MULTIPLE WINDOW TIME-FREQUENCY ANALYSIS

Metin Bayram and Richard G. Baraniuk *

Department of Electrical and Computer Engineering

Rice University
Houston, TX 77005-1892, USA

mebay@rice.edu,

ABSTRACT

We propose a robust method for estimating the time-varying
spectrum of a non-stationary random process. Our ap-
proach extends Thomson’s powerful multiple window spec-
trum estimation scheme to the time-frequency and time-
scale planes. The method refines previous extensions of
Thomson’s method through optimally concentrated window
and wavelet functions and a statistical test for extracting
chirping line components.

1. INTRODUCTION

Many methods exist for estimating the power spectrum of
stationary signals. However, these methods are insufficient
for the non-stationary signals that occur in important ap-
plications such as radar, sonar, acoustics, biology, and geo-
physics. These applications demand time-frequency repre-
sentations that indicate how the power spectrum changes
over time. To date research in time-frequency analysis has
focused on deterministic signals. Only recently has attention
turned to non-stationary random processes [1-4].

Unlike the power spectrum for stationary random pro-
cesses, there is no unique definition for the time-varying
spectrum of a non-stationary random process. Because it
satisfies a number of desirable properties, we choose the
Wigner-Ville spectrum (WVS) [1] as our definition of the
time-varying spectrum in this paper. The WVS W is the
expected value of the Wigner distribution W, [5] of one re-
alization of the process z(t)

Wt f) = E{Wa(t, f)}
= E{fa"(t—r/2)a(t+ /e dr}, (1)

and reduces to the classical power spectrum for stationary
signals. The problem of time-varying spectrum estimation
can be stated as the estimation of W(t, f) given only one
realization of the non-stationary process z(t).

A number of different WVS estimates have been pro-
posed. The simplest is the empirical Wigner distribution
W (1, f) itself. However, while it is unbiased, it has infi-
nite variance. Smoothing reduces the variance of the empir-
ical Wigner distribution. Two-dimensional convolution of
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the Wigner distribution with a signal-independent smooth-
ing kernel yields a distribution in the time and frequency
shift-covariant Cohen’s class [1,5]. Two-dimensional affine
convolution yields a distribution in the time and scale co-
variant affine class [6]. Sayeed and Jones have developed a
method for optimal kernel design for WVS estimation when
the statistics of the process are known [2].

Unfortunately, the large amount of smoothing required
to obtain a low variance WVS estimate can damage the res-
olution of line components. Line components are determin-
istic chirping signals of the form ¢’>""(¥) whose ideal time-
frequency representations have the form §(f — v'(¢)).

Realizing that random and deterministic spectral com-
ponents must be dealt with separately, Thomson introduced
a powerful multiple window (MW) spectrum estimator for
stationary signals in [7]. The method uses a statistical sig-
nificance test to detect and extract all sinusoids from the
data, computes a MW spectrum estimate of the sinusoid-
free data with optimal windows, and reshapes the spectrum
to account for the excised sinusoids. Because of its excellent
performance, several groups have applied this technique, ad
hoc, to non-stationary signals in a piecewise fashion [3,4,8].
In this paper we refine these methods into an improved time-
varying MW spectrum estimate for non-stationary signals.
Our method preserves the resolution of line components, has
low variance, and offers fine control over the bias-variance
trade-off.

2. THOMSON’S MW METHOD

The classical spectrum estimator for stationary signals, the
periodogram, is defined as simply the squared magnitude of
the Fourier transform of the data. While the periodogram
suffers from a large variance, this variance can be reduced
by cutting the data into blocks, computing a periodogram
of each block, and then averaging the periodograms. How-
ever, this procedure also smoothes and biases the resulting
spectrum estimate.

Inspired by the notion of averaging but displeased with
the resulting bias, Thomson suggested computing several pe-
riodogram estimates of the entire signal using a set of differ-
ent windows and then averaging the resulting periodograms
to construct a spectrum estimate [7]. For a low variance, low
bias estimate, he demanded that the windows be (1) orthog-
onal (to minimize variance), and (2) optimally concentrated
in frequency (to minimize bias). The optimal windows sat-
isfying these requirements for signals of finite extent are the



prolate spheroidal functions. In addition to multiple win-
dows, Thomson also introduced into his estimate a separate
procedure for deterministic sinusoidal components as men-
tioned above.

2.1. Summary of the Method

Thomson’s MW method can be summarized in three
steps [7]:

1. Detect and extract all significant sinusoids in the data
z(t)1 (see Section 2.2) to obtain the part y(¢) of the
data having a continuous power spectrum

y(t) = z(t) — {sinusoids}. (2)

2. Average K “orthogonal” periodogram estimates of
y(t) using prolate spheroidal data windows {vx(t)} [7]

K—1

Pr(f) = de(f)‘/y(t)'vk(t)e_ﬂ”ftdt )

The orthogonal prolate spheroidal windows are per-
fectly suited to stationary spectrum estimation, be-
cause they are simultanecously compactly supported
in time and optimally concentrated in frequency. This
concentration property results in a low bias estimate
of the spectrum. The weights di(f) can be chosen
adaptively to further reduce the bias [7].

3. Reshape the spectrum Pr(f) to account for the sinu-
soids excised in Step 1.

2.2. Thomson’s F-test For Sinusoids

Before we can extract the significant sinusoids from the
data z(t) as in (2), we must detect their presence and esti-
mate their parameters.

We assume the signal model

2(t) = y(t) + 3 n(f) (4)

with y(t) zero mean and Gaussian. Assuming that a sinusoid
is present at frequency f, we estimate its complex amplitude
and subtract it from the data to obtain an estimate of the
“background” continuous spectrum around f. Comparing
this power in the background spectrum with the power in
the assumed sinusoid results in an F' variance-ratio test F(f)
[7]. If F(f) exceeds a significance threshold, we say that
a sinusoid exists at frequency f. When F(f) exceeds the
threshold when no sinusoid is present at frequency f, we say
a spurious peak occurs.

Averaging orthogonal periodogram estimates reduces
the variance of the MW power spectrum estimate by ap-
proximately K times compared to the variance of a single
periodogram (in which K = 1). Furthermore, concentrated
windows, adaptive weights, and sinusoid extraction keep res-
olution very high. These properties make Thomson’s MW
method the tool of choice for estimating the power spectrum
of stationary random processes.

In [7], Thomson sets up the spectrum estimation problem in
discrete-time.

3. MW TIME-FREQUENCY ANALYSIS

The excellent performance of Thomson’s MW method has
led several groups to apply the method to time-varying spec-
trum estimation by simply sliding the estimate (3) along the
signal and computing a MW spectrogram estimate about
each time point [3,4,8]. While reasonably effective on cer-
tain classes of piecewise stationary signals, this approach suf-
fers from two primary drawbacks. First, prolate spheroidal
window functions have no inherent optimality properties in
the joint time-frequency domain. Second, Thomson’s F-test
sinusoid extraction procedure fails on chirping line compo-
nents of rapidly changing instantaneous frequency. In this
section, we will extend Thomson’s MW method to the time-
frequency and time-scale planes by identifying sets of opti-
mal windows/wavelets, and by developing a linear-chirp ex-
traction algorithm that better matches non-stationary line
components.

3.1. Hermite Windows

The foundation of the stationary MW method rests on
the fact that the prolate spheroidal functions are optimal
windows for estimating the spectrum of a time-limited sig-
nal. This optimality does not carry over into time-frequency,
however, since the prolate spheroidal functions treat the
time-frequency plane as two separate spaces rather than as
one geometric whole [9-11].

For time-frequency signal analysis, it is natural to av-
erage over multiple orthogonal windows that are optimally
concentrated in an appropriate time-frequency domain. To
date, optimal orthogonal functions of this kind have been
found only for a few very special domains. The Hermite
functions, defined as
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for k =0,1,2,---, are optimally concentrated in the circular
region [9-11]

hi(z) = 77_1/4(2kk!)_1/2 (z

R={(t,f): £+ <C} (6)

with C a constant. Thus, they treat all time-varying spectral
features in the same fashion. The first four Hermite windows
and their concentration region are shown in Figure 1.
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Figure 1: (a) The first four Hermite functions in the time domain,
and (b) their concentration region in time-frequency.

3.2. Multiple Window WVS Estimate

Thomson’s MW spectrum average (3) estimates the en-
ergy content of the signal at frequency f by projecting onto
the windowed sinusoids vg(t) e??2™/t By analogy, we esti-
mate the energy content of a non-stationary signal at time



t and frequency f by projecting onto the sliding windowed
sinusoids hx(7 — t) e??>™f7 The result can be written as the
average of K Hermite-windowed spectrograms of the data

K—-1

2
Wf(t’ f) = Z dk(t’ f) ‘ /y(T) hk(T - t) 6_]27rdeT
k=0

(7)
This WVS estimator has low variance thanks to the averag-
ing and minimized bias due to the optimally concentrated
Hermite windows. The bias-variance trade-off can easily be
controlled and optimized by changing the number of win-
dows K and by tuning the adaptive weighting functions
di(t, f) as in [7].
3.3. Cohen’s Class Interpretation

The MW WVS estimate (7) is in Cohen’s class of time-

frequency distributions [5], each of which can be written as

VVI(t’f) * ok ¢(t’f) (8)

with ¢(t, f) a kernel function. The kernel generating the
MW WYVS has a simple closed form expression

K-1

ot ) =Y de(t, f) Lu(t, ) (9)

k=0

where Ly, the k-th order Laguerre function, is the Wigner
distribution of the k-th order Hermite function [12]. Since
the weight functions dx (¢, f) are tuned for each signal, the
MW WVS estimate employs a signal-dependent kernel.

3.4. Extraction Of Line Components

As in Thomson’s method for stationary signals, the av-
eraging inherent in (7) will degrade the resolution of line
components. Thus, we will first detect and extract all line
components in the data before performing (7), and then re-
shape the estimate. We assume the signal model

z(t) = y(t) + Y pa(t) 77 (10)

with y(¢) zero mean and Gaussian.

A straightforward application of Thomson’s sinusoid ex-
traction algorithm to #(t) in blocks as in [4] relies on an
assumption that the chirp functions e?27%(*) can be closely
approximated locally as sinusoids. Unfortunately, this is not
the case for most chirping components; in these cases, the
approach fails. In order to detect and extract highly non-
stationary chirps, we have developed a statistical significance
test for linear chirps of the form eI2m(fi+et®)  Piecewise lin-
ear chirps can closely approximate all but the most rapidly
changing chirp functions.

The test for linear chirp components flows as in Section
2.2, except that the F' variance-ratio test must be performed
at each time t, frequency f, and chirp rate ¢. This results
in a three dimensional F-test statistic F'(t, f, c).

Due to the repeated application of the F' variance-ratio
test, the number of spurious peaks in F increases far beyond
that seen in Thomson’s method for stationary signals. These
peaks must be suppressed in order to create a readable time-
frequency image.

To suppress spurious peaks that peek above the signifi-
cance threshold, we employ the following algorithm:

1. Threshold the data volume F(t, f, ¢) and slice it along
the chirp-rate dimension c.

2. For each fixed c;, apply a nonlinear filter to F(¢, f, c;)
to remove peaks that have not coalesced into a re-
gion larger than the Heisenberg uncertainty principle
mandates. (Intuition: spurious peaks are isolated in
F(t, f, ci); true peaks lie along curves in F(t, f, c;).)

3. Combine the results from each c¢; to obtain the final
test statistic.

Although the above algorithm is computationally expensive,
it is readily parallelizable.

3.5. Example

In Figure 2, we illustrate the performance of the MW
WVS estimate using a test signal composed of a chirp with
sinusoidal instantaneous frequency in an additive bandpass
Gaussian noise of linearly rising center frequency. It is not
possible to identify the components of the test signal from
the empirical Wigner distribution due to its large variance.
The spectrogram smoothes the Wigner distribution. Un-
fortunately the amount of smoothing needed to reduce the
variance smears the line components excessively. A slid-
ing version of Thomson’s method as proposed in [3,4] does
not perform well for this non-stationary data, since a local
sine approximation to the chirping line component is inade-
quate. The time-frequency MW estimate of Figure 2(d) on
the other hand enjoys both high resolution and low variance.
The variance of the MW WYVS estimate is approximately %
that of the spectrogram, in agreement with the fact that four
windows were used in the computation of the MW WVS es-
timate.
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Figure 2: Four time-varying spectrum estimates of a test signal.
(a) Empirical Wigner distribution. (b) Spectrogram. (c) Sliding
window Thomson’s method [3, 4]. (d) Multiple window method.

4. MW TIME-SCALE ANALYSIS

Random processes containing high frequency components of
short duration and low frequency components of long dura-
tion are better matched by time-scale representations from
the affine class [6]. The smoothing kernels of affine class
representations change with frequency to accommodate such
processes (see Figure 3).
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Figure 3: Smoothing regions in the time-frequency plane in

(a) Cohen’s class, (b) affine class representations.

The Morse wavelets [13,14] play a role in time-scale anal-
ogous to that of the Hermite windows in time-frequency.
They are defined in the frequency domain as [13]

B
) = 7 [

Btk
]

with £ = 0,1,2,---, and § the degree of flatness at f = 0.
The Morse functions are mutually orthogonal and maxi-
mally concentrated in the tear-drop shaped time-frequency
region [14]

_ 2O G
R_{(t,f). t+f2+1§|f|} (12)

with C; and C> constants. A more general formulation of
the Morse wavelets is given in [14]. Figure 4 shows the first
four Morse wavelets and their concentration region R.
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Figure 4: (a) The first four Morse wavelets in the frequency
domain, and (b) their concentration region in time-frequency.

We form a time-scale MW WYVS estimate of the data
z(t) as the weighted average of the squares of K wavelet
transforms using the Morse wavelets

a_l/Q/:c(T) 'gbk(Ta_t) dr
(13)

where 9 is the k-th order Morse wavelet in the time do-
main. The estimate belongs to the affine class of time-scale
covariant distributions [6]. Its kernel is the weighted sum of
the Wigner distributions of the K’ Morse wavelets.

As in the time-frequency case, averaging degrades the
resolution of chirping line components. Using the algorithm
of Section 3.4, we can detect and extract the line components
from the data before computing the estimate (13).

Lilly and Park have also considered multi-wavelet spec-
trum estimation [15]. In their work, they employed different
wavelets and did not consider line component extraction.

K-1

Wa(ta) = Y di(t,a)

k=0

2

5. CONCLUSIONS

In this paper, we have motivated and developed MW time-
frequency and time-scale analysis for time-varying signals
by fully extending Thomson’s work [7] on MW spectrum
estimation for stationary signals. Owur contribution builds
on the previous successful work of [3, 4, 8], yet differs from
these approaches in two major ways:

1. We have identified two sets of optimal windows for
time-varying spectrum estimation. They are the Her-
mite functions [9-11] for time-frequency analysis, and
the Morse wavelets [13, 14] for time-scale analysis.
Since these window sets are optimally concentrated in
the time-frequency and time-scale planes, they result
in low bias spectrum estimates.

2. We have developed an algorithm to detect and extract
non-stationary line components from the data by ap-
proximating them as piece-wise linear chirps. We then
form the MW WVS estimate of the chirp-free data and
reshape the spectrum to account for the excised line
components. This preserves the resolution of the line
components.
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