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Abstract

! Generalizing the concept of time-frequency representations, Cohen has recently proposed a general
method, based on operator correspondence rules, for generating joint distributions of arbitrary variables.
As an alternative to considering all such rules, which is a practical impossibility in general, Cohen
has proposed the kernel method in which different distributions are generated from a fixed rule via an
arbitrary kernel. In this paper, we derive a simple but rather stringent necessary condition, on the
underlying operators, for the kernel method (with the kernel functionally independent of the variables)
to generate all bilinear distributions. Of the specific pairs of variables that have been studied, essentially
only time and frequency satisfy the condition; in particular, the important variables of time and scale
do not. The results warrant further study for a systematic characterization of bilinear distributions in
Cohen’s method.

1 Introduction

Time-frequency representations (TFRs), such as the Wigner distribution and the short-time Fourier trans-
form, represent signal characteristics jointly in terms of time and frequency, and are powerful tools for
nonstationary signal analysis and processing [1]. However, due to their inherent structure, TFRs can ac-
curately represent only a limited class of nonstationary signal characteristics. Recently, in an attempt to
tailor joint signal representations to a broader class of signals, there has been substantial progress in the
development of joint distributions of variables other than time and frequency [2]-[7]. Joint time-scale rep-
resentations constituted first such generalizations [2, 3], spurred by the interest in the wavelet transform
8]

In view of this recent trend, general theories for joint distributions of arbitrary variables have been
proposed by many authors [1, 5, 9, 10, 11]. The first such generalization was proposed by Scully and Cohen
[12], and developed by Cohen [1, 5], in direct extension of his original method for generating joint TFRs

*This work was supported by the Joint Services Electronics Program under Grant No. N00014-90-J-1270.
I Permission to publish this abstract separately is granted.



[13]. Baraniuk proposed a general approach based on group theoretic arguments [9] which was shown by
Sayeed and Jones [14] to be equivalent to Scully and Cohen’s method. Other covariance-based generalizations
have also been proposed [10, 11] which complement Cohen’s distributional method by characterizing joint
representations in terms of covariance properties. However, Cohen’s method seems to be the most general
approach to date, since no joint group structure is imposed on the variables as is done in [10, 11].
Fundamental to Cohen’s method is the idea of associating variables with Hermitian (self-adjoint)
operators [1]. For given variables, the entire class of joint distributions is generated by the infinitely many (in
general) operator correspondence rules for an exponential function of the variables (the characteristic function
operator method [1]). As an alternative to considering all possible correspondence rules, which is a practical
impossibility in general, Cohen has proposed the kernel method in which a fixed operator correspondence
is used and different joint distributions are generated via an arbitrary kernel. In this correspondence, we
show that for two variables, say a and b, the corresponding Hermitian operators A and B must satisfy rather

stringent conditions, such as
eI0AeIPB — oif(0) giPBeiaA  for a1 (o, 3) € R? , and for some f: R* - R, (1)

for the kernel method? to generate the entire class of bilinear distributions determined by the operator
method. We also generalize the result to an arbitrary number of variables, and show that of the specific
variables considered in the literature, essentially only time and frequency satisfy the conditions. We begin

with a brief description of Cohen’s method.

2 Cohen’s Method

We describe the method for two variables; extension to more variables will be obvious. We assume that all
signals of interest belong to L?(IR), the space of finite energy signals.

The characteristic function M of a joint a-b distribution P of signal s is defined as [1]
(Ms)(a, §) = / / (Ps)(a, b)ei2mae7278b o @)
and the distribution can be recovered from M as
(Ps)(a,b) = //(Ms)(a,ﬂ)e_ﬁm“e_ﬁ”ﬁbdadﬂ . (3)

The key observation is that the characteristic function can be directly computed from the signal by using a
characteristic function operator M(®) corresponding to the function e/27@ei276b ag

(Ms)(a, B) = <M(°"ﬁ)s,s> = / (M@ ) (2)s* (z)dz . (4)

Since the operators .4 and B do not commute in general, there are infinitely many ways in which the function
eI27eei?m0b can be associated with an operator; three prominent examples are e/27(@A+5B8) (Weyl corre-
spondence), e727Aei27AB and e/2™PBei2ma A which we will use throughout the paper. The corresponding
infinitely many joint distributions can then be recovered via (3), and they define the entire class of joint a-b
distributions.

In order to characterize all the different correspondence rules, and hence the entire class of joint a-b

distributions, Cohen has proposed the kernel method which assumes that all characteristic functions can be

2We restrict the discussion to kernels that are functionally independent of the signal and the variables. See remarks in
footnote 3 on the issue of kernel dependence.



generated by weighting any one particular one with an arbitrary kernel [1, p. 229]. That is, given a particular

characteristic function, say M,, all the infinitely many characteristic functions can be generated as

(M(9))(s)(ex, B) = (Mos) (v, B)p(e, B) ()

where ¢ is the weighting kernel.> The corresponding joint distributions P(#) can then be recovered by using
(5) in (3). In the case of time-frequency, fixing M, to be the Weyl correspondence yields the following

commonly used characterization of Cohen’s class of TFRs first proposed in [13]

(C($)s)(t, f) = / / / 60, 7)s(u + 7/2)s" (u — 7/2)eP2 0D ~1277F Gudgr (6)

3 Necessary Conditions for the Validity of the Kernel Method

According to Cohen’s kernel method, any two characteristic functions, say M; and Ms, corresponding to

two different operator correspondences, M§°‘*B ) and Mga’ﬁ ), must be related by
(Mis)(@,8) = (M{*)s,5) = 6(a, H)(Ma3)(@, B) = Blev, B) (M5, 5) , forall s € I(R) ,  (7)

for some ¢ : R? — @. Tt follows that a necessary and sufficient condition for the kernel method to hold is

that any two operator correspondences must be related by*
M{™? = (o, B)ME™ ®)

for some ¢. In particular, the above relationship must hold in the case when both Mga’ﬁ ) and Mga’ﬁ ) are
unitary operators,® in which case it can be easily verified that |¢(a, 8)| = 1, for all (a, 3). For example, all

characteristic function operators of the following form are unitary®

M@ = T[e™*%  where (9)
k
_ _ (67 if Ch- =A _ _
Co=AorB, v = {ﬁk ifC, = B ,andzk:ak_a,zk:ﬁk_ﬁ. (10)

Two specific cases are the correspondences M{*?) = ¢i2rad¢i2m88 anq M{™P) = i2mFBei2maA which result
in the relationship (1). Extension to more than two variables immediately follows, and we have the following

general result.

Proposition. Let Ay, A, -+, Ax be the Hermitian operators corresponding to N variables ay, as, -+, ay in

Cohen’s method. Then, a necessary condition for the kernel method to generate all bilinear joint distributions
(a1,02,,an)

of a1, a9, -, an is that for any two unitary characteristic function operator correspondences, M;
and Mgal’%“"“’”, the following relationship must hold for all (ay, @, ---,an) € R":
Mgalaah"'aaN) — e.jf(alaOtZg"'aaN)Mgal70‘2""70‘N) , fOr some f . RN N R (11)

3 Cohen does not preclude the possibility of functional dependence of the kernel on the variables and the signal [1, p. 140].
However, we restrict the discussion to the important case of bilinear distributions which precludes signal-dependent kernels.
Moreover, we are interested in a characterization of bilinear distributions in which the kernel is not a function of the variables,
as is true for all covariance-based generalizations [10, 11], and for Cohen’s class of bilinear TFRs [1] and the affine class of
bilinear time-scale representations [3, 2], in particular.

4We use the fact that if A is a linear operator on a complex inner product space H, then (As,s)y=0foralls € H< A =0;
see, for example, [15, p. 374].

5An operator U is unitary if (Us, Us) = (s, s) for all s.

6Which follows from the fact that e/ is a unitary operator if A is Hermitian, and that the composition of unitary operators
is unitary.



Corollary. A particular necessary condition for the validity of the kernel method is

eI A1l A2 LI AN = T¢I AN gIAN -1 . oI AL for some ¢ € R . (12)

4 Examples

Time and Frequency. Defining the time and frequency Hermitian operators as (7s)(t) = ts(t) and
(Fs)(t) = —4-4(t) [1]7, respectively, we have (/277 s)(t) = e/27%s(t) and (/27 7s)(t) = s(t + 7) [1]. The
following relationships hold between the three main correspondences [1, p. 155]

ej2n(9T+Tf) — e—jw9T6j2rTfej2ﬂ0T — ejr976j2ﬂ0T6j27rTf (13)

from which it can be easily verified that all the three correspondences satisfy (11) pairwise. In fact, the
relationships (13) can be used to show that the necessary and sufficient condition (8) is satisfied for all pairs
of orderings, and thus the kernel-based characterization (6) does indeed generate all possible bilinear joint
time-frequency distributions.

Time and Scale. Define the operator C = 1(TF + FT) which is associated with scale in [1].% The
corresponding exponential operator is the scaling operator (e/277Cs)(t) = e?/2s(e”t) [1]. The three main
characteristic function operators for 7 and C are related as [1]

e —o—1

. . e”—1 o . . ; . .
61271.(97—4_0(3) — e]27n9( ——e )Te]27r<rCe]27r9T:6J27r0(T)7-e]27r97-e]27r0C, or (14)

. —e— 24 . —c" %) (o+1) —20
) . ) J27r6<1 < ——¢ 2 )T . . j2w0(%—e )T
e]27r(9T+oC) — ejQwoCe]%rGTe :e]2w6Te]21roCe 7 and (15)

ej27r6Tej27rJC — ej27ro’Cej27r9Tej27r9(e_”—1)T — ej27r9(1—e”)Tej27r0'Cej27r9T . (16)

We note that none of the unitary characteristic function operators is simply a scalar multiple of the others
for arbitrary values of the parameters; instead of a weighting function, an operator relates pairs of corre-
spondences. Thus, the condition of the Proposition (and in particular (1)) is violated and hence the kernel
method does not generate all joint 7-C distributions. Indeed, a specific counter example is constructed
in [16] to show that the characteristic functions corresponding to the two correspondences in (16) are not
related by a weighting kernel.

Similarly, it can be easily verified by using the Corollary to the Proposition that the joint frequency-
scale and time-frequency-scale distributions discussed in [1, p. 258-259] are not completely characterized by
the kernel method.

5 Discussion

The necessary condition stated in the Proposition is rather stringent. To appreciate this, we use the Baker-
Campbell-Hausdorff formula which can be stated, to third order, as [17]

eI AIB — i(A+B+E5D—15[A,Dl-35[D,B]-) (17)

where D = [A,B] = AB — BA is the commutator operator. One of the simplest nontrivial special cases is

when the commutator commutes with both the operators, in which case we have the following relationships

"Cohen uses the radian frequency operator (Ws)(t) = —j5(t).
8 A different correspondence for scale is argued in [7, 19]. However, even for that correspondence, the kernel method does
not hold for time and scale.



[1, 17]

L 4 N i e e s
eI AeiB = i ATB) g=35D — o= 3P i(A+B) — iBeiAe—D — o~ PeibgiA (18)

Even in this case, unless D = jcI, ¢ € IR, the conditions of the Proposition are violated and the kernel
method does not hold. Note that for time and frequency, D = %I, and (18) yields (13), making the kernel
method work. Moreover, since this commutator relationship does not change for operators which are unitarily
equivalent to time and frequency [18, 19], joint distributions of variables which are unitarily equivalent to
time and frequency [7, 18, 19] are also completely characterized by the kernel method.

Another special case studied in [1] regarding joint distributions involving scale is

D=[AB =cal+cA (19)
which results in the relationship [1, p. 228]

I A+IBB _ ginaci/cz gjonA o iBB gjaA (20)

where c1,¢; €€, and p = 5 [1 — (1 + jfcz)e 97°2)]. Again, (20) implies that the condition (11) is violated
for the correspondences Mg""m = eJaA+IBB 414 Mga’ﬂ ) = eiBBeiaA and as a specific example of this case

we showed in the last section that the kernel method does not hold for joint 7-C distributions.

6 Conclusions

Cohen’s general method for generating distributions of arbitrary variables, when viewed from the perspective
of operator correspondences, is a powerful and versatile tool. However, characterizing all the different
operator correspondences is nontrivial, and the simple kernel method proposed by Cohen does not encompass
all possible correspondences in general. In fact, the necessary conditions derived in this paper for the validity
of the kernel method are rather stringent and, in the case of two variables, seem to hold only for time and
frequency and variables that are unitarily equivalent to time and frequency.

Thus, in general, applying the kernel method to a particular correspondence rule generates a proper
subset of the entire class of joint distributions. However, it is conceivable that the families of joint distribu-
tions generated by a finite set of correspondence rules, via the kernel method, may cover the entire class of
joint distributions.

It is worth noting that covariance-based generalizations of joint distributions [10, 11], which necessarily
impose a joint group structure on the variables, naturally yield a kernel method which generates all the joint
distributions in the class. Thus, it might be fruitful to study the relationship between the two approaches
for arbitrary joint distributions in order to develop a systematic characterization of all the correspondence

rules in Cohen’s general method.
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