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ABSTRACT

We propose a hybrid approach to wavelet-based deconvolution that comprises Fourier-domain system inversion fol-
lowed by wavelet-domain noise suppression. In contrast to conventional wavelet-based deconvolution approaches, the
algorithm employs a regularized inverse filter, which allows it to operate even when the system is non-invertible. Us-
ing a mean-square-error (MSE) metric, we strike an optimal balance between Fourier-domain regularization (matched
to the system) and wavelet-domain regularization (matched to the signal /image). Theoretical analysis reveals that
the optimal balance is determined by the economics of the signal representation in the wavelet domain and the
operator structure. The resulting algorithm is fast (O(N logs N) complexity for signals/images of N samples) and is
well-suited to data with spatially-localized phenomena such as edges. In addition to enjoying asymptotically optimal
rates of error decay for certain systems, the algorithm also achieves excellent performance at fixed data lengths.
In simulations with real data, the algorithm outperforms the conventional time-invariant Wiener filter and other
wavelet-based deconvolution algorithms in terms of both MSE performance and visual quality.
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1. INTRODUCTION

Deconvolution is a recurring theme in a wide variety of signal and image processing problems, from channel equaliza-
tion! to image restoration.? For example, satellite images obtained in practice are often blurred due to limitations
such as aperture effects of the camera, camera motion, or atmospheric turbulence. Deconvolution becomes necessary
if we wish a crisp, deblurred image for viewing or further processing.

1.1. Problem description

In its simplest form, the 1-d deconvolution problem runs as follows. The desired signal z is input to a known linear
time-invariant (LTT) system # having impulse response h. Independent identically distributed (i.i.d.) samples of the
addtive white Gaussian noise (AWGN) « with variance o2 corrupt the output samples of the system # (see Fig. 1).
The observations y at discrete points ¢, are given by

ylta) = (@ W)(t) + (), =0, ,N—1. (1)
For simplicity (but without loss of generality), we assume circular convolution, denoted by ® in (1). Given y, we
seek to estimate x.

In the discrete Fourier transform (DFT) domain, we equivalently have

where Y, H, X and I are the respective length-N DFTs. The f, := 2”7" denote the normalized frequencies in the
DFT domain. The problem formulation trivially extends to multi-dimensional data.

If the system frequency response H (f,,) has no zeros, then an unbiased estimate of z can be obtained by inverting
H as

)?(fn) = H_l(fn)Y(fn)
= X(fa) + H ' (fa) T(fa). (3)

However, if the system is ill-conditioned, i.e., if H(f,) is small at any f,, then enormous noise amplification results
during inversion, resulting in an extremely noisy, useless estimate.
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Figure 1. Convolution model setup.
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Figure 2. Different deconvolution techniques: (a) Formally, Fourier-domain regularized deconvolution (FoRD) estimates
the signal in the presence of the noise colored by H™' using Fourier-domain shrinkage. Wiener deconvolution is a special
case of FORD that shrinks according to the SNR at each frequency. (b) Wavelet-vaguelette deconvolution (WVD) estimates
the signal in the presence of the noise colored by H ™' using wavelet-domain shrinkage. (c) Our proposed wavelet regularized
deconvolution (WaRD) exploits both FoORD and WVD concepts to minimize the distortion of spatially localized features in
the signal.

1.2. Fourier-domain regularized deconvolution (FoRD)

Noise amplification can be alleviated by using an approximate, regularized inverse instead of a pure inverse. Reg-
ularization aims to provide a better solution by reducing noise in exchange for some distortion in the estimate?;
regularization becomes essential in situations involving ill-conditioned systems.

The LTI Wiener deconvolution filter is a classical example of Fourier-domain regularized deconvolution (FoRD,
see Fig. 2(a)). It provides the MSE-optimal regularized LTI solution to the deconvolution problem. Formally, the
estimation procedure used by the LTT Wiener deconvolution filter can be understood as comprising the inversion of the
convolution operator using H ! to obtain a noisy estimate X (f,) followed by shrinkage of each frequency component
of X(f») according to the signal-to-noise-Ratio (SNR) at f, (shrink less/more when the SNR is high/low).*

The Fourier transform diagonalizes the convolution operator H; hence the Fourier domain is ideally suited to
represent the colored noise in X (f,) that results from its inversion. Consequently, the LTI Wiener deconvolution
filter, which employs Fourier-domain noise shrinkage, can precisely identify and attenuate the noise that gets amplified
during inversion of H, thereby fully exploiting the structure of the blurring system. In fact, when the input signal
can be modeled as wide-sense stationary (WSS) and Gaussian, the LTI Wiener deconvolution filter is MSE-optimal
over all estimators.

*The inversion and shrinkage is performed jointly in practice; hence FoRD and Wiener deconvolution are applicable even when the
system 7 is not invertible.



However, the Fourier domain is not well-suited for representing many common signals and images that contain
spatially localized phenomena such as edges because the Fourier basis functions have support that extend over the
entire spatial domain. Scalar processing of the Fourier components employed by FoRD results in lack of spatial
selectivity, consequently important spatial features such as edges get distorted.

1.3. Wavelets and wavelet-vaguelette deconvolution (WVD)

Over the last decade, the wavelet transform had proven invaluable for dealing with a wide class of signals and images
with spatially localized features. Wavelets provide economical representations for a large class of functions, such
as those belonging to Besov spaces. Wavelets capture most of the signal energy using just a few large wavelet
coefficients. This property has been leveraged into powerful, spatially adaptive, signal estimation algorithms that
are based on simply shrinking the wavelet coefficients of the noisy signal.

Motivated by the economy of wavelet representations, Donoho proposed the wavelet-vaguellette decomposition
algorithm to solve a special class of linear inverse problems.> With a slight abuse of notation, we refer to the
wavelet-vaguellette decomposition applied to deconvolution as wavelet-vaguelette deconvolution (WVD). In contrast
to FoRD, WVD employs wavelet-domain shrinkage to estimate the signal in the presence of noise colored by H~!
(see Fig. 2(b)).

WYVD aims to exploit the economical wavelet representation of signals to effectively identify and estimate the
signal. In fact, for special classes of blurring operators such as the Radon transform, WVD exhibits asymptotically
(as N — oo) near-optimal rates of error decay for a wide class of input signals.®

However, the wavelet transform does not diagonalize the convolution operator . Consequently, the noise fre-
quency components that are amplified during inversion of H corrupt many wavelet coefficients. For example, for a
box-car impulse response h — a commonly used model for image blurring due to camera motion? — the noisy esti-
mate T obtained after system inversion has infinite noise variance at all wavelet scales. Thus, even though wavelets
provide an efficient input signal representation, signal estimation using scalar operations in the wavelet domain is
futile and results in a zero signal as the estimate.

1.4. Wavelet-based regularized deconvolution (WaRD)

Motivated by the fact that the Fourier domain matches the convolution operator while the wavelet domain matches a
large class of potential input signals, we propose an improved hybrid wavelet-based regularized deconvolution (WaRD)
algorithm suitable for use with any ill-conditioned systems. The basic idea is simple: employ the best of both FoRD
and WVD processing (see Fig. 2(c)). In this tandem processing, we exploit Fourier-domain regularization adapted
to the convolution operator to control noise amplification. However, we use it sparingly to keep the accompanying
smearing distortions to a minimum; the bulk of the noise removal and signal estimation is achieved using wavelet
shrinkage.

By optimizing over an MSE metric, we find that the optimal balance between local processing with the wavelet
basis and global processing with the Fourier basis is determined by both the distribution of signal energy in the
wavelet domain and the convolution operator.

1.5. Related work

One extreme of our Fourier/wavelet balance is to perform no Fourier-domain regularization; this is equivalent to the
WVD approach of Donoho® and the mirror-wavelet basis approach of Kalifa et al.® We show that WaRD subsumes
WYVD and thus WaRD possesses the same asymptotically (as N — oc) near-optimal error decay rates as WVD for
special operators such as the Radon transform. However, at any fixed sample-size N, WaRD will outperform WVD.
Furthermore, unlike WVD, WaRD is applicable to any convolution operator.

The mirror-wavelet basis approach of Kalifa et al.® adapts to the frequency response of the convolution operator
H. Though the adapted basis improves upon the WVD, it is not effective for all types of ill-conditioned systems. For
example, when H has a box-car impulse response h, adapting to the sinc frequency response H using wavelets fails.

Nowak et al.” have employed an under-regularized system inverse and subsequently used wavelet-domain signal
estimation. However they neither studied the implications of using the regularization nor the choice of the optimal
amount of regularization.



Banham et al. apply a multiscale Kalman filter to the deconvolution problem.® Their approach employs an

under-regularized constrained-least-squares prefilter to reduce the support of the state vectors in wavelet domain,
thereby improving the computational efficiency of the multiscale restoration filter. The amount of regularization
chosen for each wavelet scale is the lower bound that allows for reliable edge classification. While similar in spirit to
the multiscale Kalman filter approach, in WaRD the amount of regularization is chosen to optimize the overall MSE
performance of the deconvolved estimate. In addition, WaRD employs simple shrinkage on the wavelet coefficients
of an over-complete wavelet basis in contrast to more complicated prediction on edge and non-edge quadtrees over
an orthonormal wavelet basis.?

1.6. Paper organization

After discussing regularization in more depth in Section 2, we briefly review wavelet transforms and their properties
in Section 3. Previous wavelet-based deconvolution approaches are discussed in Section 4. We present our improved
WaRD scheme in Section 5 and elaborate on its implementation in Section 6. Illustrative examples lie in Section 7.
We conclude by summarizing our work and sketching out future directions in Section 8.

2. FOURIER-DOMAIN REGULARIZED DECONVOLUTION (FoRD)
Given the general deconvolution problem from the Introduction, FoRD can be understood formally as follows (see
Fig. 2(a)):

1. Pure inversion: The noisy and blurred observation y is treated by H~! to obtain a noisy, unbiased estimate
Z of the input signal z as in (3). This necessarily amplifies the noise components at frequencies where H(f,)
is small.

2. Fourier-domain signal estimation: Each frequency component of the noisy signal Z is shrunk using
frequency-dependent weights
[ H (fn)” [P (fn)|*

[H(fa)? |Pe(fn)? + a0’

where P, (f,) is the power spectral density (PSD) of the input signal.! Formally, the signal estimate is given
by XrerD (fn) := H 1 (fn)Ra(fn)Y (fr)-

Ra(fn) = (4)

The parameter «, called the regularization parameter, controls the tradeoff between the amount of noise sup-
pression and the amount of signal distortion. Setting o = 0 gives an unbiased but noisy estimate. LTI Wiener
deconvolution corresponds to a = 1.2 Setting a = oo completely suppresses the noise, but also completely distorts
the signal (Zrorp = 0).

2.1. Optimality of FoRD

For Gaussian wide-sense-stationary signals, the LTI Wiener deconvolution provides the globally MSE-optimal es-
timate for the input, since the Fourier domain provides the ideal representation for both, the colored noise after
inversion and the signal of interest.

2.2. Drawbacks of FoRD

The LTI Wiener filter does not provide a good estimate when the input signal comprises of spatially localized
phenomena such as edges. Though the Fourier domain is still the ideal domain to represent the noise colored by
H~1, this domain is not well-suited to represent the signal . The supports of the Fourier basis functions extend
over the entire spatial domain. So, scalar operations on the Fourier coefficients lack spatial localization. Hence, all
spatial components of the input signal are processed uniformly to result in a substantially distorted estimate.

TThis assumes the signal z to be a stationary random process. We will rather assume z to be deterministic and substitute Pz (fn) =
X (fn)]? in (4).



2.3. Alternative solutions

Deconvolution techniques need to take the spatial variations of the signal into account to produce the best possible
results. One such technique is the best linear estimator, the time-varying or matrix version of the Wiener inverse.'?
However, the time-varying Wiener filter is impractical, because it requires the input signal cross-correlation ma-
trix which needs precise knowledge of the spatially varying phenomena of the signal. Further, the processing is
computationally intensive (O(N?)), because the estimator possesses no special structure.

3. BACKGROUND ON WAVELETS AND SIGNAL ESTIMATION
3.1. Wavelet transform

The joint time-frequency analysis of the wavelet basis efficiently captures spatially varying features in a signal. The
discrete wavelet transform (DWT) represents a 1-d signal x in terms of shifted versions of a low-pass scaling function
¢ and shifted and dilated versions of a prototype bandpass wavelet function 1.}!>12 For special choices of ¢ and 1/,
the functions

P (t) 212427t — k), (5)
Gik(t) = 20/2¢(27t—k), (6)

with j, k € Z form an orthonormal basis. A finite-resolution approximation x; to z is given by'2

Il

J

2i(t) = D ujok biok(t) + D> wiktik(t), (7)
k j=jo k

with wavelet coefficients u; . := [z(t) ¢}, (t) dt and wj s := [x(t) ¢}, () dt. The parameter .J controls the resolution

of the wavelet reconstruction x; of x; we see that z,, = z.

For a discrete-time signal with N samples, the N wavelet coefficients {u;, ., w; 1} of (¢,) can be easily computed
using a filter bank consisting of low-pass filters, high-pass filters, and decimators. Due to the special filter bank
structure the forward and inverse wavelet transform can be computed in O(N) operations. For simplicity only, we
will use the periodic DWT, which uses circular convolutions in its filter bank. For brevity, we will collectively refer
to the set of scaling and wavelet coefficients as {61} := {uj;k,w;r}. Multidimensional DWTs are easily obtained
by alternately wavelet-transforming along each dimension.!!

3.1.1. Multiresolution and time-frequency localization of wavelets

Wavelet provide a multiresolution representation of a signal, i.e., the wavelet coefficients capture the signal features
at different resolution levels. In the wavelet representation notation used, j indexes the scale or the resolution of
analysis — large j corresponds to higher resolution of analysis, while small j corresponds to the coarse scale or lowest
resolution of analysis. The scale j = J corresponds to the finest scale or highest resolution of analysis. In the wavelet
representation, k indexes the spatial location of analysis. For a wavelet ¢(t) centered at time zero and frequency
fo, the wavelet coefficient w; ; measures the signal content around time 277 k and around frequency 27 fo. Thus,
wavelets exhibit simultaneous spatial and frequency localization.

3.1.2. Wavelets as unconditional bases

Wavelets provide an unconditional basis for spaces of smooth functions such as Besov spaces.* Important spaces
such as Sobolev spaces and L, (1 < p < 00) spaces belong to the Besov scale. In essence, the unconditional basis
property of wavelets means that signals belonging to such classes are characterized by only the amplitudes of the
wavelet coefficients.®5 In contrast, the Fourier basis is not unconditional for such a wide class of signals. The
wavelet coefficients of signals in a Besov space decay exponentially with scale.

The implications of this abstract notion of unconditional basis are extremely appealing. Donoho!? shows that
unconditional basis are desirable, because they typically express the signal economically by capturing most of the sig-
nal energy in just a few coefficients. Economical representations are desirable for signal estimation and compression
using non-linear approximation.!415 In fact, unconditional basis are in a sense optimal for these tasks.!® Further-
more, the unconditional basis property also ensures that even simple scalar operations on each wavelet coefficient
are sufficient to ensure near-optimal performance.



3.2. Signal estimation by wavelet shrinkage

Wavelets provide a natural and effective solution to the problem of signal estimation in the presence of white
noise.'® " Many real-world signals have economical wavelet-domain representations where a few large wavelet
coefficients capture most of the signal energy.!>1® However, since a wavelet transform is orthonormal and linear,
the energy of white noise remains scattered over all of the wavelet coefficients. This disparity between the signal
and noise representation in the wavelet domain has been exploited in a number of powerful, near-optimal, signal
estimation techniques based on simply shrinking the wavelet coefficients of the noisy signal. The optimality refered
to is in terms of the rate of error decay as increasingly denser observation samples are obtained.

Since wavelets provide economical representations in the presence of spatial varying features of the signal, signal
estimation in the wavelet domain preserves such features more effectively than conventional LTI techniques such as
estimation methods based on the windowed singular value decomposition. In fact, wavelet-domain signal estimation
techniques are near-optimal for a wide class of signals including signals in the Besov space.'3

Wavelet domain signal estimation techniques based on shrinkage can also be extended to estimate signals in the
presence of colored noise. The optimality of such a wavelet-based approach now becomes dependent on the coloring
of the noise in addition to the signal class.!?

4. WAVELET-VAGUELETTE DECONVOLUTION (WVD)

Donoho studied the application of wavelets to special linear inverse problems and proposed the wavelet-vaguelette
decomposition® that solves the problem of deconvolution in the following way (see Fig. 2(b)):

1. Pure inversion: Similar to Wiener deconvolution, obtain a noisy, unbiased estimate Z of the input signal as

in (3).

2. Wavelet-based signal estimation: In contrast to Fourier-domain shrinkage employed by the Wiener de-
convolution filter, WVD estimates the signal from the noisy Z obtained after pure inversion by shrinking each
wavelet coefficient of the noisy signal.} The variance of noise corrupting all wavelet coefficients in a particular
scale is the same, but varies with different scales.!?® So scale-dependent shrinkage is employed to estimate the
signal wavelet coeflicients. The inverse DWT then yields the WVD deconvolution estimate from the estimated
signal wavelet coefficients.

4.1. Optimality of WVD

Donoho showed that a WVD deconvolution approach is near-optimal to recover a wide class of signals (e.g., Besov
spaces) when the linear operator H satisfies

h(t) ® y(at) = a” h(at) ® y(t), (8)

for some exponent 8. Such an operator # is said to be scale invariant or dilation homogeneous. The Radon transform
is an important example of a dilation homogeneous operator.® To the best of our knowledge, the optimality of
wavelet-based deconvolution for general dilation-inhomogeneous operators is still unknown. Using wavelet-based
techniques, Nowak et al.” observed impressive results for some common LTI operators as well. Kalifa et al.® has
advocated a similar philosophy and claimed state-of-the-art performances in satellite image recovery.

We consider the example of piecewise polynomial functions to gain insight into the advantages of the WVD
approach. Wavelets represent an length-N piecewise polynomial signal economically using just O(log, N) non-zero
wavelet coefficients?.

As a result, assuming an invertible low-pass H, the error-per-sample decays at the rate O(N T4 log, N) as denser
sampling (N — oo) of the underlying continuous-time observations are obtained?®; this is significantly faster than

the rate O(N ﬁ) achieved by Fourier-domain shrinkage. The WVD achieves faster error decay rates, because the

fNote that different shrinkage techniques can be used on the noisy wavelet coefficients, but the philosophy remains the same: Use
wavelet-domain estimation instead of Fourier-domain estimation

§Consider a wavelet system with basis functions that possess number of zero-moments that is greater than or equal to the degree of
all the polynomial pieces. If the support of any wavelet basis function lies within any polynomial piece, then the corresponding wavelet
coefficient is zero.
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Figure 3. Deconvolution in wavelet and mirror wavelet bases. (a) The solid line is the frequency response H™'. The
dot-and-dashed lines show the frequency bands corresponding to wavelet basis functions at different scales. The wavelet basis
functions are nearly band-limited and almost constant within dyadic frequency bands (e.g., i to %) These dyadic frequency
bands are demarcated in the figure using dotted vertical lines. If the blurring system frequency response does not have a high-
order zero at normalized frequency %, then the variance of noise colored by H ~1 (solid line) at different scales is primarily
determined by the frequency response of the inverse within the corresponding dyadic frequency band. (b) The dot-and-dashed
lines show the frequency responses of mirror-wavelet basis proposed by Kalifa et al.® The mirror-wavelet basis functions adopt
a frequency split that aims to isolate the singularities in the inverse system frequency response and thereby reduce the noise
variance in most of the mirror-wavelet basis subbands. However, if the singularity is not located at a dyadic frequency point
(3,%,%,...) then the non-zero frequency overlap leads to infinite noise variance at all scales in any adapted wavelet basis
system. The same problem occurs whenever H has a high-order zero. Thus an adapted wavelet basis system is not effective
for all convolution operators.

energy of the input signal becomes concentrated in a few large coeflicients in the wavelet domain. If the noise variance
in these large signal coefficients is not excessive, then identifying and retaining these signal coefficients and setting
the other coefficients to zero using shrinkage gives an excellent estimate. Because the retained signal coefficients
capture most of the spatial features such as edges in the signal, the final estimate retains its sharp edges as well as
noise-free smooth regions.

4.2. Drawbacks of WVD

However, such a wavelet-based approach has its limitations. These can be understood by focusing on the variance
of the wavelet coefficients of noise colored by H~!. The noise variance 012- at scale j can be approximated by¥

20) _1

1 .
95 ® 5G-1) Z |H(fn)|2027 9)

n:2(j—1)

where H(f,) are the discrete Fourier coefficients of the blurring operator , and o2 is the variance of the AWGN -~
(see Fig. 3).

From (9), it is clear that if H(f,) is small at any isolated frequency f,, then the variance of the colored noise
in the entire corresponding wavelet scale explodes. Consequently, the task of extracting the signal coefficient from
this scale using any form of scalar shrinking in the wavelet domain is rendered ineffective. As shown in Figure 3(a),
wavelet basis functions are not exactly band-limited; the DFT coefficients of the operator outside the band 20—1
to 27 — 1 also contribute to the noise variance but to a lesser extent. If the system frequency response H has a zero
whose order is greater than the number of vanishing moments of the wavelet or if the frequency response H goes
to zero at non-dyadic frequencies, then the noise variance is infinite at all the wavelet scales. In such a case, WVD
provides a zero estimate.

4.3. Best-basis solution improves performance

Kalifa et al.® advocate adapting the wavelet basis to the frequency response of the inverse of H to improve on the
performance of WVD. The adaptation is achieved by using a mirror-wavelet basis that possess a time-frequency
tiling structure different from that possessed by conventional wavelets (see Fig. 3(b)). The tiling structure used by

TThis approximation is valid only when the zeros in the frequency response H are of sufficiently low order.



the mirror-wavelet basis functions aims to isolate the frequency where the convolution operator H approaches zero
because the variance of the noise at any scale is primarily influenced by the singularities of H—! that lie in the
frequency band corresponding to that wavelet scale.

However, it is not always possible to obtain a set of basis functions that can isolate all such singular frequencies
in H~! because the wavelet basis functions are not exactly band-limited. For example, no adapted wavelet basis
scheme can provide a satisfactory solution when the blurring operator has a box-car system impulse response; the
frequency response of the # is the sinc function. In such a case, the variance of noise colored by H~! is high in all
the wavelet scales, rendering signal estimation in any adapted wavelet basis domain ineffective.

5. WAVELET-BASED REGULARIZED DECONVOLUTION (WaRD)

The Fourier domian is the ideal domain to identify and attenuate noise components amplified during inversion of
H, since it diagonalizes the convolution operator. However, since the supports of Fourier basis extend over the
entire spatial domain, the energy of signals containing spatially varying phenomena such as edges is spread over
many Fourier coefficients. Solely employing Fourier-domain shrinkage, as in FoRD, results in significantly distorted
estimates. In contrast, WVD exploits the economical signal representation in the wavelet domain. However, noise
components that are severely amplified during system inversion corrupt many wavelet coefficients thereby limiting
the effectiveness of wavelet-domain signal estimation.

The noise variance in the wavelet domain can be significantly reduced by attenuating the severely amplified
Fourier components of noise. A small amount of Fourier-domain regularization achieves this without significant signal
distortion. We propose a wavelet-based regularized deconvolution (WaRD) algorithm that simultaneously exploits
the diagonalized Fourier-domain representation of the convolution operator and spatial adaptivity of wavelets to
solve the deconvolution problem.

5.1. The WaRD algorithm
The WaRD algorithm consists of the following steps:

1. Fourier-domain regularized inversion: Instead of a pure inverse, employ a Fourier-domain regularized
inverse (see Fig. 2(c)) to partially attenuate the amplified Fourier components of noise using weights R, (fx)
(see (4)). The signal obtained after quasi-inversion is

Ralfa) = (ﬁ) Ra(f) ¥ (1)
1

= Ra(f)X(f) + (W) Ra(f) T(f2), (10)

where the parameter «, which controls the amount of Fourier-domain shrinkage employed during quasi-
inversion, is typically smaller than that used to obtain a Wiener estimate (¢ < 1). Even a small amount
of regularization ensures that the severely amplified Fourier components of noise are significantly attenuated.
Section 5.5 discusses the choice of a in greater depth.

2. Wavelet-domain signal estimation: The estimate X, still contains some residual noise. So, similar to step
(2) in the WVD algorithm (see Section 4), shrink the wavelet coefficients of X, at each scale according to the
noise variance at that scale to obtain the WaRD estimate (see Fig. 2(c)). Wavelet domain signal estimation
remains effective since the noise corrupting the wavelet coefficients is not excessive, thanks to step 1.

5.2. Tradeoff: distortion vs. noise attenuation

Noise reduction using Fourier-domain regularization comes at the cost of signal distortion and hence needs to be
controlled. In other words, this raises the question: how to pick the right value for the regularization parameter
a? The tradeoff is clear: On one hand, since Fourier-domain shrinkage smears non-stationary signal features (bias)
such as edges, a should be as small as possible. On the other hand, large o prevents excessive noise amplification
(variance) during inversion which aids the wavelet-domain signal estimation. Thus, « controls the bias-variance
tradeoff in the WaRD system.

We determine the optimal regularization parameter for the WaRD system by minimizing the overall MSE. This
optimal regularization parameter balances the amount of noise reduction carried out in the Fourier domain and the
wavelet domain.



5.3. The cost function

The overall MSE of the WaRD estimate is well-approximated by a proposed cost function that comprises of the
distortion error due to the Fourier-domain regularized inversion and error incurred during wavelet-domain signal
estimation. The cost function assumes that ideal thresholding 7' is employed during signal estimation in the wavelet
domain. Ideal thresholding keeps a noisy wavelet coefficient only if the signal power in that coefficient is greater than
the noise power. Otherwise, the coefficient is set to zero:

N 6>, if 62 |2 > o2(a
T(e‘;xk) — 7,k | ],kl ]( ) (11)
' 0, if |6’;?‘,,c|2 < 012-((1),

where 5]“, . are the wavelet coefficients of the noisy signal Xo(f,) obtained after partially regularized inversion in (10),

0%/, are the wavelet coefficients of the distorted but noiseless input signal Ry (fn) X (f»), and o%(a) is the variance of

the noise 1}{((; n) I (f.) at wavelet scale j. Ideal thresholding assumes that the signals under consideration are known.

The proposed cost function MSE(a) is given by

N-—-1
MSE(a) = 3 [1=Ra(f)IX(f)? + 3 min(|63,% o3(a)). (12)
n=0 J,k

In (12), 6%, denotes the wavelet coefficients of the input signal distorted by Fourier-domain regularization, Ro (fn) X (fn)-

The first term in 1\7[%?](04) is an estimate of the distortion in the input signal due to regularized inversion.?! This
distortion error is an increasing function of a. The second term is an estimate of the error due to ideal wavelet-domain
thresholding.?? This thresholding error is a decreasing function of «, since both the signal energy and the noise
vari/a\rge decrease as « increases. The optimal regularization parameter, denoted by a*, corresponds to the minimum
of MSE(a).

5.4. Accuracy of the cost function

The proposed cost function l\//I\STE(a) well-approximates the actual MSE of a WaRD system. The cost function
assumes that the total error is composed of independent contributions from the distortion error incurred during the
Fourier-domain regularization and the error due to subsec/lge/nt ideal wavelet-domain thresholding. We analyze the
following two cases and their effects on the cost function MSE(a).

Case (i) |65|> > 03 (a): The error contribution due to the ideal thresholding error term in MSE(a) is o3 (a) (refer

o (11)). So, the cost that m(a) associates with the estimation of §; ;. is exactly equal to the actual MSE
incurred during its estimation.
Case (ii) |65,|> < 03(a): The cost that MSE(a) associates with the estimation of 6 is |0; — 05417 + 10517

however the actual error incurred is |6 x|?. The associated cost is approximately equal to |l9],k|2 when the
distortion |0, x — 65 |* is small in comparison to |65|*. For small values of a, which typically are the case, the

distortion is comparatively small; hence the cost function is fairly accurate; MSE is within a factor of 2 of the
actual MSE for any positive value of a.ll

Since h//rSi)(a) is a good approximation of the actual error incurred (assuming ideal thresholding), it can be
minimized to find the optimal regularization parameter o* that balances Fourier-domain regularized inversion and
wavelet-domain signal estimation.

llCases that invoke such gross offsets are not generally encountered in practice.
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Figure 4. Different regularization parameters for each wavelet scale: In the figure, the filters ho, h1 and hy are the equivalent,
cumulative filters at each scale in a 2-level decomposition DWT filter-bank. Such an equivalent filter-bank representation can
be obtained by transforming the filters in the filter bank using the noble identities®® and then grouping the synthesis filters
and the decimators together. Different regularization parameters, oo, a1, and a» are used at each scale.

5.5. Optimal o for each scale

In the previous sections, we assumed a single Fourier-domain regularized inverse for all subbands. An interesting
generalization is to have Fourier-domain regularized inverses with a different regularization parameters for every
wavelet scale (see Fig. 4). In this case, we need to determine the optimal regularization parameter for each wavelet
subband. Such a generalization makes the cost function separable with respect to the regularization parameter
of each scale thereby simplifying the analysis. By minimizing the cost function with respect to the regularization
parameter, we can show that the optimal regularization parameter a;, for scale p satisfies20

1
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where 0;,’}: denotes the wavelet coefficients of the distorted input signal Ra-(fn) X (fn) at scale p, and o2 () denotes
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P (a;)> , (13)

> 02 (a;)) denotes the number of wavelet coefficients

In words, (13) reveals that the optimal regularization parameter should be equal to the proportion of the distorted
signal wavelet coefficients that lie above the noise variance. Expression (13) is a recursive expression, since both sides
depend on aj.

Consider a signal such that the signal energy in scale p is concentrated in a small proportion of the wavelet
coeflicients at that scale, i.e. few wavelet coefficients are large while most of the other wavelet coefficients are nearly
zero. This economical distribution does not change significantly when the signal is distorted by using a small amount
of Fourier-domain regularization, because the derivative of the total distortion introduced at zero regularization
(a = 0) is zero.? On the other hand, the rate of decrease of the noise variance with a, in the wavelet scale is
maximum at o, = 0. So, 02(a;) decreases rapidly at small values of ;. Condition (13) suggests that the noise
variance be reduced using Fourier-domain regularization so that a sufficient number of wavelet coefficients of the
signal are larger than the noise variance.

The optimal regularization parameter aj is never zero. If a;, = 0 satisfied (13), it would imply that the noise
variance is greater than the energy of each wavelet coefficient. Hence all wavelet coefficients at scale p would be
shrunk to zero during wavelet-domain estimation. For most real world signals, a significant proportion of the wavelet
coeflicients are ~ 0; so @, = 1 also will not satisfy (13). Hence a, = 1 (Wiener filter) also is not an optimal choice.

Several values of a;, could potentially satisfy the optimality criterion. The choice of the optimal regularization
parameter in such a case is not clear. However, choosing any «, sufficiently greater than zero (e.g., o = 0.2) was



found to provide estimates comparable to those obtained by choosing the optimal a when the true signal spectrum
| X (f.)|? was used during Fourier-domain regularized inversion.

Thus, the expression for the optimal regularization parameter quantifies the notion of balancing Fourier-domain
inversion and wavelet-domain estimation within a WaRD.

5.6. Optimality of WaRD

WVD? and the mirror-wavelet basis technique® are special cases of WaRD** with o = 0. By construction, WaRD
includes the value a = 0 in the search-space for the optimal o*. Hence WaRD enjoys all the desirable properties of
Donoho’s WVD such as optimal rate of error decay for dilation-homogeneous operators.

The optimal a* is never zero at a finite resolution N (though it may approach zero with increasing N). Hence,
WaRD will outperform wavelet-based deconvolution methods described in® ¢ 24 in terms of MSE at a given resolution.

Techniques based on the WVD® 6 (as described in Section 4) are in general not applicable when H is not invertible.
However, thanks to the FoRD aspect of WaRD, WaRD gives excellent estimates even when # is non-invertible.

6. WaRD IMPLEMENTATION

The WaRD algorithm as outlined in Section 5 assumes knowledge of the variance o2 of the additive noise v and the
Fourier spectrum |X (f)|? of the input signal. However, these are typically unknown in practice and hence need to
be estimated. The variance of the additive noise can be reliably estimated from the observation y using a median
estimator in the finest wavelet scale.'® To estimate | X (f)|?, we employ the iterative Wiener technique.?® However,
since this estimation is not robust at frequencies where H(f,) ~ 0, we terminate the algorithm after 10 iterations
and add a small positive constant to the estimate thereby boosting the estimated | X (f)|? at high frequencies.

Condition (13) provides the necessary condition for the regularization parameter to optimally balance Fourier-
domain regularization and wavelet-domain estimation at each scale. However, (13) cannot be used in practice because
it assumes knowledge of the distorted wavelet coefficients of the unknown original signel. Further, the derivation
for the optimal regularization parameter assumes ideal thresholding, which cannot be implemented in practice. In
practice, the optimal regularization parameter is also influenced by the wavelet-domain estimation algorithm (hard
thresholding, soft thresholding, wavelet-domain Wiener filtering, etc.) used in the WaRD system. So, we estimate
the regularization parameter that is common for all wavelet scales empirically from a plot of the norm of the WaRD
estimate versus the amount of regularization.2°

A variety of wavelet-domain estimation techniques can be used in practice. The choice of a good wavelet-
domain estimation scheme influences the final performance significantly. Recently, the wavelet-domain Wiener shrink
estimation algorithm was proposed by Ghael et al.2® and analyzed further by Choi et al.2” It was observed that this
technique outperforms in the MSE sense the conventional wavelet-domain estimation schemes that employ hard and
soft thresholding. Estimation using a wavelet-domain Wiener shrinkage consists of the following steps: First obtain
a rough estimate of the input signal using conventional wavelet-domain thresholding techniques. Then, use this
estimate to obtain a final refined estimate by employing Wiener estimation on each wavelet coefficient.

Wavelet domain estimation schemes that use the DWT are not shift-invariant, shifts of y will result in different
estimates. The redundant, shift-invariant DWT yields significantly improved estimation?® by simply averaging over
all possible shifts of the observation y at no significant increase in the overall computational cost. We employ
a redundant, shift-invariant DWT with a wavelet-domain Wiener shrinkage to estimate the input signal. The
computational complexity of calculating the redundant DWT is O(N log N), where N is the number of samples. For a
full decomposition, there are log(N) wavelet scales. Calculation of the variances at each scale requires computing the
convolution of the regularized inverse with the cumulative wavelet filter at that scale. Thus, the overall computational
complexity of the algorithm, given the regularization parameter and | X (f,)|?, is O(N log® N).

**For comparisons with the mirror-wavelet basis approach,® the use of a similar adapted wavelet basis would be required.



7. RESULTS

We illustrate the performance of the WaRD algorithm using a 2-d simulation as described by Banham et al.® The
input z is the 256 x 256 Cameraman image and the discrete-time system response h is a 2-d, 9 x 9-point smoother.
Such a response is commonly used as a model for blurring due to a square scanning aperture such as in a CCD
camera.” The blurred SNR (BSNR) is defined as 101log, (||z ® h||3/No?). The additive noise variance was set such
that the BSNR is 40 dB. Figure 5 illustrates the desired z, the observed y, the Wiener filter estimate Z;, and the
WaRD estimate for o* = 0.1 (determined empirically??). The WVD? and mirror wavelet basis® methods are not
applicable in this situation, due to the many zeros in frequency response of the blurring operator #. The WaRD
estimate is clearly better that the Wiener estimate in overall visual quality and MSE. The improvement in the SNR,
(ISNR) is defined as 10logy, (||z — y||3/|lz — Z||3) where Z is the estimate. For the same experiment, Banham et al.
report an ISNR of 6.68 dB using their the multiscale Kalman filter.® In contrast, the proposed WaRD technique
provides an ISNR of 10.6 dB. The visual quality of the WaRD estimate as compared to their techique is also better
(see Figure 7(d) in Banham et al.?).

The difference in the quality of the estimates obtained using the Wiener filter and WaRD can be grasped by
viewing the cross-sections through the images. Figure 6 shows the cross-sections through row 160 of all images. The
Wiener estimate cross-section shown in Figure 6(c) illustrates the failure of the Wiener technique to adapt to the
smooth regions and the edges in the image simultaneously. This lack of spatial-localization reflects as ripples in the
Wiener estimate. In contrast, Figure 6(d) clearly illustrates the spatial-adaptivity of WaRD. We observe the smooth
regions and the edges are simultaneously preserved.

8. CONCLUSIONS

In this paper, we have proposed an efficient multi-scale deconvolution algorithm WaRD that optimally combines
Fourier-domain regularized inversion and wavelet-domain signal estimation. The WaRD can be potentially employed
in a wide variety of applications such as satellite imagery, seismic deconvolution, and channel equalization to obtain
enhanced deconvolution estimates.

For spatially varying signals, the WaRD outperforms the LTI Wiener filter and WVD in terms of both visual
quality and MSE performance. Since WaRD subsumes WVD, WaRD also enjoys asymptotically near-optimal rates
of error decay with increasing samples for convolution operators such as Radon Transform. In addition, WaRD also
improves on the performance of the WVD at any fixed resolution. Furthermore, WaRD continues to provide a good
estimate of the original signal even in the presence of any non-invertible system. The computational complexity of
the WaRD algorithm is just O(N log N), where N is the number of samples.

Theoretical analysis of the ideal WaRD algorithm reveals that the optimal regularization parameter at each
wavelet scale is determined by the proportion of distorted input signal wavelet coefficients that are greater than
the variance of noise colored by regularized inversion. From (13), it follows that for finite data samples, inversion
without Fourier-domain regularization in a wavelet-based deconvolution system is never optimal. Further, using a
regularization parameter a = 1, which corresponds to employing a Wiener deconvolution filter for inversion, is also
sub-optimal. In essence, the optimal regularization parameter is simultaneously determined by the frugality of the
wavelet representation of the input signal and the Fourier-domain structure of the convolution operator.

Since the theoretical analysis assumes knowledge of the input signal, expression (13) cannot be used in practice to
determine the regularization parameter. However, fortunately, the final performance is observed to be quite insensitive
to changes in the value of the regularization parameter around the optimal value. As a guide, in simulations spanning
many real-world images and convolution systems, the optimal regularization parameter a* almost always lay in the
range [0.2,0.3] when the true spectrum |X(f,)|? was available. However, if the true spectrum is not available, then
a* is dependent on the quality of the spectral estimate and needs to be determined empirically.

There are several avenues for future WaRD related research. We have focused on scalar processing during wavelet-
domain estimation. However, there exist dependencies between the wavelet coefficients that can be exploited. We are
currently working towards combining WaRD concepts with the hidden Markov tree model-based wavelet estimation.2?
We believe that exploiting such inter-dependencies in the wavelet domain will help preserve edges and other spatially
localized phenomena better consequently leading to better deconvolution estimates.

One interesting twist to the approach to wavelet-based deconvolution is to first exploit the wavelet domain to
estimate x ® h from the noisy observation y and then invert the convolution operator. This technique, called the



Figure 5. (a) Cameraman image = (256 x 256 samples). (b) Observed image y (BSNR = 40 dB). Smoothed by a 9x 9-point
smoother + noise. (c) Wiener filter estimate using the estimated | X (f.)|?> (SNR = 20.6 dB, ISNR = 8.8 dB ). The ripples in
the image result because the Fourier basis used by the Wiener filter (FoRD with o = 1.0) have support over the entire spatial
domain. (d) WaRD with a = 0.1 (SNR = 22.4 dB, ISNR = 10.6 dB). In contrast to the Wiener estimate, the smooth regions
and most edges are well preserved in the WaRD estimate, thanks to the spatially-localized wavelet basis functions. However,
some faint features such as the grass are lost during wavelet-domain estimation.



(b)
(c) (d)

Figure 6. (a) Cross-section of original image = (row 160 from Figure 5(a)) contains both smooth regions and discontinuities.
(b) Cross-section of the blurred and noisy observed image y. (c) Cross-section of estimate obtained using the spatially invariant
Wiener filter (FORD with o = 1.0). The Wiener deconvolution estimate exhibits ringing artifacts. (d) Cross-section of the
hybrid WaRD estimate. Controlled Fourier-domain regularization ensures that residual noise can be effectively tackled by
subsequent spatially-adaptive wavelet-domain estimation. WaRD preserves smooth regions and edges simultaneously even
when the blurring system H is non-invertible.

vaguellete-wavelet decomposition (VWD) has been studied by Silverman and Abramovich.?® The salient point of
such a technique is that the wavelet-domain estimation now deals with white noise instead of more complicated
colored noise. However, in such a case the reconstruction basis is no longer a signal-adapted wavelet-basis, but rather
a hybrid basis that is not spatially localized. Further, this technique is again not applicable when # is not invertible.
Construction of a universally applicable, hybrid deconvolution scheme that lies between WVD and VWD seems both
promising and challenging.
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