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Wavelet-Based Deconvolution for Il1l-Conditioned
Systems

Ramesh Neelamani

Abstract

This thesis proposes a new approach to wavelet-based image deconvolution that com-
prises Fourier-domain system inversion followed by wavelet-domain noise suppression.
In contrast to other wavelet-based deconvolution approaches, the algorithm employs
a reqularized inverse filter, which allows it to operate even when the system is non-
invertible. Using a mean-square-error metric, we strike an optimal balance between
Fourier-domain regularization that is matched to the system and wavelet-domain
regularization that is matched to the input signal. The resultant algorithm is fast,
O(Nlogz N) where N denotes the number of samples, and is well-suited to signals
and images with spatially-localized phenomena such as edges. In addition to enjoy-
ing asymptotically optimal rates of error decay for some systems, the algorithm also
achieves excellent performance at fixed data lengths. In simulations with real data,
the algorithm outperforms the conventional LTI Wiener filter and other wavelet-based

deconvolution algorithms in terms of both visual quality and MSE performance.
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Chapter 1

Introduction

Deconvolution is a recurring theme in a wide variety of signal and image processing
problems, from channel equalization [1] to image restoration [2]. The importance of
deconvolution can be grasped with a real-life example from image restoration. Satel-
lite images obtained in practice are often blurred due to limitations such as aperture
effects of the camera, camera motion and atmospheric turbulence. Deconvolution be-
comes necessary to get a crisp, deblurred image that is needed for viewing or further
processing.

In its simplest form, the 1-d deconvolution problem runs as follows. The desired
signal z is input to a known linear time-invariant (LTI) system A having impulse
response h. Independent identically distributed (i.i.d.) samples of Gaussian noise 7y
with variance o2 corrupt the output samples of the system 4. The observations at

discrete points t,, are given by
y(tn) == (z ® h)(tn) + v(n) n=1,...,N. (1.1)

For simplicity, we assume circular convolution, denoted by ® in (1.1). Given y, we
seek to estimate z. In the Discrete Fourier Transform (DFT) domain, we equivalently

have
Y(fn):H(fn)X(fn)+F(fn) n=1,...,N, (1'2)

where Y, H, X and I' are the length-N DFTs of the observation y, LTI system

impulse response h, input z and noise 7 respectively. The f, := 2X(n — 1) denote
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Figure 1.1 : Convolution model setup.

the normalized frequencies in the DFT domain. The problem formulation trivially
extends to multi-dimensional data.
If the system frequency response H(f,) has no zeros, then an unbiased estimate

of z can be obtained by inverting H as

)?(fn) = Hﬁl(fn)y(fn)
= X(fa) + H ' (fa) T(fa)- (1.3)

However, if the system is ill-conditioned, i.e., H(f,,) is small at any f,,, then enormous
noise amplification results during inversion, resulting in an extremely noisy, useless
estimate.

The problem of noise amplification can be alleviated by using an approximate,
regularized inverse instead of a pure inverse. Regularization aims to provide a bet-
ter solution by reducing noise in exchange for some distortion in the estimate [3];
regularization becomes essential in situations involving ill-conditioned systems.

Since the exact input is generally never recoverable, different measures can be used
to evaluate the quality of an estimate; one commonly used measure of performance is
the mean squared error (MSE) between the actual input = and the estimate. The LTI

Wiener deconvolution filter is a commonly used example of regularized deconvolution.



It provides the MSE-optimal regularized LTT solution to the deconvolution problem.

Formally, the estimation procedure used by the LTI Wiener deconvolution filter can

1
H(fn)

a noisy estimate X (f,). (2) Regularize by shrinking each frequency component of

be understood as follows: (1) Invert the convolution operator using to obtain
X (f,) proportionately according to the signal-to-noise-Ratio (SNR) at f,, [4]; shrink
less/more when SNR is high/low.

The Fourier representation diagonalizes the convolution operator; hence the LTI
Wiener deconvolution filter can precisely identify and attenuate the noise that gets
amplified during inversion of H, thereby fully exploiting the structure of the blurring
system. In fact, when the input signal can be modeled as wide-sense stationary
(WSS) and Gaussian, the LTI Wiener deconvolution filter is MSE-optimal over all
estimators.

However, the LTI Wiener filter does not provide a good solution when the input
signal contains spatially localized phenomena such as discontinuities, eg., edges (refer
Figure 1.2(f)). The reason behind this drawback is the following: Though the Fourier
domain exploits the structure of convolution operator # well, the domain is not
well-suited to represent input signals with spatially localized features because the
Fourier basis functions have support that extend over the entire spatial domain. So,
LTT Wiener filter processing lacks spatial selectivity, consequently important spatial
features such as edges get smeared.

Over the last decade, the wavelet transform have proven to be an invaluable tool
for dealing with a wide class of signal including signals with spatially localized fea-
tures. Wavelet representations use basis functions that are localized in time and
frequency. Wavelets provide economical representations to a large class of signals
such as signals belonging to Besov spaces [8]; wavelets capture most of the signal

energy using a few large wavelet coefficients. The ability of wavelets to economically
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Figure 1.2 :  (a) Test signal x (N = 1024). It is a concatenation of Donoho’s Blocks
and Heavisine signals [5]. (b) Observed signal y (MSE=0.0060). It is obtained by blurring
xz with by H and adding noise. (c) System frequency response H. It contains a zero at
index % (index % corresponds to the normalized DFT frequency f = 0.5). (d) System
Inverse frequency response H~'. It amplifies noise at high frequencies. The mirror wavelet
frequency splits for estimate (g) are shown with dashed vertical lines. (e) Pure inverse esti-
mate (MSE=1.1056). The pure inverse % amplifies all the high frequency noise components
to give an extremely noisy estimate. (f) Wiener filter estimate (MSE=0.0048). The Wiener
filter is ineffective since the signal contains spatially localized phenomena such as edges;
hence it provides an unsatisfactory estimate. (g) Mirror wavelet basis estimate [6, pp. 458—
461] (MSE=0.0027). The frequency splits (shown using dotted lines in (d)) aim to isolate
the frequency where H goes to zero. The estimate performs better than the WVD method
of [7] and conventional Wiener filter. (h) WaRD estimate with regularization o* = 0.06,
(MSE=0.0017). The WaRD system tackles the noise amplification that stems from the
action of H™! (refer (d)) by employing partial Fourier-domain regularization followed by
wavelet-domain estimation. It easily outperforms the mirror wavelet approach as well.



represent a wide class of signals has been leveraged into powerful, spatially adaptive,
signal-estimation algorithms that are based on simply shrinking the wavelet coeffi-
cients of the noisy signal. Further, such simple wavelet-based estimation schemes are
MSE near-optimal for a wide class of signals; they outperform all linear estimation
techniques [9].

The problem of deconvolution is equivalent to signal estimation in the presence
of noise colored by H~! (refer (1.3)). This motivates the following wavelet-based

approach to the problem of deconvolution: (1) Invert the convolution operator using

1

iy o obtain a noisy estimate X (fn)- (2) Regularize by shrinking each wavelet

coefficient of the noisy estimate X (fn) using the noise variance at each wavelet scale.

Wavelet-based deconvolution techniques, hereby called WaD, aim to exploit the
economical wavelet representation of signals to effectively identify and estimate the
signal. In fact, for special classes of blurring operators such as the Radon transform,
operator inversion followed by wavelet-domain shrinkage is near-optimal for a wide
class of input signals [7,10].

However, a WaD scheme cannot provide good estimates for all convolution systems
‘H. In fact, the wavelet-based scheme would provide a zero signal for an estimate in
the presence of most systems that are non-invertible; eg., when the impulse response
h is a box-car, a commonly used model in image blurring [2], the noisy estimate
7 obtained after system inversion has infinite noise variance at all wavelet scales,
rendering wavelet-domain estimation ineffective. In such a case, some amount of
Fourier-domain regularization becomes imperative.

In this thesis, we propose an improved hybrid wavelet-based regularized decon-
volution (WaRD) algorithm suitable for use with any ill-conditioned systems. The
basic idea is simple: employ both Fourier-domain (Wiener-like) regularized inversion

and wavelet-domain signal estimation. During this tandem processing, we exploit



Fourier-domain regularization to adapt to the convolution system and thereby con-
trol the noise but use it sparingly to keep the accompanying smearing distortions to
the minimum required; bulk of the noise removal and signal estimation is achieved
using wavelet shrinkage.

Using an MSE metric!, we show that the optimal balance between local processing
with wavelet basis and global processing with Fourier basis is heavily influenced by
the distribution of input signal energy in the wavelet domain, and the convolution
operator.

Interestingly, one extreme of the balance is to perform no Fourier-domain reg-
ularization; this is similar to the approaches of [6,7]. In [7], Donoho introduced
the Wavelet-Vaguellete Decomposition (WVD) technique to solve general linear in-
verse problems. For the special case of deconvolution, WVD is equivalent to WaD
as described above. Donoho proved that, for a certain special class of operators that
includes the Radon transform, WaD possesses asymptotically optimal rates of error
decay as the number of observation samples increases. Since WaRD subsumes WaD,
the proposed WaRD technique also possesses asymptotically optimal error decay rates
for such special operators. In addition, WaRD also improves on the performance of
WaD at any fixed samples by choosing the optimal amount of regularization. Further,
unlike WaD, WaRD is applicable in the presence of any convolution operator.

Recently, Mallat proposed the use of a mirror-wavelet basis that adapts to the
frequency response of convolution operator A to improve on the performance of WaD
when the frequency response of # is as shown in Figure 1.2(b) [11]. Comparing

Figures 1.2(g) and 1.2(h), we see that WaRD provided a better estimate than that

!Even though MSE metric does not capture visual appeal of images in general, we found that in

case of wavelet-based deconvolution, optimizing over an MSE metric gave satisfactory results.



obtained by an adapted basis approach. Though an adapted basis provides better re-
sults than WaD (not shown), it is not effective for all types of ill-conditioned systems.
eg., when H has a boxcar system response, adapting to the sinc frequency response
of H using wavelets fails.

Nowak has employed an under-regularized filter in [12] during system inversion
and subsequently used wavelet-domain signal estimation since the blurring operator
in the problem was non-invertible. However he did not study the implications of using
regularized inversion and the choice of the optimal amount of regularization.

After discussing regularization in more depth in Chapter 2, we briefly review
wavelet transforms and its properties in Chapter 3. Previous wavelet-based decon-
volution approaches are discussed in Chapter 4. We present our improved scheme in
Chapter 5 and elaborate on its implementation in Chapter 6. Illustrative examples
lie in Chapter 7. We conclude by summarizing our work and sketching out future

directions in Chapter 8.



Chapter 2

Regularized Inversion of Ill-Conditioned Systems

Deconvolution involves estimating the input z from a blurred and noisy observation
y (refer Eqn. (1.2)). Simply inverting the system fails to provide a satisfactory
solution. The problems that arise can be understood by analyzing the Singular Value

Decomposition (SVD) of the operator H.

2.1 System Inversion using SVD

Let h ® z denote the action of the convolution operator H on some signal z. This can
be expressed in terms of the eigenvectors e, and eigenvalues A, of the operator H as

follows.
h®z= Z)\n<z,en)en, (2.1)
where (z, e,,) denotes an inner product l:etween z and e,. e, and \, are obtained by
the SVD of the operator . The action of the inverse of H on any signal z, denoted
by h=! ® z, is given by
hle®z= Z ANz, en)en. (2.2)

Eqn. (2.2) reveals that the projection of z along eigenvectors that correspond to
small eigenvalues of H, get amplified during inversion. For any convolution operator,
the sinusoidal DFT vectors form the eigenvectors and the DFT coefficients of the
system impulse response h give the eigenvalues of the system . So, during inversion
of the convolution operator (refer Eqn. (1.3)), the frequency components of noise

corresponding to small Fourier coefficients of h are amplified during inversion.



An easy fix to the problem of noise amplification during inversion is to employ a
windowed-SVD inversion [3].

r = lNL_1®y

= Zrn yaen

= Zrn (h®x+7,en)e,

= Zrn T, en)en + Zm (7, €n)en, (2.3)

where 7, are the weights chosen to shrink the components of noise 7y that get amplified
during inversion of H. This achieves noise reduction albeit at the cost of some bias
in the estimate. The resultant operation is a common form of regularization that

achieves quasi-inversion of H.

2.2 LTI Wiener Deconvolution

For a convolution operator, the windowed-SVD inversion is equivalent to separately
shrinking each Fourier component of the noisy observation obtained after pure inver-
sion to attenuate the noise. The optimal weights that can be used to shrink each
Fourier component during regularized inversion is a function of the SNR at each

frequency. For WSS signals, the optimal weights R(f,) are given by

|H (fn)* Pe(fn)
[H(fa)P? Po(fn) + 0

where P,(f,) is the power spectral density of the stochastic signal x and o2 is the

R(fn) =

(2.4)

variance of additive noise y. The resulting LTT quasi-inverse operator is called the
LTT Wiener deconvolution filter.
The action of the LTI Wiener deconvolution filter can be understood as being

composed of the two steps' (refer Figure 2.1).

!Both these steps are simultaneously employed in practice. So the LTI Wiener deconvolution
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Obsel’vation Inversion (I'j:grl:]ral?rr] Wiener
\ H~ shrinkage Estimate

Figure 2.1 : Block diagram of Wiener deconvolution filtering: Fourier domain shrinkage is
used to estimate the signal in the presence of noise colored during inversion using H~!.

1. Pure Inversion: The noisy and blurred observation v is treated with H ! to
obtain a noisy, unbiased estimate Z of the input signal as explained in Eqn. (1.3).
This step necessarily amplifies the noise components at frequencies where H( f,)
is small. Further processing is required to estimate the signal from this ampli-

fied, colored noise.

2. Fourier-domain Signal Estimation: Each frequency component of the noisy
signal obtained after pure inversion is shrunk using weights R(f,). From ex-
pression (2.4), it is clear that less shrinkage is employed at components where

the SNR is high. The LTI Wiener deconvolution estimate of the input signal

is [4]
X(h) = R g ) YU (2.)
— RUDXUD+ R (g5 )T (29

For Gaussian WSS signals, the LTI Wiener deconvolution provides the globally
MSE-optimal estimate of the input since the Fourier domain ideally represents both,
the colored noise after inversion, and the signal of interest. The Fourier coefficients

of the signal and the noise colored by H~! are independent making individual, scalar

filter is applicable even when the system # is non-invertible.
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estimation in the Fourier domain optimal. However, when the input signal or noise
is not Gaussian, Wiener filtering no longer remains optimal.

When the input signal x is deterministic, the optimal weights are obtained by sub-
stituting Py (fn) = | X (fo)? in Eqn. (2.4)%. In the deterministic case, the conditions
when the Wiener estimate (or in general the windowed-SVD) provides the optimal
solution get more involved. We just mention that smoothness constraints need to be
imposed on the signal and the convolution operator so the windowed-SVD is optimal.
We refer the reader to [7,13] for further details. We have assumed a deterministic

signal for the rest of the thesis.

2.3 Drawbacks of the Wiener Deconvolution Filter

The LTI Wiener filter does not provide a good estimate when the input signal com-
prises of spatially localized phenomena such as edges. Though the Fourier domain is
still the ideal domain to represent the noise colored by the inversion of 4, the domain
is not well-suited to represent the signal of interest x. The Fourier basis functions that
are exploited by the Wiener filter have support that extend over the entire domain.
So, scalar operations on the Fourier coefficients lack any spatial localization thereby
resulting in all spatial components of the input signal being processed uniformly.
For example, images can been modeled as piece-wise smooth functions, an impor-
tant class of spatially varying signals [14]. For discontinuous signals such as piece-wise
polynomial signals, the energy of the signal in the Fourier domain decays very slowly,
O(%), as the number of samples N of the underlying continuous process increases. As
a result, for a low-pass H, the error per sample decays very slowly, O(ﬁ) where

v characterizes the low-pass filter, as increasingly dense samples of the underlying

2Note that the quasi-inverse is now signal-dependent and hence non-linear in the strict sense.
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continuous time observation are obtained (refer Appendix B).

The slow error decay results because the variance of noise colored by H~! is large
at high frequencies leading to excessive coefficient shrinkage (refer expression (2.4))
during Wiener estimation. As a result, the high frequency components required to
reproduce sharp edges in the estimate are lost. The significant signal energy loss at

high frequencies reflects in the form of an unsatisfactory estimate.

2.4 Alternative Solutions

Consider the following modified weights that can be used for shrinking the Fourier

coefficients of the noisy signal obtained after inversion of .

[H (fo)” X (f)]*

Ralln) = (IR IX P + ao?

(2.7)

where « is the called the regularization parameter [15]; the Wiener deconvolution filter
uses @ = 1. For values of o < 1, Ro(f,) shrink the Fourier coefficients of the noisy
signal X (f,) obtained after pure inversion (refer Eqn. (1.3)) less than the weights
used by the Wiener filter. As a result, they cause less distortion and consequently
result in sharper edges in the estimate. However, small o values back-fire in the form
of higher noise levels in the estimate. On the other hand, for values of a > 1, R, (f,)
efficiently suppresses noise but at the cost of excessive distortion and smearing of
edges. Thus, due to the inherent bias-variance tradeoff, simply changing the amount
of Fourier-domain shrinkage does not provide a satisfactory solution to the problem
of preserving spatially varying phenomena.

Better deconvolution techniques need to take the spatial vagaries of the signal into
account. One such technique is to employ the best linear estimator, the time-varying
or matrix version of the Wiener inverse [16]. However, the time-varying Wiener filter is

impractical because it requires the input signal cross-correlation matrix which in turn
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needs precise knowledge of the spatially varying phenomena of the signal. Further,
the processing is computationally intensive, O(N?) where N is the number of samples,
because the estimator possesses no special structure.

Deconvolution is equivalent to the problem of estimating the signal in convolu-
tionally colored noise. In Utopia, we would come up with a transform that captures
the signal energy and colored noise energy in separate, distinguishable coefficients.
However, this is impossible for most interesting problems. Instead, we must com-
promise and find a domain where most of the signal energy is concentrated in a few
identifiable, relatively noise-free coefficients that we would retain. It is also important

that the domain be able to adapt to the unknown spatial characteristics of the signal.
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Chapter 3

Background on Wavelets and Signal Estimation

3.1 Wavelet Transform

The discrete wavelet transform (DWT) represents a 1-d signal x in terms of shifted
versions of a low-pass scaling function ¢ and shifted and dilated versions of a prototype

bandpass wavelet function 9 [6,17]. For special choices of ¢ and 1, the functions

bik(t) = 27Pp(2t—k), (3.1)

oik(t) = 2¢(2t—k), jk€Z, (3.2)

form an orthonormal basis, and we have the representation [6,17]

2(t) = D wiok Giok(t) + DY wikthir(t), (3.3)

j=jo k
with ujy := [2(t) 5, () dt and wj, := [x(t) ¥}, (t) dt. The parameter J controls the
resolution of the wavelet representation.

For a discrete-time signal, the N wavelet coefficients {u,, s, w;x} of z(t,) can be
easily computed using a filter bank consisting of low-pass filters, high-pass filters,
and decimators [17]. Due to the special filter band structure the forward and inverse
wavelet transform can be computed in O(N) operations, where N is the length of
the signal. We have used the periodic DWT, which uses circular convolutions in the
filter bank, in this thesis. For brevity, we will collectively refer to the set of scaling
and wavelet coefficients as {0, } := {uj, s, w;,}. Multidimensional DWTs are easily

obtained by alternately wavelet-transforming along each dimension [6,17].
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3.1.1 Multiresolution and time-frequency localization of wavelets

Wavelet provide a multiresolution representation of a signal, i.e., the wavelet co-
efficients capture the signal features at different resolution levels. In the wavelet
representation notation used, j indexes the scale or the resolution of analysis - larger
j corresponds to higher resolution of analysis. j = j, indicates the coarse scale or
lowest resolution of analysis and j = J indicates the fine scale or highest resolution
of analysis. In the wavelet representation, £ indexes the spatial location of analysis.
For a wavelet v (t) centered at time zero and frequency fy, the wavelet coefficient w;
measures the signal content around time 277k and around frequency 27 f;. Thus,
wavelets exhibit simultaneous spatial and frequency localization. The relation of the
DWT coefficients to tilings in a time-frequency plane is graphically depicted in Fig-
ure 3.1(a). In contrast, Figure 3.1(b) depicts the time-frequency tiling of the Fourier

transform.

3.1.2 Wavelets as Unconditional Bases

Wavelets enjoy the following important property: they provide an unconditional basis
for a signal classes such as Besov classes, which determines membership to any space
in the class based on the signal smoothness; signal with different smoothness belong
to different parameterized spaces in the Besov class [8]. For example, important
spaces such as Sobolev spaces and L, spaces belong to the Besov class. In essence,
the unconditional basis property of wavelets means that signals belonging to such
classes are characterized only by the amplitudes of the wavelet coefficients [7,8]. In
contrast, the Fourier basis do not provide an unconditional basis for such a wide class
of signals.

The implications of this abstract notion of unconditional basis are extremely ap-
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Figure 3.1 : (a) Time-frequency tiling for DWT: The DWT basis function corresponding
to the fine scale wavelet coefficients ws1,wsyz,...w3g are well-localized in time but have
large bandwidths. They capture the high-frequency characteristics of a signal at different
times. The DWT basis functions corresponding to the coarser scales wavelet coefficients
wa,1,-.-wa4 and wi jandw; g, capture the intermediate frequency characteristics of a sig-
nal. The scaling coefficients w1 jandu o capture the lowest frequency characteristics of the
signal at different times. (b) Time-frequency tiling for DFT: In contrast to the DWT basis
functions, the DF'T basis functions have support over the entire time domain but are per-
fectly localized in frequency. The DF'T coefficients capture the overall signal energy at a
particular frequency fy.

pealing. In [18], Donoho shows that unconditional basis are desirable because they
typically express the signal very economically by capturing most of the signal en-
ergy in a few coefficients. The wavelet coefficients of signals in a Besov class decay
exponentially with scale in the wavelet domain!

In addition to having direct implications on data compression, economical rep-
resentations are also desirable for signal estimation using non-linear approximation
[19,20]. In fact, unconditional basis are optimal for signal estimation and data com-
pression [18]. Further, the unconditional basis property also ensures that even simple
scalar operations on each wavelet coefficient is sufficient to ensure near-optimal per-

formances.
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3.2 Signal Estimation by Wavelet Shrinkage

Recently, wavelets have provided effective solutions to the problem of signal estimation
in the presence of noise [5,9]. Consider the problem of signal estimation in the
presence of white noise. Many real world signals have economical wavelet-domain
representations where a few large wavelet coefficients capture most of the signal energy
[6,14]. However, since a wavelet transform is orthonormal and linear, the energy
of white noise remains scattered over all the wavelet coefficients. This disparity
between the signal and noise representation in the wavelet domain has been exploited
in a number of powerful, near-optimal, signal estimation techniques based on simply
shrinking the wavelet coefficients of the noisy signal.

Since wavelets provide good economical representations in the presence of spatial
varying features of the signal, signal estimation in the wavelet domain preserves such
features more effectively than conventional LTI techniques such as estimation methods
based on windowed-SVD. In fact, wavelet-domain signal estimation techniques are
near-optimal for a wide class of signals including piece-wise smooth signals and signals
in the Besov class[5, 18].

Such wavelet-domain signal estimation techniques based on shrinkage can also be
extended to estimate signals in the presence of colored noise. The optimality of such
a wavelet-based approach now becomes dependent on the coloring of the noise in

addition the signal class [10]
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Chapter 4

Wavelet-based Deconvolution (WaD)

4.1 The WaD Algorithm

Since Eqn. (1.3) and Eqn. (1.1) are equivalent, deconvolution is equivalent to esti-
mating the input signal in the presence of noise colored by H . The near-optimality
of wavelet-based techniques for a wide variety cases encountered in signal estimation
combined with the appealing ability of wavelets to adapt to unknown spatial features
of a signal has inspired the use of wavelets, particularly when the signal contains spa-
tially localized features, to solve the problem of deconvolution in the following way

(refer Figure 4.1).

1. Pure Inversion: Similar to Wiener deconvolution, the first step involves obtain

a noisy, unbiased estimate 7 of the input signal as explained in Eqn. (1.3).

2. Wavelet-based Signal Estimation: In contrast to Fourier-domain shrinkage

employed by the Wiener deconvolution filter, WaD estimates the signal from

Observation Inversion Wavelet Wavelet
— 21 domain :
y H shrinkage Estimate

Figure 4.1 : Block diagram of Wavelet-based deconvolution (WaD): Wavelet-domain shrink-
age is used to estimate the signal in the presence of noise colored during inversion using
HL.
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the noisy T obtained after pure inversion by shrinking each wavelet coefficient
of the noisy signal!. The variance of noise corrupting all wavelet coefficients
in a particular scale is the same, but the variance varies with different scales
[10]. So scale-dependent shrinkage is employed to estimate the signal wavelet
coefficients. Inverse DWT is then used to obtain the wavelet-based estimate

from the estimated signal wavelet coefficients.

4.2 Optimality of WaD

This basic idea was first exploited by Donoho who studied the applications of wavelets
to linear inverse problems and showed that a wavelet-based deconvolution approach
is near-optimal to recover a wide class of signals (eg., Besov classes) when the linear
operator H satisfies

h(t) ® y(at) = a® h(at) ® y(t), (4.1)

for some exponent (3. Such an operator H is said to be scale invariant or dilation
homogeneous. The Radon transform is an important example of dilation homoge-
neous operators [7,21]. To the best of our knowledge, the optimality of wavelet-based
deconvolution for general dilation-inhomogeneous operators is still unknown. Using
wavelet-based techniques, Nowak [12] has observed impressive results for some com-
mon LTT operators as well. Mallat [11] has also advocates a similar philosophy and
claimed state-of-the-art performances in satellite image recovery.

We again consider the example of piece-wise polynomial functions to gain in-
sight into the advantages of such an approach. Wavelets represent an length-N

piece-wise polynomial signal very economically using just O(log, V) non-zero wavelet

!Note that different shrinkage techniques can be used on the noisy wavelet coefficients but the

philosophy remains the same: Use wavelet-domain estimation instead of Fourier-domain estimation
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coefficients®. As a result, assuming a invertible low-pass #, the error per sample

decays very rapidly, O( loiivr ), as increasingly dense samples of the underlying con-
NZoF

tinuous time observations are obtained (refer Appendix C). The error decay rate of

O(M) is significantly faster than O( L ) that is achieved by Fourier-domain
NZFT NTF2
shrinkage.

WaD achieves faster error decay rates because the energy of the input signal gets
concentrated in a few large coefficients in the wavelet domain. If the noise variance
in these large signal coeflicients is not excessive then identifying and retaining these
signal coefficients, and setting the other coefficients to zero using shrinkage gives an
excellent estimate. Because the retained signal coefficients capture most of the spatial

features such as edges in the signal, the final estimate retains its sharp edges as well

as noise-free smooth regions.

4.3 Drawbacks of WaD

However, such a wavelet-based approach has its limitations. These can be understood
by focusing on the variance of the wavelet coefficients of noise colored by H !. The
noise variance 072- at scale j can be approximately by?
n=27 -1
1 2

1
2 ~ o -
0 N 5 E | (fn)|20 , (4.2)
n:2.7_1

where H(f,) are the discrete Fourier coefficients of the blurring operator #, and o?

is the variance of the AWGN ~ (refer Figure 4.2).

2Consider a wavelet system with basis functions that possess number of zero-moments that is
greater than or equal to the degree of all the polynomial pieces. If the support of any wavelet basis

function lies within any polynomial piece, then the corresponding wavelet coefficient is zero.

3This approximation is valid only when the zeros in the frequency response H are of sufficiently

low order.
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Figure 4.2 : (a) The solid line is the frequency response of the inverse of a typical lowpass
system. The dot-and-dashed lines show the frequency bands corresponding to wavelet basis
functions at different scales. The wavelet basis functions are nearly band-limited and almost
constant within dyadic frequency bands (e.g. % to %) These dyadic frequency bands are
demarcated in the figure using dotted vertical lines. If blurring system frequency response
does not have a high-order zero at frequency %, the variance of noise colored by H~! (solid
line) at different scales is primarily determined by the frequency response of the inverse
within the corresponding dyadic frequency band. (b) The dot-and-dashed lines show the
frequency responses of Mallat’s mirror wavelet basis. The mirror wavelet basis functions
adopt a frequency split that aims to isolate the singularities in the inverse system frequency
response and thereby reduce the noise variance in most of the mirror wavelet basis subbands.
However, if the singularity is not located at a dyadic frequency point ( g, %, %, ...) then
the non-zero frequency overlap leads to infinite noise variance at all scales in any adapted
wavelet basis system. The same problem also crops up when the blurring system response
has a high order zero. So an adapted wavelet basis system is not effective for all convolution
operators.
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From the expression (4.2), it is clear that even if H(f,) is small at any isolated
frequency f,, the variance of the colored noise in the entire corresponding wavelet
scale explodes. Consequently, the task of extracting the signal coefficient from this
scale using any form of scalar shrinking in the wavelet domain is rendered ineffective.
As shown in Figure 4.2, wavelet basis functions are not exactly band-limited; the DFT
coefficients of the operator outside the band 27~! to 2/ — 1 also contribute to the noise
variance but to a lesser extent. However, if the the operator contains singularities
that are placed at non-dyadic frequencies, then the noise variance is infinite at all the

wavelet scales. In such a case, WaD provides a zero estimate.

4.4 Best-Basis Solution Improves Performance

Mallat advocates adapting the wavelet basis to the frequency response of the inverse
of H to improve on the performance of WaD [6,11]. For a convolution system with
frequency response shown in Figure 1.2(c), the adaptation is achieved by using a
mirror-wavelet basis that possess a time-frequency tiling structure different from that
possessed by conventional wavelets (refer Figure 4.2). The tiling structure used by the
mirror wavelet basis functions aims to isolate the frequency where the convolution
operator H(f) approaches zero because the variance of the noise at any scale is
primarily influenced by the singularities of H~!(f) that lie in the frequency band
corresponding to that wavelet scale. An estimate obtained by using such an approach
is shown in Figure 1.2(f).

However, it is not always possible to come up with a set of basis functions that
can isolate all such singular frequencies in H ! because the wavelet basis functions
are not exactly band-limited. For example, any adapted wavelet basis scheme cannot

provide a satisfactory solution when the blurring operator has a boxcar system impulse
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response; the frequency response of the # is the sinc function. In such a case, the

variance of noise colored by H~!

is high in all the wavelet scales, rendering signal
estimation in adapted basis domain ineffective.

Recollect that during inversion using H~!, only the noise components correspond-
ing to the small Fourier coefficients of the convolution operator get amplified. So it is
natural to exploit the structure of the operator using the Fourier domain to restrict

excessive noise amplification in addition to using the frugal wavelet representation of

the signal. This motivates our hybrid approach to deconvolution.
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Chapter 5

Wavelet-based Regularized Deconvolution (WaRD)

In WaD, estimating the signal coefficients in the wavelet domain is reliable only if
the colored noise does not corrupt the signal wavelet coefficients heavily. The noise
variance in the wavelet domain can be significantly reduced by attenuating the am-
plified Fourier components of noise. This attenuation can be easily achieved by using
a small amount of Fourier-domain regularization during inversion. So, we propose
Wavelet-based Regularized Deconvolution (WaRD) that simultaneously exploit the
spatial adaptivity of wavelets and diagonalized Fourier domain representation of the

convolution operator to solve the deconvolution problem.

5.1 The WaRD Algorithm

The WaRD algorithm consists of the following steps.

1. Regularized Fourier-domain Inversion: Instead of using a pure inverse, we
use a LTI Fourier-domain regularized filter. As shown in Figure 5.1, this filter
partially attenuates noise by mildly shrinking the noisy coefficients obtained
after inversion of A in the Fourier-domain using weights R,(f,) (refer Eqn.

(2.7)). The signal obtained after quasi-inversion is

1

Tlf) = (m) Ralf) Y (£) (5.1)

- Ra<fn)X(fn)+( ! )Ra(fn)wfn) (5.2)
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Fourier-domain regularized inversion Wavelet-domain estimation
observation 1 partial X! WT scale dep inverse | | WaRD
y H FDreg | | shrinkage WT estimate

Figure 5.1 : Block diagram of Wavelet-based regularized deconvolution (WaRD): The first
block, Fourier domain regularized inversion, performs inversion followed by partial Fourier-
domain regularization to achieve partial noise attenuation. Wavelet-domain estimation that
is based on shrinkage of wavelet coefficients of  subsequently estimates the signal in the
presence of noise colored during regularized inversion.

where the parameter o that controls the amount of Fourier-domain shrinkage
employed during quasi-inversion, is typically small (« < 1). The choice of « is

discussed in the later sections.

2. Wavelet-domain Signal Estimation: Since the amount of regularization
used in the first stage is small, the estimate X, obtained after regularized in-
version still contains some residual noise. We obtain the signal estimate by
shrinking wavelet coefficients of X, at each scale according to the noise vari-
ance at that scale. We then employ the inverse DW'T on the estimated signal
wavelet coefficients to obtain the WaRD estimate of the input signal (refer Fig-
ure 5.1). We emphasize that wavelet-domain signal estimation remains effective
since most of the signal energy is still captured by just a few large wavelet co-
efficients since the amount of distortion introduced by R,(f,) is minimal and
the noise in these wavelet coefficients is not excessive, thanks to Fourier-domain

regularization used during inversion.
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5.2 Tradeoff: Distortion vs. Noise Attenuation

Noise reduction using Fourier-domain regularization comes at the cost of signal dis-
tortion and hence needs to be controlled. In other words, this raises the question:
how to pick the right value for the regularization parameter «? The tradeoff is clear:
On one hand, since regularization smears non-stationary signal features like edges and
ridges, we would prefer o as small as possible. On the other hand, large « prevents
excessive noise amplification during inversion which aids the wavelet-domain signal
estimation. Thus « controls the bias-variance tradeoff in the WaRD system.

We seek to determine the optimal regularization parameter for the WaRD system
by minimizing the overall MSE. This optimal amount of regularization would balance
the amount of noise reduction carried out in the Fourier domain and the wavelet
domain. The overall MSE is well-approximated by a proposed cost function that
includes the distortion error due to the Fourier-domain regularized inversion stage

and error incurred during wavelet-domain signal estimation stage.

5.3 The Cost Function

We derive the cost function that is approximately equal to the MSE of the WaRD
estimate. The cost function assumes that ideal thresholding 7(.) is employed during
signal estimation in the wavelet domain. Ideal thresholding keeps a noisy wavelet
coefficient only if the signal power in that coefficient is greater than the noise power.

Otherwise, the coefficient is set to zero.

~ iy if |9§¥,k|2 > UJQ'(CV)
T(6) = , (5.3)
0, if [92,[2 < 02(a)

where ,vak are the wavelet coefficients of the noisy signal )?a( fn) obtained after par-

tially regularized inversion in (5.2), 6%, are the wavelet coefficients of the the distorted
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but noiseless input signal R, (f,) X (fn), and o7 (a) is the variance of noise %((f’:‘))l‘( fn)
at wavelet scale j. Ideal thresholding assumes that the signals under consideration
are known.

The deconvolution MSE for the WaRD system approximately consists of the signal
distortion due to Fourier-domain regularization and the error due ideal thresholding
that is used to achieve wavelet-domain noise shrinkage. So we propose a cost function

h//FSTE(a) given by

MSE(a 2[1— 21X (fa)]? + me 109,12 02(@)) . (5.4)

Here 62, denotes the wavelet coefficients of the input signal distorted by Fourier
domain regularization, Ro(fn)X(fs), and o7(a) is the variance of colored noise
R" f" ['(f,) at scale j. The first term in 1\//I\S_E(a) is an estimate of the distortion
in the input signal due to regularized inversion [15]. This distortion error is an in-
creasing function of a. The second term is an estimate of the error due to ideal
wavelet-domain thresholding [22]. This thresholding error is a decreasing function of
« since both, the signal energy and the noise variance, reduce with increase in .
The optimal regularization parameter, denoted by a*, corresponds to the minimum

of MSE(q).

5.4 Accuracy of the cost function

We now show that the proposed cost function 1\//[\Si)(a) approximates the actual MSE
of a WaRD system well. The cost function assumes that the total error is composed
of independent contributions from the distortion error incurred during the Fourier-
domain regularization stage and the error due to subsequent ideal wavelet-domain
thresholding. We analyze two following two cases and their effects on the cost function

h//FSTE(a).
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091,17 > 0F(): When a wavelet coefficient of R, (f,) X (fn) has greater energy than

the noise variance (7]2-(04), ideal thresholding retains the corresponding noisy

wavelet coefficient intact (refer (5.3)). In this case, the error contribution due
to ideal thresholding error term in h//FSTE(a) is 07 (c), which is exactly equal to

the actual MSE.

102,.1> < 07(): However, when |05, |> < 0%(«), ideal thresholding sets the correspond-

ing wavelet coeflicient to zero. The actual error is the energy of the wavelet coef-
ficient of the original signal x, |, x|*. However, the contribution of the proposed
cost function M@E(a) is [0 —05,1*+10%,|°. This contribution is approximately
equal to [6;x|* when the distortion |6 — 6%, |* is small in comparison to |65,|*.
So, for small values of o, which typically is the case, the distortion is com-
paratively small and hence the cost function is fairly accurate. The proposed
cost function is always within a factor of the error 2 within the actual error for
any positive value of &. However, we believe that these extreme cases are not

generally encountered in practice.

So the proposed cost function is a good approximation of the actual error incurred
(assuming ideal thresholding); hence 1\//I\Sfl(a/) can be minimized to find the regular-
ization parameter that balances Fourier-domain regularized inversion and effective

wavelet-domain signal estimation.

5.5 Optimal o for each Scale

An interesting generalization to having a single Fourier-domain regularized inverse
filter for all subbands is to have Fourier-domain regularized inverse filters with a
different regularization parameter for every wavelet scale (refer Figure 5.2). In this

case, we need to determine the optimal regularization parameter for each wavelet
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Figure 5.2 : Different regularization parameters for each wavelet scale: In the figure, the
filters hg, h1 and hy are the equivalent, cumulative filters at each scale in a 2-level decom-
position DWT filter-bank. Such an equivalent filter-bank representation can be obtained
by transforming the filters in the filter bank using the noble identities [23, pp. 119] and
then grouping the synthesis filters and the decimators together. Different regularization
parameters, oy, a1, and a9 are used at each scales as shown.

subband. Such a generalization helps making the cost function separable with respect
to the regularization parameter of each scale thereby simplifying the analysis. It turns

out (refer appendix A) that the optimal regularization parameter a,, for the scale p

satisfies
1 a;
oy~ oot (1053 > o2(a5)) (5.5)
where 6% denotes the wavelet coefficients of the distorted input signal Ry (fn) X (fn)
at scale p, and o)(y) is the variance of noise (%) I'(f.) at scale p.

# (10,5 > 02(ap)) denotes the number of wavelet coefficients 67 that have energy
greater than the noise variance o} (ay).

Expression (5.5) reveals that the selection of the optimal regularization parameter
is heavily influenced by the distribution of the wavelet coefficients relative to the

variance of the colored noise. Expression (5.5) is a recursive expression since both
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sides of the equation depend on aj.

Consider a signal such that the signal energy in some wavelet scale p is concen-
trated in very small proportion of the wavelet coefficients at that scale, i.e. few
wavelet coefficients are large while most of the other wavelet coefficients are nearly
zero. This economical distribution does not change significantly when the signal is
distorted by using a small amounts of regularization because the derivative of the
total distortion introduced at zero regularization is 0 (put o, = 0 in Eqn. (A.5)). On
the other hand, from Eqn. (A.16), one can infer that the rate of decrease of the noise
variance in the wavelet scale is maximum at o, = 0. So, the variance of the colored
noise in this scale decreases rapidly at small values of «,. The optimal regularization
parameter condition suggests that the noise variance be reduced using regularization
so that a sufficient number of wavelet coefficients of the signal stand out above the
noise variance.

We emphasize that the optimal regularization parameter « is never zero. If
o, = 0 satisfies the optimality condition, it would imply that the noise variance
is higher than the energy of all the wavelet coefficients. Hence using o, = 0 would
result in all wavelet coefficients at scale p being shrunk to zero during wavelet-domain
estimation stage! For most signals, a significant proportion of the wavelet coefficients
are very small; so ;, = 1 will not satisfy (5.5). Hence o, = 1 also is not an optimal
choice for the regularization parameter.

Several values of o, could potentially satisfy the optimality criterion. The choice
of the optimal regularization parameter in such a case is not clear. However, this is
not a significant issue in practice since choosing any «, sufficiently greater than zero
(ap =~ 0.2) was found to provide estimates comparable to that obtained by choosing
the optimal .

Thus, the expression for the optimal regularization parameter quantifies the no-
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tion of balancing Fourier-domain inversion and wavelet-domain estimation within a

wavelet-based deconvolution approach.

5.6 Optimality of WaRD

We emphasize that the existing wavelet-based deconvolution algorithms of [6,7,24]
are special cases of WaRD! with oo = 0. By construction, WaRD includes the value
a = 0 in the search-space for the optimal o* that it uses. Hence WaRD enjoys all
the good properties of Donoho’s wavelet-based deconvolution such as optimal rate of
error decay for dilation-homogeneous operators.

The optimal o* is never exactly zero at a finite resolution N (though it can tend
to zero with increasing N). Hence, WaRD will actually outperform wavelet-based
deconvolution methods described in [6,7,24] in MSE-terms at a given resolution.

Techniques based on conventional wavelet-based deconvolution [7,11] described in
Section 4 are in general not applicable when H is not invertible. However, thanks to
optimal amount of regularization WaRD uses, WaRD give excellent estimates even

when H is not invertible.

!For comparisons with [6], the use of a similar adapted wavelet basis would be required
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Chapter 6

WaRD implementation

Several issues crop up during the implementation of the WaRD algorithm in practice.

6.1 Choice of ¢ and |X(f)|?

The WaRD algorithm as outlined in Section 5 assumes knowledge of the variance o2
of additive noise v and the Fourier spectrum |X(f)|? of the input signal. However,
these are typically unknown in practice and hence need to be estimated. The variance
of v can be reliably estimated from the observation y by using a median estimator
in the finest wavelet scale[5]. The choice of |X(f)|? is however more tricky. Any
crude estimate of the spectrum of | X (f)|? typically has attenuated high-frequency
components. Employing such an estimate during regularized inversion step in WaRD
would eliminate all the high frequency components in the final estimate as well. So
we believe that the use of prior information on |X(f)|? instead of an estimate is
appropriate. For the purpose of understanding the WaRD algorithm and gauging its

potential, we have assumed knowledge of 0% and | X (f)|? in our experiments.

6.2 Empirical Estimation of «

Condition (5.5) provides the necessary condition for the regularization parameters
used during regularized inversion to optimally balance Fourier-domain regularization
and wavelet-domain estimation. However, this criterion cannot be used in practice

because the expression assumes knowledge of the distorted wavelet coefficients of
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Figure 6.1 : (a) The MSE of WaRD estimates is plotted against the regularization param-
eter « for different images. Ideally, we would like to choose the regularization parameter
that results in the lowest MSE (denoted by the small circles). Note that the MSE does not
change significantly when any « slightly higher the optimal value is chosen. (b) The norm
of the WaRD estimate obtained at different regularization parameters is plotted against c.
Note that the o that achieves the lowest MSE is located near the knee point of the curve.
So in practice, near-optimal performance can be achieved by choosing any « near the knee
point of the norm curve.
the unknown original signal. Further, the derivation for the optimal regularization
parameter is derived assuming ideal thresholding which cannot be implemented in
practice. In practice, the optimal regularization parameter is also influenced by the
wavelet-domain estimation algorithm used in the WaRD system.

This raises the necessity to resort to empirical techniques to find the regularization
parameters. In the course of our simulations, we observed that the improvement
gained by using different empirical regularization parameters for each wavelet scale is
almost negligible. Hence we focus on estimating an optimal regularization parameter
that is common for all wavelet scales.

Figure 6.1(a) shows the plot of the MSE of WaRD system against Fourier-domain

regularization parameter o for different images. We observe that the typical MSE
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decreases very rapidly when « is small but changes gradually thereafter. Further we
can also infer that choosing any « sufficiently large gives near-optimal MSE perfor-
mances. The robustness of the WaRD system performance to small changes in the
regularization parameter about the optimal value makes the estimation of a near-
optimal regularization parameter easy. We exploit this robustness to come up with a
simple scheme to estimate the near-optimal regularization parameter.

Figure 6.1(b) shows the typical plot of the [ norm of the WaRD estimate against
Fourier-domain regularization parameter « for the same images. We observe that
similar to the behavior of the MSE, the WaRD solution norm also changes very
rapidly when « is small but the change is gradual thereafter. The similarity in the
trend observed in Figure 6.1(a) and (b) is expected because the MSE, WaRD estimate
norm and the actual signal norm are related to each other via the triangle inequality.
Since the the error of the estimate is essentially unchanged when the norm of the
solution remains practically constant, we can empirically determine the regularization
parameter by choosing an « near the knee point in the plot of the WaRD solution
norm against . Such an empirically determined o gives near-optimal results.

Our experience showed that due to the robustness of the WaRD system to the
choice of the «, even such a search can be avoided. Simply choosing o =~ 0.2 gave

satisfactory results for a wide class of images.

6.3 Choice of Wavelet-domain Estimation Scheme

A variety of wavelet-domain estimation techniques can be used in practice. The
choice of a good wavelet-domain estimation scheme influences the final performance
significantly. Commonly studied wavelet-domain shrinkage schemes include hard-

thresholding [25], soft-thresholding [26] and a variety of other similar techniques
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based on non-linear wavelet domain shrinkage [27, 28]. Recently, the wavelet-domain
Wiener shrink estimation algorithm was proposed by Ghael et. al. [29] and analyzed
further by Choi [30]. It was observed that this technique outperforms the conven-
tional wavelet-domain estimation schemes that employ hard and soft thresholding in
the MSE sense. Estimation using a wavelet-domain Wiener shrinkage consists of the
following steps: First obtain a rough estimate of the input signal using conventional
wavelet-domain techniques. Use this estimate to obtain a final refined estimate by
employing a Wiener filter on each wavelet coefficient.

Significant improvements can also be obtained by using a redundant, shift-
invariant DW'T. Wavelet-domain estimation schemes that use the DW'T' are not shift-
invariant, shifts of y will result in different estimates. The redundant, shift-invariant
DWT yeilding significantly improved estimation [31, 32] by simply averaging over all
possible shifts of the observation y at no significant increase in the overall computa-
tional cost. So we employ a redundant, shift-invariant DWT with a wavelet-domain

Wiener shrinkage to estimate the input signal.
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Chapter 7

Results

We illustrate the performance of the WaRD algorithm using simulations in 1-d and
2-d.

We first compare the WaRD with other methods for the 1-d deconvolution problem
presented in the Introduction. In order to observe the behavior of each method for
both smooth and edgy regions, we take for x a concatenation of Donoho’s Blocks
and Heavisine signals [5] (normalized to be zero mean and unit energy). We employ
Daubechies length-4 wavelets throughout. Figure 1.2(a) depicts the signal. For the

system, we take the example of [6, pp. 459]

1, |f| €10,0.25]
H(f)= (7.1)

with DFT frequencies f normalized to (—0.5,0.5] (see Figure 1.2(b)). The corrupting
noise variance was o2 = 4 x 1075, Figure 1.2(c) plots the blurred, noisy signal. The
inverse filter frequency response H~! amplifies all high frequency noise components
(see Figure 1.2(d)).

Use of a pure inverse % amplifies all the high frequency noise components thereby
giving an extremely noisy estimate (see Figure 1.2(e)) of the input signal. The Wiener
filter estimate (Figure 1.2(f)) was implemented using P,(f) = | X(f)|? in (2.4). The
Wiener filter bases its deconvolution on the signal-to-noise ratio at each frequency.
The Fourier-domain that is exploited by the Wiener filter is not well-suited to rep-

resent the signal containing spatially localized features such as edges. Consequently,
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the Wiener deconvolution is ineffective.

WaD also fails to provide a satisfactory solution in this case. Due to the null in
the frequency response of the system at H(0.5) = 0, all the wavelet coefficients at the
finest scale are corrupted by infinite variance noise after inversion using H~!; hence
these coefficients are lost during wavelet-domain estimation.

The mirror wavelet basis deconvolution method of [6,11] adapts a wavelet packet
basis to the colored noise in the inverted data X (f) = H '(f) Y/(f). The frequency
splits of the mirror wavelet basis for H are shown with dashed lines in Figure 1.2(d).
The adapted basis aims to isolate the singularity at f = 0.5. The signal estimation
step was implemented by hard-thresholding the coefficients of a shift-invariant mirror
wavelet basis. This algorithm outperforms the methods of [7,24] and the standard
Wiener filter in this case (see Figure 1.2(g))*.

Figure 1.2(h) plots the WaRD estimate obtained using o* = 0.06. Wavelet-domain
Wiener shrinkage was applied to the coefficients of a shift-invariant DWT for the
wavelet-domain signal estimation stage. The crude estimate required by the wavelet-
domain Wiener shrinkage was obtained by using shift-invariant hard thresholding
using Daubechies length-6 wavelets. WaRD outperforms the other algorithms in
terms of both estimate’s visual quality and MSE.

Next, we consider image restoration using WaRD. The input x is the 256 x 256
Lena image (normalized to zero mean and unit energy) and the discrete-time system
response h is a 2-d, 4 x 4-point smoother [1 1 1 1]7[1 1 1 1]. Such a response is

commonly used as a model for blurring due to a square scanning aperture such as in a

'Even though H(f) is not invertible, the wavelet packet deconvolution method does not fail,
because the location and the order of the zero of H are such that only a few, high-frequency signal
wavelet coefficients are obliterated by the infinite noise amplification at f = 0.5. This method will

fail when H(f) has zeros of arbitrary location and order, however.
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CCD camera [2]. The noise variance was set to 02 = 9.6 x 1077. Figure 7.1 illustrates
the desired z, the observed y, the Wiener filter estimate Z1, and the WaRD estimate
for a* = 0.2. The value for o was chosen to be close to the knee point in the graph
shown in Figure 6.1(b). The methods of [6, 7] are not applicable in this situation, due
to the many zeros in H(fy, f,). (The Wiener filter outperformed Mallat’s adapted
wavelet basis in this case.) The WaRD estimate is clearly better that the Wiener
estimate in overall visual quality and MSE. However, we point out that the lines on

the hat are almost lost in the WaRD estimate in comparision to the Wiener estimate.

The difference in the quality of the estimates obtained using the Wiener filter
and WaRD can be grasped by viewing the cross-sections through the images. Figure
7.2(a), (b), (c), and (d) shows the cross-sections through row 220 of the original
image, the observed image, the Wiener estimate and the WaRD estimate respectively.
The Wiener estimate cross-section shown in Figure 7.2(d) illustrates the failure of
the Wiener technique to adapt to the smooth regions and the edges in the image
simultaneously. This lack of spatial-localization reflects as ripples in the Wiener
estimate. In contrast, Figure 7.2(d) clearly illustrates the spatial-adaptivity of WaRD.

We observe the smooth regions and the edges are simultaneously preserved.
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Figure 7.1 : (a) Lena image x (256 x 256). (b) Observed image y (MSE=0.2473). (c)
Wiener filter estimate (MSE=0.0498). The ripples in the image result because the Fourier
basis used by the Wiener filter have support over the entire spatial domain. (d) WaRD with
a = 0.2 (MSE=0.0427). In contrast to the Wiener estimate, the smooth regions and most
edges are well preserved in the WaRD estimate, thanks to the spatially-localized wavelet

basis functions. However, some faint features such as the lines on the hat are lost during
wavelet domain estimation.
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(d)

Figure 7.2 : (a) Cross-section of original image x (row 220 from Figure 7.1a). The image
cross-section contains smooth regions and discontinuities. (b) Cross-section of the blurred
and noisy observed image y. (c) Cross-section of estimate obtained using the spatially in-
variant Wiener technique. The Wiener deconvolution estimate exhibits ringing artifacts.
(d) Cross-section of the hybrid WaRD estimate. Controlled Fourier-domain regulariza-
tion ensures that residual noise can be effectively tackled by subsequent spatially-adaptive
wavelet domain estimation. WaRD preserves smooth regions and edges simultaneously even
when the blurring system H is non-invertible.
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Chapter 8

Conclusions

In this thesis, we have proposed an efficient multi-scale deconvolution algorithm
WaRD that optimally combines Fourier-domain regularized inversion and wavelet-
domain signal estimation. The WaRD can be potentially applied in a wide variety of
applications such as satellite imagery, seismic deconvolution and channel equalization
to obtain enhanced performances.

For spatially varying signals, the WaRD outperforms the LTI Wiener filter and
other wavelet-based deconvolution algorithms in terms of both visual quality and MSE
performance. Since WaRD subsumes WaD, WaRD also enjoys optimal rates of error
decay with increasing samples for convolution operators such as Radon Transform. In
addition, WaRD also improves on the performance of the WaD at any fixed resolution.
Furthermore, WaRD continues to provide a good estimate of the original signal even
in the presence of any ill-conditioned system. The computational complexity of the
WaRD algorithm is just O(N logs N) where N is the number of samples.

Theoretical analysis of the ideal WaRD algorithm reveals that the optimal regular-
ization parameter at each wavelet scale is determined by the proportion of distorted
input signal wavelet coefficients that are greater than the variance noise colored by
regularized inversion. From the expression for the optimal regularization parameter
it follows that for finite data samples, employing inversion without regularization in a
wavelet-based deconvolution system is never optimal. Further, using a regularization

parameter o = 1, which corresponds to employing a Wiener deconvolution filter for
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inversion, is also sub-optimal. In essence, the optimal regularization parameter is
simultaneously determined by the frugality of the wavelet representation of the input
signal and the Fourier-domain structure of the convolution operator.

However, fortunately, the final performance is observed to be quite insensitive to
changes in the value of the regularization parameter around the optimal value. So, a
near-optimal regularization parameter can be obtained from the norm of the WaRD
solution for different regularization parameters. As a guide, in simulations spanning
many real-world images and convolution systems, o* was almost always lay in the
range [0.2,0.3]. In the 1-d example above, the optimal « turned out to be small
(a* = 0.06) because the test signal was represented very economically in the wavelet
domain. However, choosing a o* in the range [0.2,0.3] gave near-optimal results as
well.

There are several avenues for future WaRD related research:

1. We have focused on scalar processing during wavelet-domain estimation. How-
ever, there exist dependencies between the wavelet coefficients that can be ex-
ploited to improve the performance of wavelet-based deconvolution systems.
We are currently working on combining WaRD concepts with hidden Markov
model (HMM) tree based wavelet-estimation [33] to obtain a better deconvolu-
tion system. We believe that exploiting such inter-dependencies in the wavelet
domian will help preserve edges and other spatially localized phenomena (such

as the lines on lena’s hat better.

2. One interesting twist to the approach to wavelet-based deconvolution is to first
exploit the wavelet-domain to estimate z ® h from the noisy observation y and
then invert the convolution operator. This technique, called Vaguellete-Wavelet

Decomposition (VWD) has been studied by Silverman and Abramovich recently
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[34]. The salient point of such a technique is that the wavelet-domain estimation
has to deal with white noise instead of the complicated colored noise. However,
in such a case the reconstruction basis is no longer a signal-adapted wavelet-
basis, but a hybrid basis that is not spatially localized. Further, this technique
is again not applicable when the # is not invertible. We find the construction
of a universally, applicable, hybrid deconvolution scheme that lies in between

WVD and VWD promising and challenging.
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Appendix A
Deriving the Optimal Regularization Parameter o
The MSE of the estimate obtained by using WaRD is approximated by the sum of

the distortion incurred during Fourier-domain regularized inversion and the error due

to ideal hard thresholding of the wavelet coefficients.

VSE(0) = 3.1 - R IX(f)E + > min(5f o), (A

_ oy @O e
= ;(‘H(fn)|2|X(fn)‘2+a02 ZZ | Ic|’ 9( )) )

j=jo k=1

where {0%,} are the wavelet coefficients of the distorted but mnoise-free signal

Ro(fn)X (fn) and o3(c) is the variance of noise (%&"f) ['(f.) at wavelet scale j
(refer Eqn. (5.2). j = jo denote the coarsest scale coefficients and j = J denote the
finest resolution coefficients.

By grouping the distortion terms according to the frequency subbands of a wavelet

system (refer Figure 4.2), we have

LGN N 20X ()
; (IH(f) 2| X (fa)|? + ao?)? _j:;m;j_l (IH () 21X (f)|? + a0?)?2 (A.2)

Therefore,

J 27 -1

N B 20204 X (fn)]? 2
MSE@) = 2| 2 THGIPRGIE + e me' il 3(@)

j=jo \n=2i-1
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A.1 Different o for Each Wavelet Scale

1\//I—\Sfl(a) in A.3 is derived assuming that the the same regularization parameter o for
each wavelet scale. An interesting generalization is to have different regularization
parameters «; for each wavelet scale j (refer Figure 5.2). Assuming that the wavelets
at different scales have no overlapping frequencies, the cost function can be written

as a function of the different regularization parameters as

J 21 20204 X (fn)]?
Jo’ajo"“’a‘]_l) - Z Z (|H(fn)‘ ‘X(fn)|2+ajo-2)2

Jj=jo \n=29-1

MSE(a

+ Z me| %2, 02(ay)) (A.3)

j=jo \ k=1
Note that the cost function M@E(a) is separable with respect to the different regular-
ization parameters a;;. We attempt to find the optimal regularization parameters at
each scale by partially differentiating the cost function with respect to o;; and setting

the derivative to zero.

A.2 Differentiating Distortion Terms

We denote the total distortion error by

J—1 29-1 9 4 )
2050°| X (fn)|
D(ajy,---, (A.4)
"’ ];Jngl ‘ ‘X(fn)‘2+04 0'2)
Taking the partial derivative of D(w;,, ..., @ ) with respect to a, we have
8 2P 1 4oy 0'4|H(fn)|2|X(fn)‘4
— (D(eyyy ... a5)) = P (A5)
Gop " 2 TG U + g

Note that the partial derivative of the distortion is zero at a;,, = 0. For the sake of

convenience, we define

) 4o H ()X (1)
Clew) = 2 (HGDPIX () + apo?)

n=2r"1

(A.6)
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P

A.3 Differentiating Ideal Thresholding Terms

The error due to ideal thresholding at each wavelet scale p is given by

Zmln \0% or(ap) = Z (wgﬁ)z"' Z Ty

|0p,}1:‘<‘fp(ap) |0pﬁg|20p(ap)

op(ap)
= QP/O fwg) (wir)? dwse (A.8)

v (1 - /0 e Fwer) dw;;p> o(ay), (A.9)
where
1 <
Flwge) =55 > 0(wpe — i) (A.10)
k=1
acts like the probability density of the magnitude of the wavelet coefficients of the
distorted but noise-free signal at scale p. f(w,?) is not smooth but can be approxi-

mated arbitrarily closely by some smooth density f (w,). Using this smooth density

f(wy?) instead of f(wy?) in expression A.9,
9 ap(ap) - 9
me opodon) m 2 ([ ) upe)? duge

op(ap) -
+ 2° (1 —/0 f(wy?) dw;‘f’> o5(0p), (A.11)

Let the total thresholding error be denoted by

J 27
T(yy,-- -5 5) == Y _min(|67%]%, 07 () (A.12)
j=jo k=1
Taking the partial derivative of T(cy, ..., as) with respect to o, we have

a—%(T(O‘jm---aO‘J (mel okl p(ap)))
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o op(ap) _ oplap)
~ zpa—% [( /0 Fwer) (wee)? dwgp> + (1 - /O f(wp?) dwﬁ") aﬁ(ap)]

(A.13)

We recollect that the purpose of Fourier-domain regularization is to shrink noise
components which explode during inversion of ill-conditioned #; the residual noise
is tackled using shrinkage in the wavelet-domain. Since excessive Fourier-domain
regularized inversion distorts the signal and smears the spatially varying features
such as edges, we aim to keep the amount of Fourier-domain regularization minimal.
Fortunately, the rogue noise components at frequencies where |H (f,)| ~ 0, which
prevent effective wavelet-domain signal estimation, are greatly attenuated even for
small values of o, (refer Eqn. (2.7). Once these rogue noise components are attenu-
ated, we expect wavelet-domain signal estimation to be effective. Hence, it is justified
to expect a optimal regularization parameter that achieve drastic noise attenuation
but minimal distortion. So, we also expect that any small change in the «, about
its optimal value would cause much larger changes in amount of noise attenuated
than the amount of signal distorted. So we neglect any changes in distribution of the
wavelet coefficients with respect to ¢, in comparison to changes in the variance the

noise o;(cy). This assumption simplifies Eqn. (A.13) to

0 op(ap) _ N N N ap(ap) _ . . d
2108_% [(/o S wy?) (wye)? dwpp) i (1 ) /0 flwy?) dwp”) Uﬁ(ap)] ‘756(:1’)

Up(ap)~ o (o
~ > [2ap(ap> (1— [ fwg dwﬁp)]—d 2(03)

doy,

daz (ap)

doy,

Q

# (1073 > 02(as,) , (A14)

where # (|0;i » > > 02(ap)) is the number of wavelet coefficients at scale p that possess

energy greater than the noise variance 012, (ayp) in scale p.
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The noise variance at scale p is equal to

2(0) = 3 LU EHUDEX ()
7o) = Z(\H(fn)P\X( Fu)P -+ y0?)?

2P—1 p

5 | H(L)EIX ()
22 |H FOPIX )P + a2 (8.13)

Q

=2r—1

where the approximation in Eqn. (A.15) arises from assuming that the wavelets at
scale p are perfectly bandlimited. The derivative of o (cy,) With respect to «, is given
by
2P—1 _p
doy(ap)  d |, T (272)% [H(fa) *| X (fa)|*
daoy, doy |~ = (IH(fo)PIX(fo)]? + po?)?
_ i —20"277 |H(f) 1 X (fu)|"
(HH (fn) P X (fo) | + apo®)?
| e GG
(HH (fn) PIX (fo) > + apo®)?

n=2pr—1

= —27C(ap) (A.16)

=2r-1
2P —1

Combining Eqn. (A.14) and Eqn. (A.16) we have

0 1 o
oo (L, a0)) = —5# (16551 > 05 (a)) (Claw)) (A.17)
14
The partial derivative of MSE(aJO, Qjg, - - -, y—1) With respect to a is
0 [ 0
Bz (MSE(aEO,ajO, .. ,aj_l)) ~ o (Pl + Ty )

(A.18)

Using (A.7) and (A.17),
0

1, /a
Bor (MSE(aJO,ajO,...,aJ_l)) ~ 0, Clay) = 55 (1655 > 02(ay)) Cloy)

_ <ap — o # (0] > 0 (a,,))> Clay) (A19)

Setting Eqn. (A.19) to zero, we get the optimal regularization parameter

1 ok
# (16531 > o2(e)) (A.20)
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Appendix B
Error Decay Rates for LTI filters

Let the input x be a piece-wise polynomial signal as shown in Figure B.1. Since z
is discontinuous, its energy decays as O(%) in the frequency domain. Consider N
equally spaced samples of the signal. In the Fourier domain, the energy change in
the first N Fourier coefficients due to aliasing is less than a multiplicative factor of
two, hence we neglect the effects of aliasing and approximate the the magnitude of

the DFT coefficients of the sampled signal x as

|X(fn)\z@ n=t,.,~ (B.1)

n 792

Figure B.1 : The signal shown in the figure is piece-wise polynomial. The polynomial
“piece” on the left of the discontinuity is of degree 4 and the polyomial “piece” on the
right is of degree 8. The Fourier coefficients of such a signal decay very slowly due to the
presence of the discontinuity in the signal. However, wavelets with 8 vanishing moments
represent such a piece-wise polynomial signal very economically using just O(log, N) non-
zero coefficients.
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wheren =1... % indexes the discrete Fourier coefficients of the positive frequencies.

The total energy E,s of the signal x is approximately given by

£l
1
E, ~ N —
n=1 n
2 2
~ N (% - N) (for large N)
2
7T
~ N—. B.2
i (B.2)

The variance of additive white Gaussian noise is o2 at each time sample, so the
variance ['(f,) at all discrete Fourier components is also 0. The total noise energy
is E, is No?. Note that the ratio of the average signal energy per sample and the
average noise energy per sample are kept constant with increasing resolution N.

Consider any low-pass convolution operator H that decays polynomially in the
Fourier domain (eg. Radon transform). The Fourier coefficients of such a convolution

operator can be written as

C
— n=1...
nl/

[H(fa)l =~

0|z

, for some v > 0

(B.3)

Since the constant C turns out to be inconsequential asymptotically, we choose to
ignore 1it.

1
m ~ N n=1...% (B.4)

The variance of noise colored by the inversion of H at each frequency f, is given

by o?n?”, for n =1...%. The best LTI estimate of the input signal is given by
v _ 1 [H (fa)]* X (fn)
Xorth) = G XG0 )
X(fa)P? T'(fn)
‘X(fn)|2 + o2 n2v (X(f") + H(fn)) (B-5)
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The average MSE of such an optimal LTT estimate is

N

1 M o1& [ 4X(f)? 0% n?
e {DXL” - } = (Xprmm)  ©9

n=1 n=1

where £ {.} denotes expectation with respect to the noise statistics. It is easily shown

that that

41X (fn)|? o®n?”
X (f)2 + 02 n2v

2 min (| X (f,)|?, 0% n*") < ( ) <4 min (|X(f,)|*,0*n*") (B.7)

Hence,
o NP2 X L e

) ) , _ ' ,,
N ;mln (|X(fn)‘ o%n? ) < Ng{|XLTI_X|2} < 5 ;mln (|X(fn)|2,02n2 )

(B.8)
The colored noise variance at frequency f,, increases monotonically with increasing n.
In contrast, the signal energy decreases monotonically with n. Let f, denote the DE'T
frequency where the signal coefficient energy is approximately equal to the colored

noise variance. The index ¢ is given by

1 N
q ~ (N02)2”+2,q€{1,...,5}. (B.9)
X(fo)? < o®n*” for allm > ¢
and [X(f,)]*? > o*n®” for alln < ¢
N
Hence ii min (| X (f,)|?, 0*n*") = 2 iJZnQ” —i—3 i X (fo)?
"N m N N "
n=1 n=1 n=q+1
29 , 2 LN
> —0 — —
- N N n?
n=q+1
2q , w2 7 1
v dp2io (Do Z) (D -2
N (6 N) (6 q
(0?) 242 9 \mE 4
voyEm T (m?) N

~ 0 (ﬁ) (B.10)
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Thus, the rate at which the average error per sample decays for the best LTI estimator

is O <NT)
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Appendix C

Error Decay for Wavelet-based Techniques

Again, we consider a piece-wise polynomial function input signal (refer Figure B.1).
Consider a wavelet system such that the number of zero moments of the wavelet
basis functions is greater than or equal to the maximal degree of of the polynomial
pieces in the input signal. Such a wavelet system represent piece-wise polynomial
functions very economically. All the wavelet coefficients corresponding to the wavelet
basis functions that are fully contained in the smooth polynomial region of the signal
are zero [17]. The wavelet coefficients are non-zero only if supports of the corre-
sponding wavelet basis function contains any point of discontinuity. Since there are
log, N scales in wavelet decomposition, the number of non-zero wavelet coefficients is
O(log, N). For the sake of simplicity, we assume that there are exactly log, N non-
zero coefficients. The energy of the non-zero wavelet coefficients whose basis support
contains the discontinuous event decay as 277 with increasing wavelet scales p [14].

So the wavelet coefficient at scale p is given by
lwp i |* ~ 27P |wo k| forp=1,....1og, N (C.1)

The total signal energy is given by (2 — 1) |wg|%. With denser sampling, the energy
of the signal increases proportional to N. So the energy of the coarsest scale |wg|?

wavelet coefficient increases as N C', where C is some non-zero constant.
\wp,k|2 ~2PNC forp=1,....1og, N (C.2)

When the wavelets have sufficient zero moments, they are well-localized in fre-
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quency and nearly band-limited. Then, the variance of the colored noise at wavelet
scale p after inversion with H~! is approximately given by
N ~
2= Y [Vp(fu)l®
! — H(fn)]?
2r—1

% Z n2 g2

n:2P*1

Q

2

—23_1 [(2? —1)** - (2p—1)2”+1]

o? 21 (C.3)

Q

Q

Note that the signal energy per sample and the noise energy per sample stays constant.
We consider the error that results from employing ideal scale-dependent thresholding
of the wavelet coefficients, where ideal thresholding is defined in 5.3. The average error
per sample for an ideal thresholding estimator is given by + > e min(|w;x[?, 07). The
colored noise variance monotonically increases with increasing scale p. In contrast,
the signal energy decays with scale p. Let ¢ denote the scale where the signal wavelet

coefficient energy is approximately equal to the colored noise variance. Then,

1
. CN)\z+H
G ~ log, (202) (C.4)
1 1 logy N
LS min(ugeol) = x> minuglo)
Jk j=1
1 q logy, N
2 2
- % (S 3 )
Jj=1 Jj=g¢+1

- o(y)

In practice, it is possible to estimate the signal within a log, N factor of the ideal

thresholding error using wavelet-domain shrinkage [10]. So in practice, it is possible

1°g21N )> using wavelet-based deconvolution

N(m

to achieve an error decay rate of O (
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which is clearly faster that the rate achieved by LTI estimators asymptotically with

increasing N.
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