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Multiple Window Time-Frequency Analysis

Metin Bayram

Abstract

The bias-variance trade-off is an important issue is spectrum estimation. In 1982,
Thomson introduced a powerful multiple window method for stationary signals that
deals with the bias-variance trade-off in an optimal fashion. In this thesis, we extend
Thomson’s method to the time-frequency and time-scale planes, and propose a new
method to estimate the time-varying spectrum of non-stationary random processes.
Unlike previous extensions of Thomson’s method, we identify and utilize optimally
concentrated window and wavelet functions, and develop a statistical test for detecting
chirping line components. The optimal windows are the Hermite functions for time-

frequency analysis, and the Morse wavelets for time-scale analysis.
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Chapter 1

Introduction

Spectrum estimation has been a field of interest for many years for both the engi-
neering and the statistics communities. The theory of spectrum estimation is well
developed for stationary signals — signals whose statistical properties do not change
over time. For the non-stationary signals that we encounter in many applications,
time-frequency representations prove to be essential, because they indicate how the
power spectrum changes over time. To motivate the use of time-frequency represen-

tations, we present a simple example.

Consider a Gaussian-windowed linear chirp
S(t) — e—ozt2 ej??T(fOt+Ct2)’ a > 0’ (11)

with fo the frequency of the linear chirp at ¢ = 0, and ¢ the chirp rate. Figures 1.1(a)
and 1.1(b) show this signal in time and frequency domains respectively. Figure 1.1(c)
is the Wigner distribution of the signal. In the time and frequency representations
of the signal in Figures 1.1(a) and 1.1(b), it is not obvious how different frequency
components of the signal are distributed over time. The Wigner distribution of Figure

1.1(c) on the other hand shows clearly the time localization of frequency components.

This thesis is organized as follows: Chapter 2 gives a brief overview of time-
frequency representations. Chapter 3 points out the limitations in time-varying spec-

trum estimation techniques, and proposes a method that is an extension of Thomson’s
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Figure 1.1: Three representations of the Gaussian-windowed linear chirp (1.1):
(a) Real part of the signal. (b) Real part of the Fourier transform of the signal.

(c) Wigner distribution of the signal.



multiple-window method for stationary signals to the time-frequency and time-scale

planes. We discuss the contributions and conclusions in Chapter 4.



Chapter 2

Time-Frequency Representations

In this chapter, we give a brief overview of time-frequency representations (TFR). For
more details, the interested reader should consult the excellent books by Cohen [5],
Priestley [6] and Daubechies [7], and the papers by Cohen [8], Martin and Flandrin
[9], Rioul and Vetterli [10], Hlawatsch and Boudreaux-Bartels [11], and Rioul and
Flandrin [12].

Consider the following multicomponent test signal
S(t) — e—a(t—t1)2€j27rf1t 4 e—a(t—t2)2€j2ﬂf2t7 a>0 (21)

composed of two Gaussian bumps centered at (11, f1) and (¢, f2) respectively. We

show the signal and its Fourier transform in Figure 2.1. For the discussion that

follows, all TFRs will be demonstrated using this test signal.

2.1 Fourier Transform

The Fourier transform X(f) of a signal x(t) is defined as

X(f) = /_ O;x(t)e_ﬂ”ftdt. (2.2)

The signal x(t) can be recovered from X (f) through the inverse Fourier transform

2(t) = /_ Z X(f)el . (2.3)
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Figure 2.1: (a) Real part of the test signal (2.1). (b) Real part of the Fourier
transform of the test signal.

The Fourier transform of a signal gives information about the frequency content
of the signal. However, it does not give any explicit indication about when a certain
frequency component is present (actually, this information is hidden in the phase),
because the value of the Fourier transform at frequency f is computed by averaging
the contributions from all time. This restriction of the Fourier transform led to
the introduction of time-frequency representations (TFR). TFRs are two-dimensional

transformations that indicate the joint time-frequency content of signals.

2.2 Linear Time-Frequency Analysis

These TFRs satisfy the superposition principle which states that if z(¢) is a linear
combination of z1(¢) and x5(t) then, the TFR of z(t) is the same linear combination

of the TFRs of #1(¢) and x2(t)

z(t) = crai(t) + cax2(t) = TFR.(t,f) = aaTFR., (8, f) + coTFR.,(t, f)  (2.4)



where TFR, is the TFR of .

Two important linear TFRs are the short-time Fourier transform (STFT) and the

continuous wavelet transform (CWT).

2.2.1 The Short-Time Fourier Transform

STFT localizes frequency components in time by sliding a window h(¢) along the

signal z(?) and taking the Fourier transform [5,8,11]

STFT,(t, f) = / T e(r)h(r — eI, (2.5)

— 00

The above representation can also be expressed as the projection of the signal on the
basis functions

{h(r - t)e‘j%ﬁ}(w)ew . (2.6)
Since these basis functions are translated and modulated versions of the window h(t),
they are centered at different locations in the time-frequency plane. Figure 2.2 shows
the idealized time-frequency representations of the STFT basis functions associated
with three different locations in the time-frequency plane. Note that the shape of
these representations are the same for all three of them illustrating the fixed time-
frequency resolution of the STFT once a window is chosen. Good time resolution is
achieved by a short window, whereas good frequency resolution is achieved by a long
window. The fact that the time and frequency resolutions cannot be made better
simultaneously is known as Heisenberg uncertainty principle. In Figure 2.3, we show
the squared magnitude of the STFT (spectrogram) of the test signal corresponding
to long, short, and medium time windows. Again, the fixed time-frequency resolution

is evident.
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Figure 2.2: Idealized time-frequency representations of three STF'T basis functions
associated with different locations in the time-frequency plane.

2.2.2 The Continuous Wavelet Transform

The CWT of signal x(¢) is defined as [10]

CWL(t,a)=a™ " [ afr) W(T - t) dr (2.7)

a

where ©(t), called the analyzing wavelet, is a bandpass function centered around

t = 0, and «a is the scale. Scale can be interpreted in terms of frequency f as a = J}—O
where fy is the center frequency of the Fourier transform of 9 (¢).

Similarly to the STFT, the CWT can be expressed as the projection of the signal

(T o)) o

These basis functions change their shape with frequency. Therefore, unlike the STF'T,

on the basis functions

the time-frequency resolution of the CWT is frequency dependent. To analyze low

frequency components the analyzing wavelet is dilated in time and compressed in
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Figure 2.3: Squared magnitude of the STFT of the test signal: (a) Long time

window. (b) Short time window. (c¢) Medium time window.



frequency, whereas to analyze high frequency components the analyzing wavelet is
dilated in frequency and compressed in time. This property of the CWT makes
it very suitable for signals with high frequency content of short duration and low
frequency content of long duration. Figure 2.4 shows the idealized time-frequency
representations of the CW'T basis functions associated with three different locations
of the time-frequency plane. Note that the shape changes with frequency illustrating
the frequency dependent time-frequency resolution of the CWT. In Figure 2.5 we

show the squared magnitude of the CWT (scalogram) of the test signal.

frequency

]

time

Figure 2.4: Idealized time-frequency representations of three CW'T basis functions
associated with different locations in the time-frequency plane.

2.3 Bilinear Time-Frequency Analysis

Although linearity of a TFR is a desirable property, bilinear TFRs are intuitive if
we want to interpret them as time-frequency energy distributions since energy is a
quadratic function of the signal. A bilinear TFR TFR,(t, f) of signal z seeks to

combine the instantaneous power |z(t)|* and the spectral energy density | X(f)|* into
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Figure 2.5: Squared magnitude of the CW'T of the test signal.

one representation. For example, squaring the STFT and the CWT gives two bilinear

TFRs — the spectrogram and the scalogram respectively.

2.3.1 Some Desirable Properties of Bilinear TFRs
1. Marginals:
/ TFR,(L, f)df = |«(t)]?, (2.9)
m/ TFR,(t, f)dt = |X(f)]?. (2.10)
2. Real-valued and positive so that they can be interpreted as energy distributions.

3. Conservation of time and frequency shifts:

z(t) — ozt —tg) el

l l (2.11)

TFR,(t,f) — TFR.(t —to, f— fo)
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4. Conservation of time-frequency scaling:

ety —  \lala(at)
J l (2.12)
TFR.(t, f) TFR, (at, g)

5. Unitarity (Moyal’s formula)
2

[ [ Ry ey dedr = | [T o)y (@) ded (2.13)

Although it is impossible to meet all the desirable properties for the TFRs [5,8,11],
the Wigner distribution is one that satisfies a large number of properties. We next

introduce this important TFR on which most of time-frequency analysis builds.

2.3.2 Wigner Distribution

The Wigner distribution (WD) of signal z is defined as [5]

Wo(t, f) = / :c<t + g) z* (t - g) e=i2mI7 gy, (2.14)
The WD can be interpreted as a STFT where the window is matched to the signal

(the window is the time reversed signal). This property makes the concentration of

the WD the best among all TFRs.

The WD satisfies a large number of desired mathematical properties. It sat-
isfies the marginal properties (2.9) and (2.10), it is real-valued, it is covariant to
time-frequency shifts and time-frequency scaling, and it is a unitary transformation.
Although all these properties make the WD very desirable, it suffers from two major
drawbacks: 1) It can take on negative values that prevents it from being strictly
interpreted as an energy distribution. 2) Because of its bilinear nature, it produces

artifacts called cross-components [5,8,11].
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Cross-Components

The WD of the sum of two signals « and y is given by
Wasy(t, £) = Walt, £) + Wy 1, £) + 2 Re [Way (. )] (2.15)

The first two terms on the right hand side of (2.15) correspond to x and y respectively,

and are called the auto-components. The last term is the cross-component between x

and y, given by

Wey(t, f) = /OO $<t + g) y* <t - g) eI dr, (2.16)

It is an artifact produced as a result of the quadratic nature of the WD. Figure 2.6
shows the WD of the test signal. The cross-component can be seen centered between

the two auto-components.

o)
c [ ]
(D)
>
g
£ Z
[ ]
time

Figure 2.6: The WD of the test signal.

The number of cross-components in the WD increases with the number of com-

ponents in the signal. An n-component signal has n(n2_1) cross components [5,8,11].
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For multicomponent or noisy signals, these cross-components make the WD very dif-

ficult to interpret. It becomes necessary to suppress the cross-components to obtain

readable TFRs.

2.3.3 Cohen’s Class

The oscillatory cross-components of the WD can be suppressed by convolving the

WD with a kernel in the time-frequency plane to obtain a new bilinear TFR
Cult, ) = Walt, ) + % O(1, ). 2.17)

The class of all TFRs obtained from the WD via convolution with a kernel is known
as Cohen’s class [5,8,11]. The TFRs in this class satisfy the time-frequency shift

covariance property (2.11).

Some TFRs in Cohen’s class are the spectrogram which is the squared magnitude
of the STFT, the WD itself, and the Choi-Williams distribution [13].! These TFRs

and their kernels are given in Table 2.1.

2.3.4 Affine Class

The class of all time-scale representations (TSR) that are covariant to time shifts
and scale changes is called the affine class. Distributions in this class satisty the

time-frequency scaling property (2.12) and can be written as

T—1

TSR, (t,a) = /_O:O /_Z W (r,v) 1l < ,al/) drdy (2.18)

where Il is the kernel that characterizes the distribution and W, is the WD of z [12].

1 [5] has a list of all TFRs in Cohen’s class and their kernels.
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Table 2.1: Some TFRs in Cohen’s Class and Their Kernels.

TFR Kernel
Spectrogram Wi(t, f)
Wigner 6(t)o6(f)

Choi-Williams // 6_92<7T2 e =i 4 do

The scalogram which is the squared magnitude of the CWT is a distribution in
the affine class. Its kernel is the WD of the analyzing wavelet. The Wigner and the
Choi-Williams distributions are in the affine class as well as in the Cohen’s class of

TFRs.

2.4 Time-Frequency Representations Of Random Processes

Time-frequency analysis is not limited just to deterministic signals. In this section,
we look at two extensions of the stationary power spectrum to the time-frequency

plane.

The power spectrum of a stationary random process is defined as the Fourier

transform of the autocorrelation function of the process
P(f)= [ ralr)e i dr (2.19)

where

ro(7) = Elz(t) 2™ (t 4+ 7)] (2.20)
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is the autocorrelation function of z(¢). The problem of stationary power spectrum
estimation is then to estimate P,(f) given only part of one realization of the stationary

process x(t). This problem has been well studied over the past decades [4].

Unlike the power spectrum for stationary random processes, there is no unique
definition for the time-varying spectrum of a non-stationary random process (This is
due to the fact that there is no TFR that satisfies all the requirements of an energy

density).

A number of definitions have been proposed for the time-varying spectrum of
non-stationary processes [6,9]. None of these are completely satisfactory because it
is impossible to meet all requirements of a true time-varying spectrum. We would
like to mention two notable definitions here. The evolutionary spectrum proposed by
Priestley is defined for a certain class of non-stationary processes called oscillatory
processes [6]. It is not unique and it does not have an interpretation in terms of the
correlation function. For these two reasons, we do not use it as our definition for the
non-stationary spectrum. In this thesis, we choose the Wigner-Ville spectrum (WVS)
proposed by Martin and Flandrin [9] as our definition of the time-varying spectrum.
The WVS W, is defined as the Fourier transform of the autocorrelation function
r.(t,7) of the non-stationary process x(t)

W.(t, f) = /°° ro(t, ) e~97IT dr (2.21)

where
re(t,7)=F [z (t + %) z* (t — g)] ) (2.22)

Below are some of the attractive properties of the WVS that make it a popular

choice for the time-varying spectrum:
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1. The WVS can be written as the expected value of the Wigner distribution W,

of one realization of the process x(t)

W.(t, f) = E[W.(1, /)] (2.23)

2. The WVS is unique for a given process.

3. The WVS reduces to the usual power spectrum density for stationary signals.

This can be seen from (2.22) since r,(t,7) = r,(7) for a stationary process.

In the next chapter we begin with a discussion of several methods used to esti-
mate the WVS given only part of one realization of a non-stationary process. We
discuss some of the limitations of these methods, and propose a new method that
extends Thomson’s powerful multiple window method for stationary signals to the

WVS estimation of non-stationary processes.
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Chapter 3

Multiple Window Time Varying Spectrum
Estimation

3.1 Introduction

Many methods exist for estimating the power spectrum of stationary signals [4].
However, these methods are insufficient for the non-stationary signals that occur in
important applications such as radar, sonar, acoustics, biology, and geophysics. These
applications demand time-frequency representations that indicate how the power
spectrum changes over time. To date research in time-frequency analysis has fo-
cused on deterministic signals. Only recently has attention turned to non-stationary

random processes [1-3,9,14].

As we mentioned in Chapter 2, we choose the Wigner-Ville spectrum (WVS) [9]
as our definition of the time-varying spectrum in this thesis. Figure 3.1 shows a test
signal composed of a chirp with sinusoidal instantaneous frequency in an additive
bandpass Gaussian noise of linearly rising center frequency, and its ideal time-varying

spectrum together with four different estimates of the WVS of the test signal.

A number of different WVS estimates have been proposed. The simplest is the
empirical Wigner distribution W, (t, f) (WD) itself. However, while it is unbiased,

it has very large (infinite in theory) variance and cross-components as mentioned in



18

frequency

time time

Q
c
Q
=)
[0}
et
“—

frequency

time

frequency

time time
() (f)

Figure 3.1: (a) Test signal composed of a chirp with sinusoidal instantaneous fre-
quency in an additive bandpass Gaussian noise of linearly rising center frequency.
(b) Ideal representation. (c) Empirical Wigner distribution. (d) Spectrogram using
a Gaussian window. (e) Sliding window Thomson’s method as in [1-3]. (f) MW
method.



19

Section 2.3.2. The large variance and the cross components of the empirical WD

make it very difficult to interpret the WVS estimate, as can be seen in Figure 3.1(c).

To overcome the large variance problem of the WD, two-dimensional convolution
of the Wigner distribution with a signal-independent smoothing kernel can be per-
formed [9]. Sayeed and Jones [14] have developed a method for optimal kernel design
for WVS estimation when the statistics of the process are known. They minimize
the mean-squared error between the true WVS and the estimate, and also address
the problem of local WVS estimation by allowing the smoothing kernel to be signal
dependent. Whether the kernels are signal independent or signal dependent, the large
amount of smoothing required to obtain a low variance WVS estimate can damage the
resolution of line components in the data. Line components are deterministic chirping
signals of the form e/2™) whose ideal time-frequency representations have the form
6(f—~'(t)). Figure 3.1(d) shows the effect of smoothing on the line components using

the spectrogram with a Gaussian window.

Realizing that random and deterministic spectral components must be dealt with
separately, Thomson introduced a powerful multiple window (MW) spectrum estima-
tor for stationary signals in [15] to obtain a low variance spectrum without degrading
the resolution of line components. The method uses a statistical significance test to
detect and extract all sinusoids (the only stationary deterministic line components)
from the data, computes a MW spectrum estimate of the sinusoid-free data with
optimal windows, and reshapes the spectrum to account for the excised sinusoids.
Because of its excellent performance, several groups have applied this technique, ad
hoc, to non-stationary signals in a piecewise fashion [1-3,16]. There are two problems
in doing this: 1) The windows used by Thomson are not optimal in a time-frequency

setting, 2) The chirping rate of the line components must be very small so that they
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can be approximated as piece-wise sinusoids. Figure 3.1(e) shows the sliding window
Thomson’s method applied to the test signal. It can be seen that the method comes

short of detecting the line component.

In this thesis we refine the previous extensions of Thomson’s method into an im-
proved time-varying MW spectrum estimate for non-stationary signals by: 1) identi-
fying the optimal windows to use, and 2) developing a statistical test to detect line
components of the form €/2™'®)_ Our method preserves the resolution of line compo-
nents, has low variance, and offers fine control over the bias-variance trade-off. Figure

3.1(f) shows our method applied to the test signal.

This chapter is organized as follows. In Section 3.2 we give a brief review of
Thomson’s MW method for stationary signals, and explain the essence of his sig-
nificance test for sinusoids. Section 3.3 discusses MW time-frequency analysis. We
identify the optimal windows to use in the MW method, and extend the significance
test to include all line components of the form e/2™(®)_ In Section 3.4, we extend the
ideas in Section 3.3 to the time-scale plane, again identifying the optimal windows.
Finally, Section 3.5 demonstrates the performance of our method. We begin with a

review of Thomson’s MW method for stationary signals.

3.2 Thomson’s Multiple Window Method

The classical spectrum estimator for stationary signals, the periodogram, is defined

as simply the squared magnitude of the Fourier transform of the windowed data
o~ . 2
B(f) = ‘ / 2(t) w(t) =327 gt (3.1)

where w(t) is the window function. While the periodogram suffers from large variance,

this variance can be reduced by cutting the data into blocks, computing a periodogram
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of each block, and then averaging the periodograms [4]. However, this procedure also
smoothes and biases the resulting spectrum estimate. The increase in bias is due to

using a shorter window for each block.

Inspired by the notion of averaging but displeased with the resulting bias, Thomson
suggested computing several periodogram estimates of the entire signal using a set
of different windows and then averaging the resulting periodograms to construct a
spectrum estimate [15]. For a low variance, low bias estimate, he demanded that
the windows be 1) orthogonal (to minimize variance), and 2) optimally concentrated
in frequency (to minimize bias). The optimal windows satisfying these requirements
for signals of finite extent are the prolate spheroidal functions. In addition to mul-
tiple windows, Thomson also introduced into his estimate a separate procedure for

deterministic sinusoidal components as mentioned above.

3.2.1 Summary of Thomson’s Method

Thomson’s MW method can be summarized in three steps [15]:

1. Detect and extract all significant sinusoids (stationary deterministic line com-
ponents) in the data x(?) using a statistical significance test (see Section 3.2.3)

to obtain the part y(¢) of the data having a continuous spectrum?

y(t) = x(t) — {sinusoids}. (3.2)

2. Average K “orthogonal” periodogram estimates of y(¢) using prolate spheroidal

data windows {vi(t)} (see Section 3.2.2) [17]

1]’\"—1 1 . 2
- g Xt / y(t) vi(t) eIt at | (3.3)
k=0

Pr(f)

In [15], Thomson sets up the spectrum estimation problem in discrete-time.
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where Ay is the eigenvalue of the operator in Section 3.2.2 corresponding to the
k-th order prolate function. In the above estimate the first K prolate windows
are used for which the eigenvalues are very close to one. This guarantees a

minimized introduced bias due to the averaging [15].

3. Reshape the spectrum Pr(f) to account for the sinusoids excised in Step 1.

3.2.2 Prolate Spheroidal Functions

The prolate spheroidal functions are the eigenfunctions of the operator QrPqQr

where Qr is the time-limiting operator

gty it <T
(Qeg)(t) = (3.4)
0 otherwise
and Pgq is the band-limiting operator
G(f) if[f1 <9
F(Pag)(f) = (3.5)
0 otherwise

where F denotes the Fourier transform operation, and ' is the Fourier transform of

qg.

These functions are perfectly suited to stationary spectrum estimation, because
they are simultaneously compactly supported in time and optimally concentrated in
frequency [17]. This concentration property results in a low bias estimate of the

spectrum. The first three prolate functions are shown in Figure 3.2.

3.2.3 Thomson’s F-test For Sinusoids

Before we can extract the significant sinusoids from the data x(¢) as in (3.2), we must

detect their presence and estimate their parameters.
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time

Figure 3.2: The first three prolate windows in time.

We assume the signal model

o() = () + Y0 p(f) (3.6)

with y(t) zero mean and Gaussian. Define the k-th eigenspectrum xx(f) as the Fourier

transform of the windowed data

il(f) = / () vy(t) e=327It 1. (3.7)

The expected value of x.(f) at f; is given by

Elxx(fi)] = u(fi) Vi(0) (3.8)

where Vi (f) is the Fourier transform of vi(¢). Thus, using a simple linear regression,

the complex amplitude p(f;) of each possible sinusoid can be estimated as

K-1

> Vi(0) xk(f2)
alf) = =5 . (3.9)
kZ_: Vi (0)

where K is the number of windows used for the estimation.
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The eigenspectra yield a simple statistical test for whether sinusoids are really
present in the data. Assuming that a sinusoid is present at frequency f, we subtract
it from the data to obtain an estimate of the “background” continuous spectrum
around f. Comparing this power in the background spectrum with the power in the
assumed sinusoid results in an F' variance-ratio test [15] with 2 and 2K — 2 degrees

of freedom for the significance of the estimated line component

K-1

(K —1) a(f)* 3 Vi(0)*
F(f) ~ K-1 = :
> holf) = ) Vi)

(3.10)

If F(f) exceeds a significance threshold, we say that a sinusoid exists at frequency f.

The probability of a miss increases with the threshold. A miss occurs when the
method cannot detect an existing sinusoid. On the other hand, the false alarm prob-
ability increases with decreasing threshold. A false alarm or a spurious peak occurs

when the method detects a non-existing sinusoid.

Figure 3.3 demonstrates the superior performance of Thomson’s MW method
applied to a stationary test data set that is composed of three sinusoids in a complex
autoregressive process. Only 32 data points are available. Figure 3.3(a) is the true

spectrum.

Averaging orthogonal periodogram estimates reduces the variance of the MW
power spectrum estimate by approximately K times compared to the variance of
a single periodogram (in which K = 1). Furthermore, concentrated windows and
sinusoid extraction keep resolution very high. These properties make Thomson’s MW
method the tool of choice for estimating the power spectrum of stationary random

processes.
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frequency frequency

(a) (b)

frequency frequency

() (d)

Figure 3.3: True spectrum and three spectrum estimates of a stationary test signal
composed of three sinusoids in a complex autoregressive process from [4]. The signal
is discretized with 32 points and log scale is used for the plots. (a) True spectrum.
(b) Hamming windowed periodogram. (c) Averaged periodogram with Hamming
window (2 blocks of 16 points each). (d) Thomson’s MW method using four windows.
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3.3 Multiple Window Time-Frequency Analysis

The excellent performance of Thomson’s MW method has led several groups to ap-
ply the method to time-varying spectrum estimation by simply sliding the estimate
(3.3) along the signal and computing a MW spectrogram estimate about each time
point [1-3,16]. While reasonably effective on certain classes of piecewise stationary
signals, this approach suffers from two primary drawbacks. First, prolate spheroidal
window functions have no inherent optimality properties in the joint time-frequency
domain. Second, Thomson’s F-test sinusoid extraction procedure fails on chirping
line components of rapidly changing instantaneous frequency as we saw in Figure
3.1(e). In this section, we will extend Thomson’s MW method to the time-frequency
and time-scale planes by identifying sets of optimal windows/wavelets, and by de-
veloping a linear-chirp extraction algorithm that better matches non-stationary line

components.

3.3.1 Hermite Windows

The foundation of the stationary MW method rests on the fact that the prolate
spheroidal functions are optimal windows for estimating the spectrum of a time-
limited signal. This optimality does not carry over into time-frequency, however,
since the prolate spheroidal functions treat the time-frequency plane as two separate

spaces rather than as one geometric whole [18-20].

For time-frequency signal analysis, it is natural to average over multiple orthogonal
windows that are optimally concentrated in an appropriate time-frequency domain.
To date, optimal orthogonal functions of this kind have been found only for a few

very special domains. For instance, the Hermite functions are optimally concentrated
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in the circular time-frequency region of Figure 3.4(a)

{t.f): 2+ <R} (3.11)

with R a constant, and thus treat all time-varying spectral features in the same fashion
[18-20]. The Hermite functions are the eigenfunctions of a localization operator over
region (3.11) [18]. This operator localizes functions in joint time-frequency as opposed
to the localization operator for the prolate functions that localizes functions in time

and frequency separately. The k-th order Hermite function is defined as
hi(t) = = AR (e T, k=0,1,2,--- (3.12)

where
d\* _p
nio) = (e () (3.13)
dt
is the k-th order Hermite polynomial. The eigenvalues of the the localization operator
over the region (3.11) are given by
SN DN .
M(R)=1—¢ez2 ;JZ R™. (3.14)
In Figure 3.4(b) we show the behavior of these eigenfunctions. Since these are the
eigenfunctions of a localization operator, the closer the k-th eigenvalue is to one the
better the concentration of the k-th order Hermite function. Hence, for a given R,

there are only a few Hermite functions with good concentration in region (3.11). Some

properties of the Hermite functions are:

1. The Hermite polynomials and hence the Hermite functions can easily be com-

puted through the recursion formula
pesa (1) = 2pe(t) — 2pir (1 (3.15)

with po(t) = 1, and py(t) = 2t.
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Figure 3.4: (a) The circular concentration region (3.11) for the Hermite functions.
(b) Eigenvalues of the localization operator over region (3.11) for different values of

R (Rl < Ry < Rg)

frequency

2. The k-th order Hermite polynomial py(t) is an even function of ¢ if k is even,

and an odd function of ¢ if & is odd.

3. The Hermite functions hy are the eigenfunctions of the Fourier transform
(Fha(t)) = (2m)/2(=5) hi(f) (3.16)
where F denotes the Fourier transform operation.

4. The Hermite functions hj form an orthonormal basis for L?(R), the Hilbert

space of square integrable functions.

Figure 3.5 shows the first three Hermite functions in time, their Fourier transforms,
and their Wigner distributions. Comparing this figure with Figure 3.4(a), we see how
the shape of the Wigner distribution of each Hermite function matches the shape
of the concentration region. Hermite functions concentrated in elliptical regions are

easily obtained by compressing or dilating the above functions hy(?).
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Figure 3.5: From left to right the first three Hermite functions in the time domain,
the frequency domain, and the time-frequency plane (WD): (a) 0-th order, (b) 1-
st order (since the Fourier transform of the 1-st order Hermite function is purely
imaginary, we plot the imaginary part), (c) 2-nd order.
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3.3.2 Multiple Window WVS Estimate

Thomson’s MW spectrum average (3.3) estimates the energy content of the signal at
frequency f by projecting onto the windowed sinusoids v (¢) /™. By analogy, we
estimate the energy content of a non-stationary signal at time ¢ and frequency f by
projecting onto the sliding windowed sinusoids hi(7 — ) €/*™7. The result can be

written as the average of K Hermite-windowed spectrograms of the data

K-1

. 1 . 2
Wt f) = /y(T) hi(r — 1) e=i2m7gr | (3.17)
k=0

The value of K is such that for a chosen Rin (3.11) the first K eigenvalues in (3.14) are
very close to one. The smaller the value of R, the smaller the bias of the estimate, and
the smaller the value of K. Therefore, we see the bias-variance trade-off reflecting in
the choice of K and R. The WVS estimator has low variance thanks to the averaging
but also minimized bias due to the optimal concentration of the Hermite windows.
The bias-variance trade-off can easily be controlled and optimized by changing R,

and the number of windows K.

3.3.3 Cohen’s Class Interpretation

The MW WVS estimate (3.17) belongs to Cohen’s class of time-frequency distribu-

tions. We recall this class here as distributions that can be written as

Cz(tv f) = Wz(tv f) * ok ¢(t7 f) (318)

with é(t, f) a kernel function. The kernel generating the spectrogram is precisely the
Wigner distribution of the window function. Furthermore, the Wigner distribution

of the k-th order Hermite function is the k-th order Laguerre function [21]

Wi (t, f) = Li(2 + f7) = e 3(8477) 3 = i)! — (= (7 (t;:!r )

m=0

(3.19)
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Therefore, we have a closed form expression for the kernel corresponding to the MW
WVS estimate (3.17) as a weighted sum of K Laguerre functions; in this interpreta-

tion, the MW WVS estimate reads

1 K-1

W.(t, f) = Walt, f) ** = z_j Li(t, f). (3.20)

3.3.4 Extraction Of Line Components

As in Thomson’s method for stationary signals, the averaging inherent in (3.17) will
degrade the resolution of line components. Following Thomson’s programme, we will
first detect and extract all line components in the data before performing (3.17), and

then reshape the estimate. We assume the signal model

w(t) = y(t) + 32 palt) 270 (3.21)

with y(?) zero mean and Gaussian, and g,(t) the time-dependent amplitude of the
line component (Note that p;(¢) should not be confused with p(f;) in (3.6) which is

the amplitude of the sinusoid at frequency f;).

A straightforward application of Thomson’s sinusoid extraction algorithm to z(t)
as in [2,3] relies on an assumption that the chirp functions /2™ (") can be closely
approximated locally as sinusoids. Unfortunately, this is not the case for most chirping
components; in these cases, the approach fails. In order to detect and extract highly
non-stationary chirps, we have developed a statistical significance test for linear chirps
of the form /2" (/1<) " Linear chirps can closely approximate locally all but the most

rapidly changing chirp functions.
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Algorithm to Detect and Extract Chirp Components

We make the following two basic assumptions:

e Not more than one chirp is present within the circular analysis region of the

Hermite window (see Figure 3.4).

e The highest chirping rate ¢ attained by any chirp ei2m(fitet®) jg %, where T is

the time support of the analyzing Hermite window.
The chirp detection and extraction algorithm runs as follows:

1. Within the window support 7" of the window h(%), we approximate the line

components as linear chirps

Do ui(t) P x 3T (i, ) el (3.22)

with p(fi, ¢;) the complex amplitude of the linear chirp with offset frequency f;

and chirping rate ;.

2. We project the data (%) onto chirps /27 U+) for a fine grid of offset frequencies
f, and chirp rates ¢. This is equivalent to Thomson’s F-test (3.10) applied at

each frequency and each chirp rate, resulting in a two-dimensional test statistic
F(f.e).
3. We repeat the above steps about each time point to obtain the three-dimensional

test statistic F'(¢, f, ).

If the chirping rates of the line components in (3.21) are too high, one needs to

use a shorter window in (3.22). However, using a shorter window means that the
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line components with lower chirping rates may not be detected, since there may not
be enough oscillations of the low frequency sinusoids within the window support 7'
for the F' variance-ratio test to detect them. Therefore, for signals containing line
components of both high and low chirping rates, it may be necessary to run the above

algorithm for different size windows and combine the results in one test statistic.

Spurious Peaks

Due to the repeated application of the test (3.10), the number of spurious peaks in ¥
increases far beyond that seen in Thomson’s method for stationary signals (For sta-
tionary signals Thomson applies the test for only one chirp rate ¢ = 0 since sinusoids
are the only stationary deterministic components, whereas we apply it for all time
and chirping rates). Roughly speaking, if the test is performed at M chirp rates for
each frequency f, then M times more spurious peaks will appear compared to the
case when the test is performed at only one chirp rate (that is, ¢ = 0). These peaks

must be suppressed in order to create a readable time-frequency image.

To suppress spurious peaks that peek above the significance threshold, we employ

the following nonlinear cleaning algorithm:

1. Slice F(t, f, ¢;) along the chirp-rate dimension.

2. For each ¢;, apply a non-linear order statistic filter to (¢, f, ¢;) to remove peaks
that have not coalesced into a region larger than the Heisenberg uncertainty
principle mandates. (Intuition: spurious peaks are isolated in F(¢, f, ¢;); true

peaks lie along curves in F(t, f,¢;).)

3. Combine the results from each ¢; to obtain the final test statistic.
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Although the linear chirp detection and extraction algorithm is computationally

expensive, it is trivially parallelizable.

08
25}
0.6
2,
0.4
15f
02
1,
0 0.5
-0.2 ol
-0.4 ] 05
-06 ] -1t
080 w0 w0 s 100 120 5% w0 w0 80 100 120
time time

(a) (b)

Figure 3.6: (a) Test signal composed of a line component of sinusoidal instantaneous
frequency. (b) Signal in additive white Gaussian noise 3.23.

In Figure 3.7, we demonstrate the performance of the linear chirp detection and
extraction algorithm, and of the non-linear filtering algorithm using the data shown
in Figure 3.6. The data is composed of a line component in additive white Gaussian
noise n(t),

a(t) = e (Esint+hot) 4 (4 (3.23)

with a, b, and fy constants. The signal-to-noise ratio is approximately 0.4 dB, and is
computed by taking the ratio of the signal power to the noise power. Figure 3.7(a)
shows F'(¢, f) for one chirping rate corresponding to only spurious peaks with no peaks
corresponding to “true” line components. They occur as isolated points in the time-
frequency plane, and hence can easily be filtered out using a non-linear order statistic
filter. Figure 3.7(b) shows F(¢, f) for another chirp rate corresponding this time to
both spurious peaks, and “true” line components. Clearly, the peaks corresponding

to “true” line components form curves, whereas the spurious peaks are still isolated,
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Figure 3.7: Test statistic F'(t, ) before and after filtering for two different chirp rates
for the test data in 3.23: (a) Corresponding to only spurious peaks. (b) Corresponding

to true and spurious peaks.
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and hence can easily be filtered out using the same non-linear order statistic filter as

above without affecting the curves.

Impulses and Closely Spaced Chirps

In our line detection and extraction algorithm above, we have not explicitly addressed
impulses. Impulses are line components of the form 6(¢ — ¢y). The Fourier transform

of an impulse is the complex sinusoid
§(t—tg) 5 ef?miol, (3.24)

We can detect and extract impulses from the data by taking the Fourier transform of
the data and applying our algorithm on the Fourier transform of the data for chirping

rate ¢ equal to zero. Therefore, a different test is not necessary for impulses.

One problem we do not address in this thesis is when several line components cross
in the time-frequency plane. The detection algorithm fails about the time-frequency
point (¢, f) where two or more line components cross. This is due to the fact that
the algorithm searches for one line component at a time about each time-frequency
point and sees the contribution from the other line components as noise. If N line
components co-exist within the analysis region of the window, then it is necessary

N.

to search simultaneously for N chirps with parameters (f;,¢;) for ¢ = 1,2,...,
This search is extremely expensive, but can be performed if the need arises. In his
paper [15], Thomson discusses simultaneous searches for N closely spaced sinusoids,
and gives an algorithm for the case when N = 2. Of course, the performance of the
F-test declines as the number of sinusoids within the analysis region of the window

increases. Nonetheless this algorithm can be modified to search for two linear chirps

that co-exist in the analysis region of the window.
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Other Line Detection Algorithms

Although we do not use them in this thesis, we would still like to mention two other
line component detection algorithms. They are the reassignment method and the

“snakes” method.

The reassignment method is a scheme to increase the readability of the existing
TFRs. It was first introduced in 1976 by Kodera, Gendrin and Villedary [22, 23]
for the spectrogram. Auger and Flandrin extended the method to the general time-
frequency and time-scale representations [24]. Here, we will briefly explain how the

method works for the distributions in Cohen’s class.

When we look at the distributions in Cohen’s class

Cu(t, f) ://¢>(u,v)Wx(u—t,v—f) dudv (3.25)

we see that the value of C, at the time-frequency point (¢, f) is the sum of all the
terms ®(¢, f) W, (t — u, f — v). These terms can be considered as contributions of the
weighted Wigner distributions from the neighboring points, delimited essentially by
the support of the kernel ®(¢, f). As Figure 3.8 shows C, can be non-zero at a point
(t, f) even when the WD indicates no energy. What the reassignment method does
is to assign the value computed at (¢, f) to the center of gravity (', ') of the energy
distributions ®(¢, f) W,(t — u, f — v).

The assignment method can be used as a line detection algorithm because it
performs perfect localization of chirps and impulses. Of course, the performance of
the method degrades in the presence of noise. Chassande-Mottin, Auger, and Flandrin

address the reassignment method in the presence of noise in their paper [25].
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Although the “snakes” method is not the kind of line detection we are interested
in, we would like to give the main idea behind it. The method due to Carmona,
Hwang and Torresani, detects lines in the data by looking at the ridges of their

wavelet transforms [26].

frequency

time

Figure 3.8: Reassignment method: The value of the TFR computed at point (1, f)
is assigned to the point (', f').

3.4 Multiple Window Time-Scale Analysis

For random processes containing high frequency components of short duration and
low frequency components of long duration, time-frequency techniques are not ap-
propriate. These types of processes are better matched by time-scale representations
from the affine class [12]. The smoothing kernels in the affine class change with
frequency to accommodate high frequency components of short duration and low fre-

quency components of long duration. The regions of smoothing at different parts in
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the time-frequency plane for Cohen’s class and the affine class are shown in Figure

3.9.

O
@

@ >
time time
(a) (b)

Figure 3.9: Smoothing regions in the time-frequency plane in (a) Cohen’s class, (b)
Affine class.

frequency
frequency

O

3.4.1 Morse Wavelets

The Morse wavelets [7,27,28] play a role in time-scale analogous to that of the Hermite

windows in time-frequency. The k-th order Morse wavelet® is defined in the frequency

domain as

vy dP [ gy AR i :
Ui(f) = forre " e [ef df5+F (fﬁJrke ! )] ; (3.26)

with £ = 0,1,2,---, > 0 the degree of flatness at f = 0, and v > 0. The Morse

wavelets are the eigenfunctions of a localization operator over a tear-drop shaped

region whose exact shape depends on 8 and 7 [28]. For the special case § = v = 1,

3In fact, Morse defined a special case of these wavelets for v = 0 in [27], but we still call the general
class that is due to Daubechies and Paul [28] the Morse wavelets.
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the Morse functions are mutually orthogonal and maximally concentrated in the time-

frequency region which can be written as [7,28]

{(t,f): t2—|—49?—|—1§ %} (3.27)

with C' a constant.?. We show this region in Figure 3.10(a). For 3 and v equal one,

the eigenvalues of the bandpass localization operator corresponding to the Morse

wavelets are given by

M(C) = (k+1) (%)Hl (OLH kl?) . (3.28)

There is no closed form expression for the eigenvalues for any other choices of 3 and ~.
We show the behavior of the eigenvalues in Figure 3.10(b). We can see that for a given
C', only a certain number of the eigenvalues are close to one, therefore only the first

few Morse wavelets corresponding to those eigenvalues have excellent concentration.

Figure 3.11 shows the first three Morse wavelets in time, their Fourier transforms,
and their Wigner distributions. Comparing this figure with Figure 3.10(a), one can
see how the shape of the Wigner distribution of each Morse wavelet matches the shape

of the concentration region.

3.4.2 Multiple Window WVS Estimate

We form a time-scale MW WVS estimate of the data z(¢) as the weighted average of

the squares of K wavelet transforms using the Morse wavelets

a_l/Q/m(T) zbk(T a_ t) dr

4The formula for the concentration region for any # and 7 can be found in [28].

e 1 K-1

Wz(tva) = ? Z

1 k=0

2

(3.29)
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Figure 3.10: (a) The tear-drop shaped concentration region (3.27) for the Morse
wavelets for 3 = v = 1 equal to. (b) Eigenvalues of the localization operator for

different values of C' (Cy < Cy < C3) for =~ = 1.

where ¥ is the k-th order Morse wavelet expressed in the time domain. The value of
K depends on the choice of C' in the concentration region. For low bias we need small
C', but for low variance a large C is needed so that more eigenvalues are close to one.
Therefore, we again see the bias-variance trade-off. The resulting estimate belongs to
the affine class of time-scale covariant distributions. Its kernel is the weighted sum of

the Wigner distributions of the K Morse wavelets.

As in the time-frequency case, averaging degrades the resolution of chirping line
components. Using the algorithm of Section 3.3.4, we can detect and extract the line

components from the data before computing the estimate (3.29).

Lilly and Park have also considered multi-wavelet spectrum estimation [29]. In
their work, they employed different wavelets and did not consider line component

extraction.
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Figure 3.11: From left to right the first three Morse wavelets in the time domain,
the frequency domain (only the positive frequencies), and the time-frequency plane

(WD): (a) 0-th order, (b) 1-st order, (c) 2-nd order.
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3.5 Examples

For our first example we refer to Figure 3.1. In this figure we illustrate the performance
of the MW WVS estimate using a test signal composed of a chirp with sinusoidal
instantaneous frequency in an additive bandpass Gaussian noise of linearly rising
center frequency. The signal in time domain and its ideal representation in time-
frequency is shown in 3.1(a) and 3.1(b). It is not possible to identify the components
of the test signal from the empirical Wigner distribution due to its large variance.
The spectrogram smoothes the Wigner distribution. Unfortunately the amount of
smoothing needed to reduce the variance smears the line components excessively.
A sliding version of Thomson’s method as proposed in [1-3] does not perform well
for this non-stationary data, since a local sine approximation to the chirping line
component is inadequate. The time-frequency MW estimate of Figure 3.1(f) on the
other hand has both high resolution and low variance simultaneously. The computed
variance of the MW WVS estimate is approximately i that of the spectrogram, which
agrees with the fact that four windows were used in the computation of the MW WVS

estimate.

In Figure 3.12, we demonstrate the ability of the linear chirp detection algorithm to
detect four hyperbolic chirps simultaneously. The data is a digitized 2.5 microsecond
echo-location pulse emitted by the Large Brown Bat, Eptesicus Fuscus. There are 400
samples and the sampling period is 7 microseconds. Comparing the multiple window
method with the other two plots, we see that the detection algorithm is able to pull
out even the weakest high frequency line component successfully. The method even

reveals the aliasing of the hyperbolic chirp due to under-sampling.
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Three spectrum estimates of the echo-location pulse emitted by
(a)  Empirical Wigner distribution.

the Large Brown Bat, Eptesicus Fuscus:
(b) Spectrogram. (c) Multiple window method.
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Chapter 4

Discussion and Conclusions

In this thesis, we have motivated and developed multiple-window time-frequency and
time-scale analysis for time-varying signals by extending Thomson’s work [15] on

multiple-window spectrum estimation for stationary signals.

Our contribution differs from the previous work done in multiple-window method

spectrum estimation of time-varying signals in two major ways:

1. We have identified the optimal windows to use for time-varying spectrum es-
timation. They are the Hermite functions [18-20] for time-frequency analysis,
and the Morse wavelets [7,27, 28] for time-scale analysis. These windows are
optimal in the sense that they are the most concentrated set of orthogonal func-
tions in the time-frequency and time-scale planes resulting in low bias spectral

estimates.

2. We have developed an algorithm to detect and extract non-stationary line com-
ponents from the data by approximating them as piece-wise linear chirps. We
then form the MW WVS estimate of the chirp-free data and reshape the spec-
trum to account for the excised line components. This preserves the resolution

of the line components.

The line detection and extraction algorithm is computationally expensive, espe-

cially if one needs to run the algorithm for different window sizes as suggested in
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Section 3.3.4. This problem can be overcome using parallel processors since the na-

ture of the algorithm makes it readily parallelizable.
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