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Deconvolution
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e Problem: given vy, h, find z

e Applications: satellite imagery, seismic exploration, ...




Deconvolution is lll-Posed
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e Solution:

dn,_.mn:m,:m.v\ % after pure inversion

0 = noise % explodes!
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Fourier-domain Regularized Deconvolution (FoRD)
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e Fourier transform diagonalizes H

= identifies and attenuates amplified noise frequency components

e Ex: Wiener filter (MSE-optimal LTI estimator)
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e |nversion and shrinkage done together in practice

f) |H(f)[? SNR(f) +
— SNR high =- less shrinkage
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SNR low = more shrinkage




Matchmaking

e Fourier basis: not suited for images with edges
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e

Wiener estimate

e Fourier basis: matched to operator but unmatched to signal

e Wavelets: matched to signal (economical representation)
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Wavelet Vaguellete Deconvolution (WVD)
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e Donoho '95: near optimal performance for certain H

o Kalifa el al. '98: extended class of applicable H

e Bottom line: do not apply to arbitrary H
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Wavelet-domain Regularized Deconvolution (WaRD)
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e Fourier denoising: exploits convolution operator structure

Wavelet denoising: exploits input signal structure
e Choice of a: balance Fourier and wavelet denoising
e Applicable to all convolution operators

e Simple and fast algorithm: O(M logs M) for M pixels




How Much Fourier Regularization?
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e Tradeoff:
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e Goal: balance Fourier and wavelet denoising

e Criterion: minimize overall MSE

Fourier wavelet
MSE =~ distortion +  thresholding
error error
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Optimal regularization «

Optimal o« for % of wavelet coeffs >
wavelet scale 3 noise variance in scale
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Optimal balance controlled by economics of wavelet representation




Optimality of WaRD

e o« = 0= WaRD = WVD

— WaRD inherits asymptotic optimality from WVD

— Optimal a # 0 = WaRD outperforms WVD (small samples)

e Optimal a < 1 (for most real world signals)

e WaRD applies for all convolution operators
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Conclusions

WaRD: Balances Fourier-domain and wavelet-domain denoising
WaRD simultaneously preserves critical edges and smooth regions

Simple and fast algorithm: O(M logs M) for M pixels

Near-optimal asymptotic performance
Good small sample performance

Applicable even when H not invertible

Outperforms conventional WVD

Web: http://www.dsp.rice.edu




