

using Optimally Regularized Inversion Wavelet-Based Deconvolution for III-Conditioned Systems

Ramesh Neelamani, Hyeokho Choi, and Richard Baraniuk

Rice University

Supported by

Texas Instruments, National Science Foundation, DARPA/AFOSR Rice Consortium for Computational Seismic Interpretation

Deconvolution

input

observed

estimate

- Problem: given y, h, find x
- Applications: satellite imagery, seismic exploration, ...

Deconvolution is III-Posed

blurred Y(f) noisy image $X(f)H(f)+\overline{N(f)}$ inverse $+X(f) + \frac{N(f)}{H(f)}$ deconvolution estimate

- $ullet |H(f)|pprox 0 \;\Rightarrow\;\; {\sf noise} \;\; rac{N(f)}{H(f)} \;\; {\sf explodes!}$
- Solution: regularization (approximate inversion)

Fourier-domain Regularized Deconvolution (FoRD)

- ullet Fourier transform diagonalizes H
- ⇒ identifies and attenuates amplified noise frequency components
- Ex: Wiener filter (MSE-optimal LTI estimator)

$$\widehat{X}(f) = Y(f) \frac{1}{H(f)} \frac{|H(f)|^2 \operatorname{SNR}(f)}{|H(f)|^2 \operatorname{SNR}(f) + \alpha}$$

- SNR high \Rightarrow less shrinkage

SNR low ⇒ more shrinkage

Inversion and shrinkage done together in practice

Matchmaking

Fourier basis: not suited for images with edges

Wiener estimate

- Fourier basis: matched to operator but unmatched to signal
- Wavelets: matched to signal (economical representation)

Wavelet Vaguellete Deconvolution (WVD)

- Donoho '95: near optimal performance for $certain\ H$
- Kalifa el al. '98: extended class of applicable ${\cal H}$
- ullet Bottom line: do not apply to arbitrary H

Wavelet-domain Regularized Deconvolution (WaRD)

- Wavelet denoising: exploits input signal structure Fourier denoising: exploits convolution operator structure
- Choice of α : balance Fourier and wavelet denoising
- Applicable to all convolution operators
- Simple and fast algorithm: $O(M \log_2^2 M)$ for M pixels

How Much Fourier Regularization?

Tradeoff:

Goal: balance Fourier and wavelet denoising

Criterion: minimize overall MSE

Optimal regularization α

Optimal balance controlled by economics of wavelet representation

Optimality of WaRD

$$\alpha = 0 \Rightarrow WaRD = WVD$$

$$-$$
 Optimal $~lpha~
eq~0 \Rightarrow$ WaRD outperforms WVD (small samples)

• Optimal
$$\, lpha \, \ll \, 1$$
 (for most real world signals)

WaRD applies for all convolution operators

Original

Observed

Conclusions

- WaRD: Balances Fourier-domain and wavelet-domain denoising
- WaRD simultaneously preserves critical edges and smooth regions
- Simple and fast algorithm: $O(M \log_2^2 M)$ for M pixels Near-optimal asymptotic performance
- ullet Applicable even when H not invertible

Good small sample performance

Outperforms conventional WVD

|Web: http://www.dsp.rice.edu