A SIGNAL-DEPENDENT TIME-FREQUENCY REPRESENTATION: OPTIMAL KERNEL DESIGN Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Houston, TX 77251-1892 Douglas L. Jones Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801 Time-frequency distributions (TFDs), which indicate the energy content of a signal as a function of both time and frequency, are powerful tools for time-varying signal analysis. The lack of a single distribution that is ``best'' for all applications has resulted in a proliferation of TFDs, each corresponding to a different, fixed mapping from signals to the time-frequency plane. A major drawback of all fixed mappings is that, for each mapping, the resulting time- frequency representation is satisfactory only for a limited class of signals. In this paper, we introduce a new TFD that adapts to each signal and so offers good performance for a large class of signals. The design of the {\it signal-dependent} TFD is formulated in Cohen's class as an optimization problem and results in a special linear program. Given a signal to be analyzed, the solution to the linear program yields the optimal kernel and, hence, the optimal time- frequency mapping for that signal. A fast algorithm has been developed for solving the linear program, allowing the computation of the signal-dependent TFD with a time-complexity on the same order as a fixed-kernel distribution. Besides this computational efficiency, an attractive feature of the optimization-based approach is the ease with which the formulation can be customized to incorporate application- specific knowledge into the design process.