
the test signal from the empirical Wigner distribution
due to its large variance. The spectrogram smoothes
the Wigner distribution. Unfortunately the amount
of smoothing needed to reduce the variance smears the
line components excessively. A sliding version of Thom-
son’s method as proposed in [3-5] does not perform well
for this non-stationary data, since a local sine approx-
imation to the chirping line component is inadequate.
The time-frequency MW estimate of Figure 4(d) on the
other hand has both high resolution and low variance
simultaneously.

In Figure 5, we demonstrate the ability of the lin-
ear chirp detection algorithm to detect four hyperbolic
chirps simultaneously. The data is a digitized 2.5 mi-
crosecond echo-location pulse emitted by the Large
Brown Bat, Eptesicus Fuscus. There are 400 samples
and the sampling period is 7 microseconds. Comparing

frequency

frequency

() (d)

Figure 4: Four time-varying spectrum estimates of
a test signal. (a) Empirical Wigner distribution.
(b) Spectrogram. (c) Sliding window Thomson’s
method [3-5]. (d) Multiple window method.

the multiple window method with the other two plots,
we see that the detection algorithm is able to pull out
even the weakest high frequency line component suc-
cessfully. The method even reveals the aliasing of the
hyperbolic chirp due to under-sampling.

6. CONCLUSIONS

In this paper, we have motivated and developed
multiple-window time-frequency and time-scale anal-
ysis for time-varying signals by fully extending Thom-
son’s work [8] on multiple-window spectrum estimation
for stationary signals.

Our contribution differs from the previous work
done in multiple-window method spectrum estimation
of time-varying signals in two majors ways:

1. We have identified the optimal windows to use
for time-varying spectrum estimation. They are
the Hermite functions [11-13] for time-frequency
analysis, and the Morse wavelets [15-17] for time-
scale analysis. These windows are optimal in the
sense that they are the most concentrated in the
time-frequency and time-scale planes resulting in
low bias spectral estimates.

2. We have developed an algorithm to detect and
extract non-stationary line components from the
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Figure 5: Three spectrum estimates of the echo-

location pulse emitted by the Large Brown Bat,
Eptesicus Fuscus: (a) Empirical Wigner distribution.

(b)

publish these results,

Spectrogram. (c) Multiple window method.

data by approximating them as piece-wise linear
chirps. We then form the MW WYVS estimate
of the chirp-free data and reshape the spectrum
to account for the excised line components. This
preserves the resolution of the line components.
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