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Abstract

We examine the problem of approximating a complex frequency response by a
real-valued FIR filter according to the Ly norm subject to additional inequality con-
straints for the complex error function. Starting with the Kuhn-Tucker optimality
conditions which specialize to a system of nonlinear equations we deduce an itera-
tive algorithm. These equations are solved by Newton’s method in every iteration
step. The algorithm allows arbitrary tradeoffs between an Ly and an L., design.
The L, and the L., solution result as special cases.

Wir untersuchen das Problem der Approximation eines komplexen Frequenz-
ganges mittels eines reellwertigen nichtrekursiven Filters nach der Ly-Norm mit
zusatzlichen Ungleichungsbedingungen fir die komplexe Fehlerfunktion. Ausge-
hend von den Kuhn-Tucker Optimalitatsbedingungen, die auf ein nichtlineares Glei-
chungssystem fiihren, leiten wir einen iterativen Algorithmus her. Diese Gleichungen
werden in jedem Iterationsschritt mittels des Newton-Verfahrens gelost. Der Algo-
rithmus erlaubt beliebige Kompromisse zwischen einem Lg- und einem L ,-Entwurf.
Die Lo- und die L,-LOsung ergeben sich als Spezialfélle.
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1 Introduction

Although FIR filter design has been treated in the past by many publications only few
consider the case of a non symmetric impulse response or an arbitrary nonlinear phase
complex desired function (NLPFIR filter), which we will do in this paper. The design of
FIR filters according to the L., norm with an (anti) symmetric impulse response (LPFIR
filters) can be carried out by using either the efficient Remez’ algorithm [8] or Linear
Programming [11]. If the L, norm is used, the problem is reduced to solving a system of
linear equations. The latter approach can also be applied to arbitrary complex desired
functions which can be interesting for equalization problems [10, 12] or nearly LPFIR fil-
ters with reduced complex error [5]. The generalization of the algorithms minimizing the
L., norm to this case is more complicated. There are three approaches: A generalization
of Remez’ algorithm [10, 12] which is fast but not guaranteed to converge, a Linear Pro-
gramming approach [5, 6] yielding suboptimal results with a high demand of computation
time and computer storage and an algorithm of Tang [2, 14] which is not guaranteed to
converge theoretically but does so in nearly all practical applications [12]. As can be seen
the optimum filter can be designed if just the L, or the L., norm is used. Based on an
iterative reweighted least squares algorithm Burrus and Barreto gave an L, approach for
LPFIR filters [4] which can be interpreted as a compromise between an Ly and an L
solution. With the methods mentioned above the minimization of the error energy (L.
norm) keeping a prescribed maximum error at the same time is not possible. Adams [1]
brought up this problem and gave an approach for the solution for LPFIR filters.
Considering a discrete frequency grid we present a new algorithm which can be seen as a
generalization of Adams’ approach to the case of NLPFIR filters. With this new method it
is possible for the first time to design NLPFIR filters according to the constrained L, error
criterion described above. The weighting and desired functions can be arbitrarily chosen.
The usual Ly and L., design and the design of LPFIR filters result as specializations
of our algorithm. Possible applications are the same as for the traditional L, or L.,
approach (equalization, nearly LPFIR filter). But with our new algorithm we can also
solve problems which do not fit into a L, or a L., formulation. An example is the design
of filters used in X-A converters [6] where we have the problem of minimizing the error
energy of an NLPFIR filter in one band keeping a given tolerance in the other.
Furthermore we give a simple method to essentially improve the convergence behaviour
of Adam’s approach. Although we do not prove convergence our algorithm converges in
most practical applications and we give a short discussion of convergence problems which

is also valid for Adam’s method. Convergence of the new algorithm is tantamount to



optimality of the solution because of our approach.

2 Description of the Procedure

In this section we consider the problem of determining a real-valued NLPFIR filter ap-
proximating a desired function, which keeps a prescribed error tolerance 6 and minimizes
the absolute quadratic error. Both the L., and the L, solution result as specializations
if the minimax error is prescribed for 6 on the one hand and a very large value for 6 on
the other hand. By continuously increasing 6 beginning from the minimax error arbitrary
compromises between an L., and an L, solution are possible.

We formulate the filter design as the problem of minimizing a quadratic function subject
to quadratic constraints. The general Kuhn-Tucker (KT) conditions, which are necessary
and sufficient for the optimality of the solution, yield a set of nonlinear equations which
are solved by Newton’s Method. These KT conditions generalize the approach of finding
the minimum of a function subject to equality constraints by use of Lagrange multipliers
to the case of inequality constraints. Just as in the case of Remez’ Algorithm the local
extremal frequencies play an important role. So the two essential steps of our new iterative
algorithm are: determination of the extremal frequencies of the error function and solving
a system of nonlinear equations.

We introduce the causal and real-valued impulse response h(k) of length n + 1, the
corresponding frequency response

n

H(e™) =3 h(k)e™*, (1)

k=0
a desired function D(e’) with the property D(e’?) = D*(e7), and a complex error

function
E(em) =H(ejQ)—D(ejQ) =E*(e_j9). (2)

Since all computations have to be carried out on a finite frequency grid Q;, : =1... L,
we restrict the considerations to such a formulation and use equidistant spacing. The
continuous formulation in frequency is straightforward: the error sums are simply replaced
by integrals. The structure of the essential equations remains unchanged.

By use of discretization, Eq. (1) can be written as

H = Ah (3)



with the vector H = [H(e/*1) ... H(e%2)]T| the matrix

1 e emindh

1 e | emint

and the vector h = [A(0) ... h(n)]*. The error vector
E=Ah-D (5)

with E = [E(e/™) ... E(e/*)]T and D = [D(e/*n) ... D(e?%2)]T results. Since we want

to minimize the Ly norm we introduce the absolute weighted squared error

L .
e(h) = Y We()|E(e)]? = EPWLE o
=1 6
h"A*WzAh — 2Re {h"A"WyD} + D¥W5D

where Wy = diag (Wg(Qy) ... Wg(Qyg)) is a positive semidefinite diagonal matrix and
the superscript H means conjugate transposed. As is well-known the L, solution vector

can be determined by searching the minimum of ¢ which is equivalent to solving
grady (h"Rh — 2h"d + d) = 0, (7)

with the abbreviations

R = Re{A"W A}, (8)
d = Re{A"W;yD}, (9)
d = DYWyD. (10)

Eq. (7) leads to the well-known “Normal Equation”
Rh=d. (11)

Until here we considered only the unconstrained L, filter design problem. Additional

inequality constraints concerning an error tolerance can be incorporated by prescribing
WiQ)NEEM)P <6, i=1...L, (12)

with the nonnegative weighting function W,4(£);) and the error tolerance 6. Relation (12)

can be equivalently written as
B(h, ;) := W2(Q)[h"R(Q)h — 2hTd () + d(Q:)] — 6> <0 (13)
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R(Q) = Re{AFA,}, (14)
d(Q) = Re{AFD(e)}, (15)
d() = [D(E)), (16)

where ¢ = 1... L. A; denotes the ith row of the matrix A. The filter design problem
can now be formulated as a quadratic minimization problem with quadratic inequality

constraints:
Minimize e(h)= h"Rh — 2h™Td + d
h (17)
subject to B(h,Q;) <0,i=1...L.

The pivotal point of our further consideration are the necessary and sufficient KT
conditions [13]. They hold for problems of a structure as in (17) where each function (e
and B) nonlinearly depends on h. Furthermore we have to suppose that there exists a
solution and both functions are differentiable and real and convex functions of the real

vector h. Then the optimum solution is given if and only if the following conditions are

fulfilled:

L
gradye(h) + ) pigrady B(h, ;)

= 0, (18)
=1
BhQ) < 0, i=1 (19)
w, = 0, =1 (20)
Hi B(h,Qz) = 0, 1 =1 (21)

The interpretation of these conditions (18)-(21) is analogous to the case of linear inequal-
ities B(h, ). We omit a detailed discussion here since Adams gave one in [1]. We only
want to point out some statements. The so-called KT coefficients y; must be nonnegative
(20). This property guarantees that we get a minimum of ¢. For any positive y; the
corresponding constraints B(h, ;) < 0 must be met with equality and vice versa because
of Eq. (21). Those frequency points ©; with B(h, ;) = 0 correspond to local maxima of
the weighted error function (12). The set of all such constraints is called the set of active
constraints and the corresponding set of M indices is called I = {vy...vp}. Because of
Eq. (21) only the KT coefficients of this set can be nonzero.

Since the Hessian matrices of ¢(h), B(h, ;) are the positive semidefinite matrices R
and R(€Y;), respectively, we have convex functions [13]. The other requirements for the
Kuhn-Tucker conditions are also fulfilled. Consequently, the optimum solution of our

filter design problem is uniquely characterized by the KT conditions.
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If the active set and the set of indices I were known in advance the relations (18) and
(19) would yield a system of n + 1 + M nonlinear equations for the n + 1 + M unknown

parameters combined in the vector
x" = W' ], with g =, o). (22)

In this case we have to determine the minimum of € subject to equality constraints and
the KT conditions reduce to the well-known method of Lagrangian multipliers [13]. The

problem of course is that we do not a priori know the active constraints. Similar to Re-

mez’ algorithm we proceed iteratively using each local error maximum of W4 (€;)|E (/)
larger than ¢ as an indicator for an active constraint. Let us suppose we are given an
initial solution h(®) and a corresponding set of KT coefficients g(°). This can be computed
by use of Eq. (11) and a vector u(® = [1...1]7. Then our algorithm consists of two major

steps:

1. Determine all M local maxima W4 (€;)|E(e’)

indices {v; ... vy }. Note that the value of M usually varies from one iteration step

> ¢ and the corresponding set of

to the next.

2. Solve the system of n + 1 + M nonlinear equations

M
gradye(h) + Z o, grady B(h,Q, ) =0 (23)
m=1
B(h,Q,,)=0, m=1...M (24)

for h and g,,,. If the solution meets the KT conditions (18)-(21) then stop. Repeat

otherwise.

Since the first step is easily implemented by essentially determining the frequency re-
sponse H(e/'%) we concentrate on the second step. From Equations (23) and (24) it is seen
that this second step can be interpreted as the method of Lagrangian multiplier where
the actual equality constraints (24) change from one iteration step to the next due to the
change of the extremal frequencies (active constraints). By use of (13) and (17) Egs. (23)

and (24) can be written as

gi(x) = Rh—d+> p, Wi, [R(2,,)h — d(%,,)] = 0 (25)
Wfl(ﬂlﬂ)[hTR(QVl )h - 2hTa(QV1) + J(Qlﬂ )] —¢?
ga(x) = : =0. (26)

WEX(QVM)[hTR(QVM)h - ZhTa(QVM) + CZ(QVM)] —¢?
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This system of nonlinear Eqs. (25) and (26) can be solved using Newton’s method [13]

xlet)  — (o) _ J—l(X(q))f(X(q)) (27)
with

f(x) — g1(x) ] 7 98

(%) [ 22(x) (28)

the ¢th row of the Jacobian matrix

Ji(x) = [grad, fi(x)]" , (29)

and f;(x) denoting the ith component of the column vector f(x). The iteration counter

of Newton’s method is indicated by (¢) in Eq. (27). The Jacobian matrix can be written

as
Jll J12
n+1lxn+1 n+l1xM
J= : (30)
J21 J22
M xn+1 MxM
with
M ~
Jiu = R+ D m, Wi, )R(Q,,), (31)
m=1
Jip = [WA(Q)[R(Q)h —d(Q,)] ... Wi(Q,)[R(Q,)h—d(,)] . (32)
Jyy = J,, (33)
J22 = 0 (34)

Considering Eqgs. (31) and (32) and the fact that J has to be built up for every iteration
step (¢) the computational load and the storage requirements only for determining J
seem to be huge. Both difficulties can be reduced by using the fact that R and IN{(QZ) are
symmetrical Toeplitz matrices, so only one row of each matrix is necessary for a complete
description. A further improvement is possible since the product W2(Q,, )R(€,,,) in Eq.
(31) remains unchanged during Newton’s method.

Assuming our algorithm converges, only the first two KT conditions are fulfilled by the
procedure described above. The KT coefficients p,, are not guaranteed to be nonnega-
tive. This problem also occurs at Adams’ algorithm [1]. In both cases it can simply be
solved by checking the signs of y,,,, m = 1... M when a solution vector x of the Eqs. (23)
and (24) is found. Those equations B(h,(},,,) = 0 which correspond to negative values of
[, are removed from the set of active constraints. Newton’s method which corresponds
to the solution of a system of linear equations at Adam’s algorithm is started again. The
procedure is repeated until no negative KT coefficients result. This step considerably re-

duces convergence problems and leads to the optimum solution in the case of convergence.
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The latter is due to the fact that all KT conditions (18)-(21) are taken into account by
the algorithm described above.

3 Design Examples

FExamplel: We consider the design of an approximately linear phase lowpass filter with
n = 30,
e”1% O e B,

D(e'®) = : (35)
0 Qe B,
1 0 e B,

Wa(Q) = : (36)
10 0 e B,

with the passband B, = [0,€,], the stopband B, = [, 7], Q, = 0.12x, and Q, = 0.24~,
which was introduced by Chen and Parks in [8]. We used L, + 1 = 51 frequency points
N =14¢-Q,/L,, 1 =0...L, in the passband and Ly + 1 = 401 frequency points Q; =
Qs+i- (7 —Q)/Ls, 2 =0...Ls in the stopband.

In the following we present some examples which illustrate the effect of weighting and
the choice of 6. The different examples are marked by Ex. 1-1 ... Ex. 1-7. With Wg(Q) =1
and the choice 6 = 1 (or any other “large” value) or 6 = 0.0439252 we get the L, and
approximately the L., solution (Ex. 1-1 and Ex. 1-2), respectively. In the first case we
have only to solve the “Normal Equation” (11) once, whereas in the latter case k = 12
iteration steps are necessary as can be seen from Table 1. The corresponding magnitude
responses and error functions W4(€2) - |E(e/®?)| are depicted in Fig. 1 showing the well-
known Gibbs phenomenon of the L, solution and an equiripple behaviour of the L.,
solution. Obviously the L., norm

Eoo = %qeaé({WA(Q) |E(e)]}, B=B,UB, (37)
of the L, solution is much larger than that of the L., solution and vice versa the same is
true for the error energy

ea= Y |E(e")?, B=B,UB, (38)

Q;eB
as can be seen in Table 1. By our new algorithm it is now possible to design arbitrary
compromises between these solutions. If we choose for example 6 = 0.07, which is far less

than ., in the case of the L, solution, and
1, Q@ eB,
Wp() = (39)
104, Q € B,



and
We@) =1, 9eB, (10)

respectively we get an equiripple behaviour in the passband and minimum stopband error

energy

g5 = Y |BE(e!™)

QieBs

: (1)

in the first case (Ex. 1-3) and minimum overall error energy e, (with respect to 6 = 0.07) in
the second (Ex. 1-4). The resulting values can be taken from Table 1. The corresponding
magnitude responses and error functions are shown in Fig. 2.

Next we want to compare our algorithm to known methods as Tang’s algorithm [14],
Adams’ algorithm for LPFIR filters [1] and Pei’s and Shyu’s Eigenfilter method [9]. The
latter is equivalent to the solution of the “Normal Equation” (11) if we choose a continuous
formulation (integrals) where our formulation seems to have some advantages. It is easier
to understand and to implement and applies to arbitrary desired and weighting functions
in opposite to [9] because one has to determine a new matrix for each new filter type
(lowpass, differentiator, ...) and each new weighting function there. To get comparable
results to [9], Example 1, we have chosen

Wa(@) = /L, Q € B, | (12)

5(r —Qs)/Ls, Q € Bs

which yields a good approximation to the error integrals in [9]. Unfortunately Pei and
Shyu gave neither ¢, nor ¢, of their solution but the maximum deviation in the passband
with 0.0658 and the error magnitude of the first sidelobe in the stopband with 0.0068.
Using (42) we get corresponding values 0.0652 and 0.0069 with our algorithm (Ex. 1-5)
which seems to be near the result of [9]. Further values resulting for this design can be
found in Table 1.

For comparison with Tang’s algorithm [14] we designed the lowpass filter according to
the L., norm by use of his method (Ex. 1-6) and the weighting function W4(€) given in
Eq. (36). A comparison with Ex. 1-2 shows that we get the same error maximum up to
3 decimal places as with our algorithm when we use the value 6 equal to e, of the L.,
solution. Of course the resulting value e, of our algorithm is slightly worse since it is
not possible to improve the L, solution. On the other hand ¢, of Ex. 1-6 is larger which
is also expected as our method minimizes the L, norm in opposite to Tang’s algorithm.
The only disadvantage of our method with regard to the determination of an L, solution

is the fact that we must know the value ¢ in advance. This is a nontrivial problem which
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could be solved starting with the L, solution and by iteratively running our algorithm
with decreasing ¢ until we are close enough to the L., solution.

Finally we want to demonstrate the advantages of the NLPFIR filter design over the
LPFIR filter design according to Adams [1]. For this Ex. 1-7 we modify our desired
function to

. eI O € B,
D(e’?) = (43)

0 1 e B,
and choose the same weighting functions and ¢ as in Ex. 1-3. The resulting magnitude
response and the modulus of the weighted error function are shown in Fig. 3 together
with the corresponding functions of Ex. 1-3. Table 1 contains the values of the different
error norms. We get the same maximum value but larger values €5 and e95 than with our

method.

As can be seen from Table 1, the algorithm typically converges within £ = 4 iteration
steps of the main loop as long as we are not very close to the L., solution which is the
case for Ex. 1-2. Table 1 additionally contains a column with the necessary number of

floating point operations (Flops) for Ex. 1-1 ... Ex. 1-T.

Ezxample2: To demonstrate the flexibility of our algorithm we choose a “phantasy”

design
: cos(Q)e~ie0te®) ¢ B
D) = " (44)
0 , 2 € B,
Q
1+9q- , N e B,
Wa©) = - , (15)
1+97f_Q , N € B,

with n =49, a =20, ¢=25/3, Q, =037, Q, = 04~x, and L, = L, = 200 equidistantly
spaced frequency points in the passband and stopband. We used Wg(Q) =1, 6 = 1, for
an L, design on the one hand (Ex. 2-1) and

1, Q € B,
Wi(Q) = , (46)
1000, Q € B,

6 = 0.05 to get an equiripple behaviour in the passband on the other hand (Ex. 2-2). Fig.
4(a) and 4(b) show the magnitude response with a cosine shape and the nearly linear
group delay, respectively, of both filter designs in the passband. The corresponding error
functions with and without weighting W4 () are depicted in Fig. 4(c) and 4(d). The

weighting with the piecewise linear function W4(€) means a prescription of a tolerance

5(0) = (47)

11



for the error function. This can be seen in Fig. 4(d) where the error function of Ex.
2-2 keeps the tolerance 6(£) which is additionally given there. Consequently, the error
magnitude at the beginning of the passband is ten times as large as at its end {2,. This
explains the large deviations of the magnitude response and the group delay from the
desired functions in Fig. 4(a) and 4(b) near = 0.

Again the error ¢, is considerably reduced by an increase of €5. The results are sum-

marized in Table 2.

4 Discussion

The examples in the previous section show the flexibility of our new algorithm. The first
example shows that nearly an L., or an L; solution result as a special case of our method.
It is a possible alternative to the methods described in [2, 5, 9, 10, 12]. Furthermore
filters with less ¢,, than in the L, case can be designed by an increase of €5 and vice
versa in the L., case. Our method can be seen as a generalization of Adams’ algorithm
[1] to the NLPFIR filter case with improved convergence behaviour (KT coefficients)
and the additional possibility to choose arbitrary weighting and desired functions due
to the choice of a discrete frequency grid. The presented nonlinear phase approach has
advantages compared to the linear phase case [1] in a similar way as was shown in [5] for
the L., design, which is verified by Ex. 1-7.

Convergence problems arise if the Toeplitz matrices R, R in the Jacobian matrix J
which are known to be able to cause numerical problems [13] have a large condition num-
ber. This case especially occurs when the ratio max(Wg(2))/ min(Wg(Q)) is large. In
many cases this problem can be circumvented realizing the fact that an increase of Wy ()
often is not necessary since it cannot improve the design as can be seen with Ex. 1-3. The
passband shows equiripple behaviour, so that larger values of Wg(§) in the stopband
can only marginally reduce ¢, in the stopband. A MATLAB version of the described

algorithm can be obtained from the authors.

Acknowledgement

The authors thank Dr. T. Laakso for his careful proofreading and help in preparing the

final version of this paper.

12



References

[1]

[12]

[13]

Adams, John W. Fir digital filters with least-squares stopbands subject to peak-gain
constraints. IEEFE Transactions on Circuits and Systems, 39:376-388, April 1991.

Alkhairy, A., K. Christian, and J. Lim. Design of fir filters by complex chebyshev
approximation. In International Conference on ASSP, pages 1985-1988, 1991.

Bamberger, Joachim. FEntwurf von Fensterfunktionen und nichtrekursiven Filtern

hinsichtlich eines quadratischen Fehlermafles. Diplomarbeit, Universitat Erlangen-

Nurnberg, 1992.

Burrus, C. S. and J. A. Barreto. Least p-power error design of fir filters. In IFEFE
International Symposium on Circuits and Systems, pages 545-548, 1992.

Chen, X. and T. W. Parks. Design of fir filters in the complex domain. [FEFE
Transactions on Acoustics, Speech, and Signal Processing, 35:144-153, 1987.

Horbach, Ulrich, and Markus Lang. Design and implementation of sigma-delta d/a-
converters with optimized loop elements. In International Symposium on Circuits

and Systems, pages 1633-1636, 1991.

Lang, Markus, and Joachim Bamberger. Nonlinear phase fir filter design with min-
imum ls error and additional constraints. In IKEE International Conference on

Acoustics, Speech, and Signal Processing, pages 11I-57-111-60, 1993.

Parks, T. W. and J. H. McClellan. Chebyshev approximation for nonrecursive digital
filters with linear phase. IEEFE Transactions on Circuit Theory, 19:189-194, 1972.

Pei, S. and J.Shyu. Eigen-approach for designing fir filters and all-pass phase equal-
izers with prescribed magnitude and phase response. IEEE Transactions on Clircuits

and Systems 11, 39:137-146, March 1992.

Preuss, Klaus. On the design of fir filters by complex chebyshev approximation. IEFEFE
Transactions on Acoustics, Speech, and Signal Processing, 37:702-712, May 1989.

Rabiner, L. R. Linear program design of finite impulse response (fir) digital filters.
IEEFE Transactions on Audio and FElectroacoustics, 20:280-288, October 1972.

Schulist, Matthias. FEin Beitrag zum Entwurf nichtrekursiver Filter. Dissertation,
Universitat Erlangen-Nurnberg, 1992.

Strang, Gilbert. Introduction to applied mathematics. Wellesley, Wellesley, 1986.

13



[14] Tang, P. T. P. A fast algorithm for linear complex chebyshev approximations. Math-
ematics of Computation, 51:721-739, 1988.

14



ko 6/107% Wg(Q,)/Wg(Q,) Flops/10° &3/107% &,,/107% &5,/107*
Ex.1-1 | 1  100.00 1.00 7.22 2.34 35.458 92.4
Ex. 1-2 | 12 4.3952 1.00 93.2 5.58 4.3984 41.7
Ex. 1-3 7.0000 1.00 - 10* 18.8 10.0 7.0000 8.27
Ex. 14 7.0000 1.00 18.0 3.40 7.0000 24.5
Ex. 1-5 100.00 3.96 7.22 2.93 6.5179 21.0
Ex. 1-6 | 484 - - 723. 5.58 4.3952 42.0
Ex. 1-7| 4  7.0000 1.00 - 10* 19.2 13.6 7.0000 18.8
Table 1:
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|k 8/1072 Wg(0,)/Wg(R,) Flops/10° /107 < ,/10? &5, /107

Ex.2-1 | 1 100.00 1.00 1.04 3.40 16.494 16.3
Ex. 2-2 | 7 5.0000 1.00 - 10° 9.22 23.4 5.0000 1.91

Table 2:
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