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ABSTRACT

We propose an extension of Thomson’s multiple window spectrum estimation for stationary random processes to
the time-varying spectrum estimation of non-stationary random processes. Unlike previous extensions of Thomson’s
method, in this paper we identify and utilize optimally concentrated window and wavelet functions for the time-
frequency and time-scale planes respectively. Moreover, we develop a statistical test for detecting and extracting
chirping line components.
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1 INTRODUCTION

The theory of power spectrum estimation of stationary signals is well understood and widely applied.! However,
these methods are inappropriate for the non-stationary signals that occur in important applications such as radar,
sonar, acoustics, biology, and geophysics. These applications demand time-frequency representations that indicate
how the spectral content of the process changes over time. Most research in time-frequency analysis has focused on
deterministic signals. Only recently has attention turned to non-stationary random processes.2™6

Unlike the power spectrum for stationary random processes, there is no unique definition for the time-varying
spectrum of a non-stationary random process. Because it satisfies a number of desirable properties, we choose the
Wigner-Ville spectrum (WVS)® as our definition of the time-varying spectrum in this paper. The WVS is defined as
the Fourier transform of the non-stationary auto-correlation function

r(t, ) = Elz*(t — 7/2)z(t + 7/2)], (1)

and can also be written as the expected value of the Wigner distribution” W, (¢, f) of one realization of the process
x(t)

o
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The problem of time-varying spectrum estimation can be stated as the estimation of W(¢, f) given only one re-
alization of the non-stationary process z(t). Figure 1 shows a test signal composed of a chirp with sinusoidal
instantaneous frequency in an additive bandpass Gaussian noise of linearly rising center frequency, and its ideal
time-varying spectrum together with four different estimates of the WVS of the test signal.

A number of different WVS estimates have been proposed. The simplest is the empirical Wigner distribu-
tion Wy (t, f) (WD) itself. However, while it is unbiased, it has very large (infinite in theory) variance and cross-
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Figure 1: (a) Test signal composed of a chirp with sinusoidal instantaneous frequency in an additive bandpass
Gaussian noise of linearly rising center frequency. (b) Ideal representation. (c) Empirical Wigner distribution.
(d) Spectrogram using a Gaussian window. (e) Sliding window Thomson’s method as in.2* (f) Multiple window
(MW) method.

components which are artifacts produced due to its bilinear nature. The large variance and the cross components of
the empirical WD make it very difficult to interpret the WVS estimate, as can be seen in Figure 1(c).

To overcome the large variance problem of the WD, two-dimensional convolution of the Wigner distribution with
a signal-independent smoothing kernel can be performed.® Sayeed and Jones® have developed a method for optimal
kernel design for WVS estimation when the statistics of the process are known. They minimize the mean-squared
error between the true WVS and the estimate, and also address the problem of local WVS estimation by allowing the
smoothing kernel to be signal dependent. Whether the kernels are signal independent or signal dependent, the large
amount of smoothing required to obtain a low variance WVS estimate can damage the resolution of line components
in the data. Line components are deterministic chirping signals of the form e/2™(®) whose ideal time-frequency
representations have the form 6(f —+/(¢)). Figure 1(d) shows the effect of smoothing on the line components using
the spectrogram with a Gaussian window.

Realizing that random and deterministic spectral components must be dealt with separately, Thomson introduced
a powerful multiple window (MW) spectrum estimator for stationary signals in® to obtain a low variance spectrum
without degrading the resolution of line components. The method uses a statistical significance test to detect and
extract all sinusoids (the only stationary deterministic line components) from the data, computes a MW spectrum
estimate of the sinusoid-free data with optimal windows, and reshapes the spectrum to account for the excised
sinusoids. Because of its excellent performance, several groups have applied this technique, ad hoc, to non-stationary
signals in a piecewise fashion.2 42 There are two potential problems in doing this: 1) The windows used by Thomson
are not optimal in a time-frequency setting, 2) The chirping rate of the line components must be very small so that
they can be approximated as piece-wise sinusoids. Figure 1(e) shows the sliding window Thomson’s method applied
to the test signal. It can be seen that the method comes short of detecting the line component.

In this paper we refine the previous extensions of Thomson’s method into an improved time-varying MW spectrum



estimate for non-stationary signals by identifying the optimal windows to use, and by developing a statistical test
to detect line components of the form e/2™7(®), Our method preserves the resolution of line components, has low
variance, and offers fine control over the bias-variance trade-off. Figure 1(f) shows the method applied to the test
signal.

This paper is organized as follows. In Section 2 we give a brief review of Thomson’s MW method for stationary
signals, and explain the essence of his significance test for sinusoids. Section 3 discusses MW time-frequency analysis,
and identifies the optimal windows to use in the MW method. Section 3.4 extends the significance test to include all
line components of the form e/2™(*), In Section 4, we extend the ideas in Section 3 to the time-scale plane, again
identifying the optimal windows. Finally, Section 5 demonstrates the performance of our method. We begin with a
review of Thomson’s MW method for stationary signals.

2 THOMSON’S MULTIPLE WINDOW METHOD

The classical spectrum estimator for stationary signals, the periodogram, is defined as simply the squared mag-
nitude of the Fourier transform of the data. While the periodogram suffers from a large variance, this variance
can be reduced by cutting the data into blocks, computing a periodogram of each block, and then averaging the
periodograms. However, this procedure also smoothes and biases the resulting spectrum estimate.

Inspired by the notion of averaging but displeased with the resulting bias, Thomson suggested computing several
periodogram estimates of the entire signal using a set of different windows and then averaging the resulting peri-
odograms to construct a spectrum estimate.® For a low variance, low bias estimate, he demanded that the windows
be orthogonal (to minimize variance), and optimally concentrated in frequency (to minimize bias). The optimal
windows satisfying these requirements for signals of finite extent are the prolate spheroidal functions.'® In addition
to multiple windows, Thomson also introduced into his estimate a separate procedure for deterministic sinusoidal
components as mentioned above.

2.1 Summary of Thomson’s Method
Thomson’s MW method can be summarized in three steps:®

1. Detect and extract all significant sinusoids (stationary deterministic line components) in the data z(t) using a
statistical significance test (see Section 2.2) to obtain the part y(t) of the data having a continuous spectrum
(Thomson sets up the spectrum estimation problem in discrete-time.®)

y(t) = z(t) — {sinusoids}. (3)

2. Average K “orthogonal” periodogram estimates of y(t) using prolate spheroidal data windows {vj(¢)}°

1 K-1
Pr(f) = 3 >
k=0

These orthogonal functions are the eigenfunctions of a localization operator that band limits and then time
limits functions. As windows, they are perfectly suited to stationary spectrum estimation, because they are
simultaneously compactly supported in time and optimally concentrated in frequency. This concentration
property results in a low bias estimate of the spectrum. In the above estimate the first K prolate windows are
used for which the eigenvalues are very close to one. This guarantees a minimized introduced bias due to the
averaging.®

2

/ y(8) ve () e 2Tt dt | (@)

3. Reshape the spectrum Pr(f) to account for the sinusoids excised in Step 1.

2.2 Thomson’s F-test For Sinusoids

Before we can extract the significant sinusoids from the data z(t) as in (3), we must detect their presence and
estimate their parameters.



We assume the signal model

z(t) = y(t) + Zﬂ(fi) et (5)

with y(t) zero mean and Gaussian. Assuming that a sinusoid is present at frequency f, we estimate its complex
amplitude and subtract it from the data to obtain an estimate of the “background” continuous spectrum around f.
Comparing this power in the background spectrum with the power in the assumed sinusoid results in an F' variance-
ratio test F(f).8 If F(f) exceeds a significance threshold, we say that a sinusoid exists at frequency f. When F(f)
exceeds the threshold when no sinusoid is present at frequency f, we say a spurious peak occurs.

Averaging orthogonal periodogram estimates reduces the variance of the MW power spectrum estimate by ap-
proximately K times compared to the variance of a single periodogram (in which K = 1). Furthermore, concentrated
windows and sinusoid extraction keep resolution very high. These properties make Thomson’s MW method the tool
of choice for estimating the power spectrum of stationary random processes.

3 MULTIPLE WINDOW TIME-FREQUENCY ANALYSIS

The excellent performance of Thomson’s MW method has led several groups to apply the method to time-
varying spectrum estimation by simply sliding the estimate (4) along the signal and computing a MW spectrogram
estimate about each time point.2%? While reasonably effective on certain classes of piecewise stationary signals,
this approach suffers from two primary drawbacks. First, prolate spheroidal window functions have no inherent
optimality properties in the joint time-frequency domain. Second, Thomson’s F-test sinusoid extraction procedure
fails on chirping line components of rapidly changing instantaneous frequency as we saw in Figure 1(e). In this and
next sections, we will extend Thomson’s MW method to the time-frequency and time-scale planes by identifying
sets of optimal windows/wavelets, and by developing a linear-chirp extraction algorithm that better matches non-
stationary line components.

3.1 Hermite Windows

The foundation of the stationary MW method rests on the fact that the prolate spheroidal functions are optimal
windows for estimating the spectrum of a time-limited signal. This optimality does not carry over into time-frequency,
however, since the prolate spheroidal functions treat the time-frequency plane as two separate spaces rather than as
one geometric whole,11-13

For time-frequency signal analysis, it is natural to average over multiple orthogonal windows that are optimally
concentrated in an appropriate time-frequency domain. To date, optimal orthogonal functions of this kind have been
found only for a few very special domains. For instance, the Hermite functions are optimally concentrated in the
circular time-frequency region of Figure 2(a)

{t.)): £+ <R} (6)
with R a constant, and thus treat all time-varying spectral features in the same fashion.!1"'® The Hermite functions,
which are the eigenfunctions of the Fourier transform, are also the eigenfunctions of a localization operator over
region (6).!' This operator localizes functions in joint time-frequency as opposed to the localization operator for

the prolate functions that localizes functions in time and frequency separately. The k-th order Hermite function is
defined as

d\*
hi(z) = w42k k1)~ /2 (w - d—) e | =0,1,2,--. (7)
x
The eigenvalues of the localization operator over the region (6) are given by
R N A
M(R)=1—¢72 252 R%. (8)
i=0

In Figure 2(b) we show the behavior of these eigenfunctions. Since these are the eigenfunctions of a localization
operator, the closer the k-th eigenvalue is to one the better the concentration of the k-th order Hermite function.
Hence, for a given R, there are only a few Hermite functions with good concentration in region (6).
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Figure 2: (a) The circular concentration region (6) for the Hermite functions. (b) Eigenvalues of the localization
operator over region (6)'! for different values of R (R; < Ry < R3).
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Figure 3 shows the first three Hermite functions in time, their Fourier transforms, and their Wigner distributions.
Comparing this figure with Figure 2(a), we see how the shape of the Wigner distribution of each Hermite function
matches the shape of the concentration region. Hermite functions concentrated in elliptical regions are easily obtained
by compressing or dilating the above functions hy(t).

3.2 Multiple Window WVS Estimate

Thomson’s MW spectrum average (4) estimates the energy content of the signal at frequency f by projecting
onto the windowed sinusoids vy, (t) e/27ft, By analogy, we estimate the energy content of a non-stationary signal at
time ¢ and frequency f by projecting onto the sliding windowed sinusoids hy, (7 —t) e/2™/7. The result can be written
as the average of K Hermite-windowed spectrograms of the data

Y 1 K-1
k=0

The value of K is such that for a chosen R in (6) the first K eigenvalues in (8) are very close to one. The smaller the
value of R, the smaller the bias of the estimate, and the smaller the value of K. Therefore, we see the bias-variance
trade-off reflecting in the choice of K and R. The WVS estimator has low variance thanks to the averaging but also
minimized bias due to the optimal concentration of the Hermite windows. The bias-variance trade-off can easily be
controlled and optimized by changing the number of windows K.
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3.3 Cohen’s Class Interpretation

The MW WVS estimate (9) belongs to Cohen’s class of time-frequency distributions.” We recall this class here
as distributions that can be written as

Ca:(taf) :Wz(taf) * ¢(taf) (10)

with ¢(t, f) a kernel function. The kernel generating the spectrogram is precisely the Wigner distribution of the
window function. Furthermore, the Wigner distribution of the k-th order Hermite function is the k-th order Laguerre

function* )
(424 £2 k! — (7 (2 2 m
Wi, (t, f) = Li(8 + f2) = e 50477 3 (k—m)!m!( ( (mJ!rf))) :

m=0

(11)

Therefore, we have a closed form expression for the kernel ¢ corresponding to the MW WVS estimate (9) as a
weighted sum of K Laguerre functions; in this interpretation, the MW WVS estimate reads

1 K-1

k=

Li(£ + f?). (12)
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Figure 3: From left to right the first three Hermite functions in the time domain, the frequency domain, and the
time-frequency plane (WD): (a) O-th order, (b) 1-st order (since the Fourier transform of the 1-st order Hermite
function is purely imaginary, we plot the imaginary part), (¢) 2-nd order.

3.4 Extraction Of Line Components

As in Thomson’s method for stationary signals, the averaging inherent in (9) will degrade the resolution of line
components. Following Thomson’s programme, we will first detect and extract all line components in the data before
performing (9), and then reshape the estimate. We assume the signal model

2(t) = y(0) + 3 alt) 0 (13)

with y(t) zero mean and Gaussian.

A straightforward application of Thomson’s sinusoid extraction algorithm to z(t) as in®>* relies on an assumption
that the chirp functions e7277%(*) can be closely approximated locally as sinusoids. Unfortunately, this is not the case
for most chirping components; in these cases, the approach fails. In order to detect and extract highly non-stationary
chirps, we have developed a statistical significance test for linear chirps of the form e/27(ft+¢t*) 15 Linear chirps can
closely approximate all but the most rapidly changing chirp functions.

The test for linear chirp components flows as in Section 2.2, except that the F' variance-ratio test must be
performed at each time ¢, frequency f, and chirp rate c. This results in a three dimensional F-test statistic F(¢, f,c).!®

Due to the repeated application of the test, the number of spurious peaks in F increases far beyond that seen



in Thomson’s method for stationary signals. These peaks must be suppressed in order to create a readable time-
frequency image.

To suppress spurious peaks that peek above the significance threshold, we employ the following nonlinear cleaning
algorithm:!%

1. Threshold the data volume F(t, f,c¢) and slice it along the chirp-rate dimension c.

2. For each fixed ¢;, apply a nonlinear filter to F(t, f,¢;) to remove peaks that have not coalesced into a region
larger than the Heisenberg uncertainty principle mandates. (Intuition: spurious peaks are isolated in F(¢, f, ¢;);
true peaks lie along curves in F(¢, f,c;).)

3. Combine the results from each ¢; to obtain the final test statistic.

Although the linear chirp detection and extraction algorithm is computationally expensive, it is readily parallelizable.

4 MULTIPLE WINDOW TIME-SCALE ANALYSIS

For random processes containing high frequency components of short duration and low frequency components
of long duration, time-frequency techniques are not appropriate. These types of processes are better matched by
time-scale representations from the affine class.'® The smoothing kernels in the affine class change with frequency
to accommodate high frequency components of short duration and low frequency components of long duration. The
regions of smoothing at different parts in the time-frequency plane for Cohen’s class and the affine class are shown

in Figure 4.
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Figure 4: Smoothing regions in the time-frequency plane in (a) Cohen’s class, (b) Affine class.

4.1 Morse Wavelets

The Morse wavelets'” '° form a set of orthogonal functions that play a role in time-scale analogous to that of the
Hermite windows in time-frequency. The k-th order Morse wavelet (In fact, Morse defined a special case of these
wavelets for v = 1,'® but we still call the general class that is due to Daubechies and Paul'® the Morse wavelets.) is
defined in the frequency domain as

4P dB+Fk
— B2 ,—f/2 2 |7 B+k ,—f7
\Ilkt(f) - f € df’B [6 dfﬁ+k (f € ):| ) (14)
with £ = 0,1,2,---, 8 > 0 the degree of flatness at f = 0, and v > 0. The Morse wavelets are the eigenfunctions
of a localization operator over a tear-drop shaped region whose exact formula for any 3 and  can be found in.?
For the special case 8 = v = 1, the Morse functions are mutually orthogonal and maximally concentrated in the
time-frequency region which can be written as!”1?

9 3C
{(t,f): t2+m+1§m} (15)



with C' a constant. We show this region in Figure 5(a). For 8 and v equal one, the eigenvalues of the bandpass
localization operator corresponding to the Morse wavelets are given by

M(C) = ( + 1) (g—ﬂ)kﬂ (CLH ﬁ) (16)

There is no closed form expression for the eigenvalues for any other choices of 8 and . We show the behavior of the
eigenvalues in Figure 5(b). We can see that for a given C, only a certain number of the eigenvalues are close to one,
therefore only the first few Morse wavelets corresponding to those eigenvalues have excellent concentration. Figure
6 shows the first three Morse wavelets in time, their Fourier transforms, and their Wigner distributions.
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Figure 5: (a) The tear-drop shaped concentration region (15) for the Morse wavelets for § =~ = 1. (b) Eigenvalues
of the localization operator for different values of C' (Cy < Cy < Cj3) for f =~ = 1.

As we stated earlier, for 8 = v = 1 the Morse wavelets are the most concentrated functions on the time-frequency
region (15). A comparison of the concentration properties of the Morse wavelets and the Hermite functions is relevant
to see just how well-concentrated the Morse wavelets are in region (15).

The area of the concentration region (6) for the Hermite functions is given by
Ag=7R?’, R>0. (17)
The area of the concentration region (15) for the Morse wavelets on the other hand is given by

Ay =31(C—-2), C>0. (18)

In Figure 7 we plot the eigenvalues of the Hermite functions and the Morse wavelets for three different values of
the area of the concentration regions. The Hermite functions have more of their eigenvalues close to one compared to
the Morse wavelets for a given area of concentration region. Therefore, the concentration properties of the Hermite
functions on region (6) are much better than the concentration properties of the Morse wavelets on region (15). This
means that the introduced bias due to the averaging using K Morse wavelets is larger than that due to the averaging
using K Hermite functions.

4.2 Multiple Window WVS Estimate

We form a time-scale MW WYVS estimate of the data z(t) as the weighted average of the squares of K wavelet
transforms (The squared magnitude of the continuous wavelet transform is called a scalogram.) using the Morse

wavelets
- 1 Kl /2 T—1
_ -1 ]
W.(t,a) = Ve kE—O a /m(’f) TP/C( o )dT

where 9 is the k-th order Morse wavelet expressed in the time domain. The value of K determines how large the
concentration region is. Therefore, we again see the bias-variance trade-off. For small variance a large K is needed,
whereas for small bias a small C' hence a small K is needed. The resulting estimate belongs to the affine class

2

(19)
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Figure 6: From left to right the first three Morse wavelets in the time domain, the frequency domain (only the
positive frequencies), and the time-frequency plane (WD): (a) 0-th order, (b) 1-st order, (c) 2-nd order.

of time-scale covariant distributions.'® Its kernel is the weighted sum of the Wigner distributions of the K Morse
wavelets.

A similar line detection algorithm can be performed for the time-scale MW method. Due to the implementation of
the scalogram, the line detection and extraction algorithm is much more expensive than that for the time-frequency
case. Nonetheless, it can be done.

Lilly and Park have also considered multi-wavelet spectrum estimation using different wavelets.20

5 EXAMPLES

For our first example we refer to Figure 1. In this figure we illustrate the performance of the MW WYVS estimate
using a test signal composed of a chirp with sinusoidal instantaneous frequency in an additive bandpass Gaussian
noise of linearly rising center frequency. The signal in time domain and its ideal representation in time-frequency is
shown in 1(a) and 1(b). It is not possible to identify the components of the test signal from the empirical Wigner
distribution due to its large variance. The spectrogram smoothes the Wigner distribution. Unfortunately the amount
of smoothing needed to reduce the variance smears the line components excessively. A sliding version of Thomson’s
method as proposed in?# does not perform well for this non-stationary data, since a local sine approximation to the
chirping line component is inadequate. The time-frequency MW estimate of Figure 1(f) on the other hand has both
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Figure 7: The eigenvalues of the Hermite functions and the Morse wavelets for three different areas of the concen-
tration regions (A1 < Aa < Ags).

high resolution and low variance simultaneously. The computed variance of the MW WVS estimate is approximately

% that of the spectrogram, which agrees with the fact that four windows were used in the computation of the MW
WVS estimate.

In Figure 8, we demonstrate the ability of the linear chirp detection algorithm to detect four hyperbolic chirps
simultaneously. The data is a digitized 2.5 microsecond echo-location pulse emitted by the Large Brown Bat,
Eptesicus Fuscus. There are 400 samples and the sampling period is 7 microseconds. Comparing the multiple
window method with the other two plots, we see that the detection algorithm is able to pull out even the weakest
high frequency line component successfully. The method even reveals the aliasing of the hyperbolic chirp due to
under-sampling.
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Figure 8: Three spectrum estimates of the echo-location pulse emitted by the Large Brown Bat, Eptesicus Fuscus:
(a) Empirical Wigner distribution. (b) Spectrogram. (c¢) Multiple window method.

In Figure 9, we illustrate the performance of the time-scale MW method using a test signal of 256 points composed
of two singularities in additive white Gaussian noise n(t)

z(t) = |t — 64|70 + |t — 180|714 n(t). (20)

The scalograms in Figure 9(c) and Figure 9(d) are incapable of capturing the structure of the signal shown in Figure
9(b). The MW method of Figure 9(e) on the other hand captures the structure of the signal in the presence of noise.

6 CONCLUSIONS

In this paper, we have motivated and developed multiple-window time-frequency and time-scale analysis for time-
varying signals by extending Thomson’s work® on multiple-window spectrum estimation for stationary signals. Our
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Figure 9: (a) Test signal composed of two singularities in additive white Gaussian noise. (b) Scalogram of noise-free
signal with a Morlet wavelet. (c) Scalogram of signal with a Morlet wavelet. (d) Scalogram of signal with the zeroth
order Morse wavelet. (e) Multiple window (MW) method.

contribution differs from the previous work done in multiple-window method spectrum estimation of time-varying
signals in two major ways:

1. We have identified the optimal windows to use for time-varying spectrum estimation. They are the Hermite
functions''!3 for time-frequency analysis, and the Morse wavelets'”"!¥ for time-scale analysis. These windows
are optimal in the sense that they are the most concentrated set of orthogonal functions in the time-frequency
and time-scale planes resulting in low bias spectral estimates.

2. We have developed an algorithm to detect and extract non-stationary line components from the data by
approximating them as piece-wise linear chirps. We then form the MW WVS estimate of the chirp-free data
and reshape the spectrum to account for the excised line components. This preserves the resolution of the line
components.
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