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ABSTRACT

In this paper we propose a new class of signal analysis tools
that generalizes the popular wavelet and short-time Fourier
transforms. The class allows skews and rotations of the an-
alyzing wavelet in the time-frequency plane, in addition to
the time and frequency translations and scalings employed
by conventional transforms. In addition to providing a uni-
fying framework for studying existing time-frequency repre-
sentations, the general class provides a systematic method
for designing new representations with properties useful for
certain types of signals.

1. INTRODUCTION

The continuous wavelet transform (WT)

b(t,a) = |a|—%/s(r) g (T;t) dr (1)

and the short-time Fourier transform (STFT)

P(t,w) = /s(r) g (r—t)e 7 dr (2)

are two-dimensional functions that indicate the joint time-
frequency energy content of a one-dimensional signal [1].
They map the signal s(r) to the time-frequency plane by
projecting it onto an overdetermined basis of functions
called logons that are transformed versions of the analyz-
ing wavelet g(7).

The logons can be interpreted as “tiling” the time-
frequency plane in an overlapping fashion; the shapes and
locations of the tiles are controlled by the transformation
applied to the analyzing wavelet. We will refer to the repre-
sentation of this transformation on the time-frequency plane
as the logon tiling function. In the WT, the tiling function
scales g(7) by a factor a™' (which scales its Fourier trans-
form by a factor a) and then translates the result in time
by t. Figure 1(a) illustrates the idealized time-frequency
distribution of an analyzing wavelet and several logons ob-
tained using this tiling function. Apparent from the figure is
the proportional-bandwidth (constant-Q) nature of the WT
analysis. In the STFT, g(7) is time- and frequency-shifted.
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Figure 1(b) illustrates several logons obtained using this
constant-bandwidth tiling function.

The WT and STFT work best for signals whose charac-
teristics match the type of tiling function employed in the
analysis. Thus, the WT performs best for signals having a
constant-Q behavior (doppler-shifted transients and fractal
signals are two examples), while the STFT performs best for
signals having a constant-bandwidth behavior (frequency-
shift keying signals, for example). While the signals en-
countered in many applications are often approximately
constant-Q or approximately constant-bandwidth, there ex-
ists a large class of signals for which neither transform is
well matched. Examples include dispersive or chirping sig-
nals that are well-matched only by slanted logons.

In this paper, we propose a new class of multidimensional
signal representations that permits tiling functions more
general than those employed in the WT and STFT. This
class contains many new, interesting, and potentially useful
representations, plus contains the W'T and STFT as special
cases.

2. A VERY GENERAL CLASS
Both the WT and STFT belong to a general class of linear

signal transformations that can be represented (using the
inner product notation (d,e) = fd(r) e*(7)dr) as

[(z) = (s, fs9), (3)

where s is the signal to be analyzed, ¢ is the analyzing
wavelet, and the operator f, which maps functions into
functions, is called the analysis map. The analysis map
is parameterized by the analysis coordinate z, which is as-
sumed to come from some set X, called the analysis space.
The interpretation of (3) is simple: each analysis coordinate
z from X is associated with a (complex) number which is
obtained by taking the inner product of the signal with a
transformed version of the analyzing wavelet. The particu-
lar transformation used is determined by the value z.

By using Moyal’s formula [2], the energetic version of the
transform (3) can be represented as the two-dimensional
inner product of two Wigner time-frequency distributions

D) = s, fzg))?
= 2m (W., F,W,)

= 27 // We(r, Q) FoWy(r, Q) drdf2.  (4)

Here W.(7,€) and Wy(r, ) are the Wigner distributions



of the signal and analyzing wavelet, respectively, 7 and Q
represent time and frequency, and F; is the operator defined
by F.W, = W W™'W,. (WS represents the mapping
from a signal f to its Wigner distribution Wy.) F. is a
mapping from the subset V of two- dlmenswnal functions
that are valid Wigner distributions into V. Given Fj, the
operator f; is easily obtained as

fz9 = W_lFr)/vg~ (5)

Because of the close relationship between £y and f., we will
also refer to F as the analysis map.

The Wigner distribution representation of I'(z) is very
useful for conceptual purposes, because both the time-
frequency plane coordinates, 7 and €2, appear explicitly.
This representation is particularly illuminating when F; is
a transformation of the coordinates (7, Q) of W,. Then F;
is precisely the coordinate transformation that, when ap-
plied to Wy, deforms and translates it as prescribed by the
logon tiling function discussed in the Introduction.

The WT and STFT are easily shown to belong to the
general class. For the WT, we have [3]

Fag(r) =la| 7% g (252)
FoWo(r,Q) = W, (Z5,aQ) (6)
z = (t,a), X =IR%

For the STFT, we have
foyg(r) = g(r — t) 2“7
FWy(r, Q)= Wy(r —t,Q —w) (7)
=(t,w), X =IR%

In both cases F; is a coordinate transformation that gener-
ates the appropriate logon tiling function.

3. THE TWO-DIMENSIONAL AFFINE CLASS

The class defined in (3) is very general — unfortunately too
general to be practical. Therefore, rather than consider this
class in its totality, we will now derive an important subclass
that more directly extends the WT and STFT.

Note from (6) and (7) that the analysis map F, for both
the WT and STFT takes the form of a two-dimensional,

area-preserving, affine coordinate transformation; that is,
FoWy(r, Q) = Wy(r',Q)), (8)

where

)-al(2]-9) < a[2] = v o

Here A is a 2 x 2 real matrix with |A| = 1, and b and ¥’
are 2 x 1 real vectors. We will study the subclass of (3)—(4)
obtained from such (two-dimensional) affine analysis maps’.

3.1. Analysis Map F;

Affine analysis maps can generate a broad range of affine
logon tiling functions. In addition to the translations and

1'We recently discovered that this class of transformations has
been suggested independently by Berthon [4] and Mann and
Haykin [5].

scalings employed by the WT and STFT, logons may be
skewed and rotated in the time-frequency plane.

When the diagonal elements of A are nonzero, an analysis
map of the form (8)—(9) can be decomposed into a compo-
sition of five distinct one-parameter transformations (recall
that |A| = 1) on the time-frequency plane

a(la]-)=1a s vl o
(La]-[s]-[2]) oo

The component transformations correspond to (from left to
right) skewing in the frequency direction, skewing in the
time direction, axis scaling, translation in time, and trans-
lation in frequency. Axis scaling and time and frequency
translation are familiar from the WT and STFT; the two
skew transformations are new. Note that if |A| # 1, then
FyWg will not, in general, be a valid Wigner distribution [6].
In this case, f, and the representation (3) are undefined.

The parameters associated with the component transfor-
mations define an analysis coordinate z = (¢,w,a,p,q) in a
five-dimensional analysis space X. Figure 2 shows W, for
a Gaussian window analyzing wavelet g and F,W, corre-
sponding to the point £ = (10,1.5,0.5,0, —0.2).

3.2. Components of the Analysis Maps F, and f;

Each matrix in (10) is associated with an operator on Wj.
Application of (5) to the components of F; yields the cor-
responding component operators of f,. The component op-
erators are summarized below [6].

Time shift: TiWy(r, Q) = We(r —t,Q)
Ttg( )=g(r - t)
Frequency shift: Wy(r, ) Wy(r, Q2 —w)
wg(r) = e’*g(1)
Axis Scaling: A Wy(r, Q) = (a_JT, af?)
a9(7) =la|"3g(a™'7)
Skew in time: 73 VV 7,8) = (T + pQ, Q)

(r) (jp) "% eI /2 s g (1)
(T, Q) (T, Q+ qr)
qu(r) =7 2y(r).

Just as F is the composition of Tt,fw,Aa, Pp, and Qq,
o fz is the composition of T¢, Fo, A, Pp, and Q,. Skews
in the time and frequency dlrectlons are produced by mod-
ulating either the wavelet or its spectrum by a linear-FM
(“chirp”) function. (For the operator Pp, % denotes con-
Volution When p = 0, this operator has no effect, since

\_/

Skew in frequency:

(jp)~ 3 ¢~ 12P becomes a Dirac delta function. )
Using these operators, a transform from the two-
dimensional affine class can be written as

[(t,w,a,p,q) = (s,

|F(tawaaapaQ)|2 = 27(' <WS, TWZAGPPQQ Wg) (12)

FouT:APLQq 9) (11)

3.3. Analysis Space X

As pointed out earlier, the analysis space X 1is five-
dimensional. We emphasize that even though the two-



dimensional Wigner time-frequency distribution was used
as a conceptual tool in the development of the affine class,
I'(z) is more than just a distribution of time and frequency.
For example, if the values to, wo, ao, and po are fixed, then
I'(to,wo, a0, po, q) measures the similarity of the signal to
wavelets having varying amounts of linear-FM modulation.

Although, in general, I'(z) is a five-dimensional distribu-
tion, analyses can be carried out in lower-dimensional sub-
sets of X. The WT and STFT have already been discussed;
they lie on the two-dimensional planes parameterized by
z=(t,0,a,0,0) and z = (¢,w, 1, 0,0), respectively.

The subset of analysis does not have to be planar; it
could even be curved. An example of a tilted surface of
analysis is given in Fig. 3. The logons in the figure are as-
sociated with points lying on the two-dimensional surface
z = (t,w,1,0.08¢,0). Several new transforms that corre-
spond to other lower-dimensional subsets of X are presented
in the next section.

4. EXAMPLES
4.1. The Scale-Skew Transform

A new two-dimensional transform that shares many of the
desirable properties of the WT and STFT is the scale-skew
wavelet transform corresponding to the two-dimensional
analysis plane z = (0,0,a,p,0). The following result is
easily proved.

Theorem 1 The scale-skew transform is isometric and
continuously-invertible, provided the analyzing wavelet g(7)
satisfies the following admissibility condition, stated here in
terms of its Fourier transform G(§2):

/‘@ dQ) < oo. (13)

An interesting property of this transform is that it can com-
pletely represent a signal without using time or frequency
translations of the wavelet. Similar results apply for many
other analysis surfaces.

4.2. The Dispersion Transform

Dispersion artifacts occur in signals acquired from media
in which the wave propagation velocity varies with the fre-
quency of the signal. The components of a dispersed signal
are tilted in time-frequency; see [7] for a good example. A
fundamental limitation of both the WT and STFT is illus-
trated in Figs. 4(a) and (b) for a simulated dispersed signal:
since the WT and STFT logons remain at a fixed angle in
the time-frequency plane, they smear out dispersed signal
components and are poorly concentrated.

The dispersion transform (DT) evaluates I'(z) at points
on the two-dimensional surface z = (t,w, 1, p(t,w),0). Lo-
gons corresponding to several points on such a surface were
shown in Fig. 3 for p(t,w) = 0.08¢. The DT of the exam-
ple dispersed signal for points on this surface is shown in
Fig. 4(c). Generally, in situations where the dispersive char-
acteristics of the medium are known or can be estimated,
the DT will yield a more concentrated time-frequency rep-
resentation than either the WT or STFT. Dispersion trans-
forms based on time-scale-skew (z = (1,0, a,p(t,a),0)) are
also possible.

4.3. The Bowtie Transform

Mann and Haykin’s bowtie chirplet transform [5] is a three-
dimensional transform which has proven useful for studying
the acceleration signature of Doppler shifted signals. It is
based on time and frequency translations and the frequency
skew. See [5] for more details.

4.4. Nonuniform Filterbanks

The two-dimensional surface in X parameterized by z =
(t,w,a(w),0,0) yields a time-frequency transform in which
the analysis frequency vs. analysis bandwidth relationship
is unconstrained (contrary to the WT and STFT). This
allows for better matching of the transform to signals whose
behavior is neither constant-Q nor constant-bandwidth.

5. CONCLUSIONS

In addition to providing a unifying framework for study-
ing existing linear signal representations like the W'T and
STFT, the general class (3) and its five-parameter subclass
(11) provide a systematic method for designing new repre-
sentations with properties useful for certain classes of sig-
nals. The example transforms presented in Section 4 indi-
cate that there is much to be gained by stepping out of the
strict time-frequency paradigm.

Currently, we are using group representation theory to
determine a set of admissibility conditions that an analy-
sis subset must satisfy to generate an isometric, invertible
transform. We are also studying the discretization of the
general class to form orthonormal bases and frames, as well
as the bilinear class of representations obtained from (4) by
replacing W, with an arbitrary two-dimensional function.

Finally, note that the generalization of current time-
frequency and time-scale representations does not have to
stop at the two-dimensional affine class. In addition to
skews and rotations of logons, transforms based on higher-
dimensional analysis spaces (using quadratic-FM transfor-
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mation functions, e’°" , for example) will manipulate the
curvature of logons during analysis.

References

1. C. Heil and D. Walnut, “Continuous and Discrete
Wavelet Transforms,” SIAM Review, Vol. 31, No. 4,
pp. 628-666, Dec. 1989.

2. L. Cohen, “Time-Frequency Distributions — A Review,”
Proceedings of the IEEE T7(7), pp. 941-981, July 1989.

3. P. Flandrin and O. Rioul “Affine Smoothing of the
Wigner-Ville Distribution,” IEEE ICASSP-90, Albu-
querque, 1990, pp. 2455-2458.

4. A. Berthon, “Operator Groups and Ambiguity Func-
tions,” in Wavelets: Time-Frequency Methods and
Phase Space, J.M. Combes, ed., Springer Verlag, 1989.

5. S. Mann and S. Haykin, “Time-Frequency Perspectives:
The Chirplet Transform,” IEEE ICASSP-92, San Fran-
cisco, 1992.

6. A. Janssen, “On the Locus and Spread of Pseudo-
Density Functions in the Time-Frequency Plane,”
Philips J. Res. 37, pp. 79-110, 1982.

. J.P Sessarego et al., “T'ime-Frequency Analysis of Sig-
nals Related to Scattering Problems in Acoustics,” in
Wavelets: Time-Frequency Methods and Phase Space,
J.M. Combes, ed., Springer Verlag, 1989.

-3



