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WAVELETS AND FILTER BANKS - NEW
RESULTS AND APPLICATIONS

RAMESH A. GOPINATH

Abstract

Wavelet transforms provide a new technique for time-scale analysis of non-stationary
signals. Wavelet analysis uses orthonormal bases in which computations can be done
efficiently with multirate systems known as filter banks. This thesis develops a com-
prehensive set of tools for (multidimensional) multirate signal analysis and uses them
to investigate two multirate systems: filter banks and transmultiplexers. Several re-
sults in filter bank theory are obtained: a new parameterization of unitary filter banks,
a theory of modulated filter banks, a theory of filter banks with symmetry restric-
tions, reduction of the multidimensional rational sampling rate filter bank problem
to the uniform sampling rate filter bank problem, solution to the completion problem
for filter banks (by reducing it to the (YJBK) parameterization problem in control
theory) etc. Perfect reconstruction filter banks are shown to give structured decom-
postions of separable Hilbert spaces. Filter banks are used to construct several classes
of wavelet bases: multiplicity M wavelet tight frames and frames, regular multiplicity
M orthonormal bases, modulated wavelet tight frames etc. The thesis describes the
design of optimal wavelets for signal representation and the wavelet sampling the-
orem. Application of wavelets in signal interpolation and in the approximation of

linear-translation invariant operators is investigated.
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Chapter 1

Introduction

Fourier methods are inadequate for the analysis of non-stationary signals. A funda-
mental drawback of Fourier analysis is the inability to give time-frequency information
of a given signal. A number of techniques, both linear and non-linear, signal indepen-
dent and signal adaptive, have been proposed to solve this problem [20]: short-time
Fourier transform, the Wigner-Ville distribution [94], the Choi-Williams distribution
[13], the reduced interference distribution (RID) [47], the minimum cross-entropy
(MCE) distribution [59], etc., to name a few. Wavelet analysis provides a novel tech-
nique for non-stationary signal analysis. A fundamental difference between wavelet
methods and time-frequency methods is that the former introduces the concept of
scale in place of frequency. Wavelet analysis, which is closely related to short-time
Fourier analysis, gives a time-scale decomposition of signals, with an ability to study
signals at various scales of resolution. Moreover, wavelet theory gives a rich family of
orthonormal bases that can be tuned for specific applications.

Wayvelet theory is related to multiscale analysis and pyramidal transforms used in
computer vision through the concept of scale [8, 61]. From the intuitive idea that fine
scale information requires higher rate of signal samples than coarse scale information,
it is only natural to expect that time-scale analysis will be associated with multirate
signal processing. This link between wavelet theory and multirate signal processing
is through filter banks. Computations in wavelet analysis are usually associated with
filter banks. This thesis argues that perfect reconstruction filter bank theory plays
more than just a computational role in wavelet theory; filter bank theory is a starting

point for some of the finer aspects of wavelet theory.



1.1 Outline of Thesis

The thesis solves a number of problems on a wide range of topics - the underlying com-
mon theme being multirate signal processing, filter banks and wavelets. Chapter 2
develops a general framework for multirate signals and systems. The basic framework
for multirate signal analysis in one dimension is well known [70]. Recently, there has
been an emphasis on extending one dimensional multirate results to multiple dimen-
sions [54, 10, 50, 29, 34], motivated by image coding, video coding, etc. In multiple
dimensions sampling rate conversion is accomplished using integer matrices. A funda-
mental problem with extending one dimensional results to multiple dimensions is that
tools for handling integer matrices are not well-known in the digital signal processing
community. The theory of integer matrices as relevant to multirate signal analy-
sis is developed in Chapter 2. Several new results in the theory of integer matrices
are derived; most notably the Representatives’ Mapping Theorem and its interesting
corollary that commuting matrices are left coprime iff they are right coprime. All
results are consequences of one fundamental identity - the Aryabhatta/Bezout iden-
tity over integer matrices. A comprehensive set of tools for the analysis of multirate
signals and systems is developed. The development makes transparent the important
differences between one and multiple dimensions vis & vis the multirate signal analysis

problem. Some of the new results in this Chapter 2 include
1. The Representatives’ Mapping Theorem.
2. The Swapping and Commuting Theorem for upsamplers and downsamplers.
3. The Generalized Polyphase Representation.
4. Multirate identities for cascades of upsamplers, downsamplers, filters and delays.

While Chapter 2 is set in multiple dimensions, the rest of this thesis is mainly con-

cerned with one dimensional multirate systems.



Chapter 3 discusses two important multirate problems, namely the filter bank

problem and the transmultiplexer problem. Necessary and sufficient conditions for

perfect reconstruction (PR) in filter banks and transmultiplexers are derived in a very

general setting probably for the first time. Highlights of contributions in Chapter 3

include (all results are in 1-d unless otherwise specified)

1.

Characterizations of PR for classes of filter banks and transmultiplexers.

A new theory of modulated filter banks that includes perfect reconstruction

conditions for filter banks with FIR and IIR filters.

A classification of modulated filter banks.

. Parameterization of unitary modulated FIR filter banks

Parameterization of unitary filter banks with various types of symmetry re-
strictions among the filters. This is particularly important in image processing
applications where filters are sometimes required to be linear phase. Some of

the results have been obtained earlier by other researchers [76].

Completion theory for filter banks and transmultiplexers, including new results

on the completion of causal FIR and IIR filter banks.

Relationship between the famous Youla (YJBK) parameterization of compen-

sators in control theory and the completion theory of PR filter banks.

Reduction of the multi-dimensional rational sampling rate filter bank problem

to a uniform sampling rate filter bank problem.

The algebraic structure of perfect reconstruction filter banks gives a natural change

of basis for separable Hilbert spaces. This establishes a connection between filter

banks and certain specialized bases for L*(IR). These connections are explored in

detail in Chapter 4 leading to wavelet theory. We introduce the concept of general-

ized frame pairs in separable Hilbert spaces and show that PR filter banks provide



a natural change of basis for generalized frame pairs. From this viewpoint we de-
velop a theory of multiplicity M (or M-band), compactly supported wavelet frames
and tight frames (WTFs), which gives added flexibility to the multiplicity 2 wavelet
theory of Daubechies, Meyer, Mallat and others [21]. Similar to the multiplicity 2
case, K-regular, multiplicity M wavelet tight frames are explicitly constructed and
parameterized. Necessary and sufficient conditions for a wavelet tight frame to be
an orthonormal basis are given. Examples illustrating the relationship between the
regularity of the scaling vector and smoothness of the wavelet basis are also given. A
complete parameterization of compactly supported multiplicity M modulated wavelet
tight frames is developed. Wavelet bases with symmetry restrictions are also con-

structed. The main contributions in Chapter 4 are:
1. Generalized frame pairs and Riesz basis pairs.
2. Parameterization of compactly supported multiplicity M WTFs.
3. Characterization of orthonormality for a multiplicity M WTF.
4. Design of K-regular WTFs.
5. State-space approach to WTFs.
6. Parameterization of compactly supported of modulated WTFs.
7. Construction of WTFs with “symmetric” wavelets.
8. Construction of Wavelet Frames.
9. Oversampling invariance results for Wavelet Frames.

In Chapter 5 computational aspects of wavelet analysis and filter bank analysis
is studied. Interesting relationships between the moments of the scaling function of
orthonormal wavelet bases are obtained. A theory of optimal and robust representa-

tion of band-limited signals in wavelet bases is developed and applied to various types



of wavelet bases. One of the important consequences of this analysis is the wavelet
sampling theorem which essentially states that the scaling expansion coefficients of
a bandlimited function contain the same information as the Nyquist rate samples.
Using this theory smooth modulated WTF's are constructed. The main contributions

Chapter 5 are:

1. Efficient implementation of modulated filter banks.

2. Efficient computation of DWT in wavelet frames, general WTFs, and modulated
WTFs.

3. Relationships between the moments of the scaling function of K-regular WTFs

and its consequences in numerical analysis using wavelets.

4. Theory and algorithms for the optimal and robust representation of signals in

compactly supported wavelet bases.
5. Construction of smooth WTFs and smooth modulated WTFs.
6. The Wavelet Sampling Theorem.

7. Wavelet-Galerkin approximation of linear-time-invariant operators (i.e., analog

filters).

8. Wavelet-based lowpass and bandpass interpolation.

Traditionally in signal processing vectors and matrices are represented in bold-

face. In this work sequences in Z? will be denoted by z(n), y(n),..., where n =

)

(n1,n2,...,n4). We prefer not to use boldface notation so as to make transparent the

relationship between the one dimensional and multidimensional results. For vectors
d

x and y, x¥ is the scalar defined by z¥ = H z¥'. For a vector « and a square matrix
=1

M=1|m; my ... myls M is the vector (of the same type as z) defined by

eM = (x™ 2T ™).



For a scalar z and a vector y, 2V is a vector (of the same type as y) given by
¥ = (a¥ 2% L av).

The Z-transform and Fourier transform of a sequence z(n) are functions of d complex
variables, z = (z1, 29, ..., 24)7 and w = (wy,wy,...,wy)T defined by

X(z) = Z z(n)z™" and X(w)= Z x(n)e"‘”T”.

neZd neZd

where 2 = \/—1. For a matrix M, |M| will denote the absolute value of the determi-
nant of M.



Chapter 2

Fundamental Tools in Multirate Signal Analysis

There are three basic building blocks in linear, multirate signals and systems theory,
namely, linear shift-invariant filters, upsamplers and downsamplers. Upsamplers and
downsamplers provide the sampling rate conversion making the system multirate,
while filters, besides accomplishing traditional filtering functions, are also necessary as
anti-aliasing and image removal filters. Multirate signal analysis is mainly concerned
with what happens when these operations occur in different orders and how to analyze
them. For one dimensional signals, the necessary tools for multirate signal analysis are
well known [70]. Recently many researchers have tried to extend these results to multi-
dimensional signals, with varying degrees of success [34, 52, 10, 12, 29, 50]. This thesis
obtains a comprehensive set of algebraic tools for the analysis of multidimensional
multirate systems using the Aryabhatta/Bezout identity over integer matrices as a

fundamental tool.

2.1 Lattices, Upsampling and Downsampling

In one dimension if x(n) is the input of a 2-fold downsampler, the output y(n) is
z(2n). Similarly, the output y(n) of a 2-fold upsampler is obtained by interlacing the
input sequence z(n) with zeros. The “right” way to think about this is in terms of
lattices. Both z(n) and y(n) are defined on a lattice of points, namely Z. The output
of a 2-fold downsampler is the input on a sublattice of Z, namely 2Z. The upsampling
operator chooses a bigger lattice and embeds the input sequence on a sublattice of this
bigger lattice. This viewpoint readily generalizes to multi-dimensional downsampling

and upsampling.



Let £ denote integers in R? (i.e., £L = Z?). For a non-singular matrix M over R,

the set L(M) = {Mn |n € L} = ML is the lattice generated by M. For example,

° Lattice points, viz., L(M)
o Representatives of L(M), viz., R(M)
Integer Lattice viz., £(I)

Figure 2.1: Lattice Generated by M

6 2
Fig. 2.1 shows the lattice generated by the matrix M = . Clearly, £ is the

0 6
lattice £(I), generated by the identity matrix I. A lattice £(M;) is said to be a

sublattice of the lattice L(My), if L(M;) C L(M;). The geometric condition of one

lattice being the sublattice of another has a neat algebraic characterization [9].
Fact 1 L(M;) C L(M,) iff My = MK for some integer matrix K.

L(M) C L =L(I)iff M is integral. In Fig. 2.1 £(M) is a sublattice of £L(/) and M
is an integer matrix. The number of lattice points per unit volume of the lattice is
1/36 = 1/|M]|. More generally, for any lattice, L(M), 1/|M]| is the average number

of lattice points per unit volume [9, 84].



The generator for a given lattice is not unique. For example in Fig. 2.1

8 2 6 2 10
6 6 0 6 11

is also a generator of the lattice. The generator is unique only up to right multiplica-

tion by a unimodular integer matrix.
Definition 1 An integer matrix M is unimodular if detM = +£1.

Unimodular matrices are precisely those integer matrices that have integer inverse

matrices. This follows from the fact that M~! = 1 ‘i]\l adjM. If M is unimodular
e

the number of lattice points per unit volumeis 1/ |M| = 1. Since L(M) is a sublattice

of L£(I) which also has 1 lattice point per unit volume one would expect that £(M) =
L(I). More generally, for unimodular U, £(M) = L(MU). To see this, define
MU = N, and let V = U~'. From Fact 1 it follows that £(N) C L(M). Also
since V is unimodular and M = NV, £L(M) C L(N) and hence the result.

Let U denote the unit cube in R?. Then U = {z € R? | z; € [0,1)} = [0,1) .
The unit cell U(M) of a lattice L(M) is defined to be the image of 2 under M:
UM)={Mz e R |z €U} = MU = MU(I). Any point in R? can be represented

uniquely as a linear combination of points in (M) and L(M).

Lemma 1 For every point x € IR? there exists a unique decomposition

of the form z = z; + z, with ; € L(M) and z, € U(M).

Proof: By (geometrically) translating the unit cell to any integer in R, it is clear
that any point y = M~'z in IR? can be represented uniquely as [ + u, [ € £ and
u € U. Take z; = M and =, = Mu to get the result. O
The decomposition will be called the LU decomposition of x with respect to L(M).
In particular if x = n is an integer and M is integer non-singular, then both z; and
x, are integers. In this case the integer z, is denoted by n mod M or (n)a. No two

points in the unit cell can differ by a lattice point (see Fig. 2.1).
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Lemma 2 If o, € U(M), then a — g € L(M) iff a = .

Proof: Firstly, note that in the scalar case if o, € [0,1), then a — 3 € (—1,1)
and therefore the only integer value it can take is 0. Similarly, if o, 3 € [0,1)¢, then
a— 3 € (—1,1)¢ and hence the only integer value it can take is 0. This fact in
conjunction with Lemma 1 gives the result. a
Any integer in the unit cell of a lattice is called a representative of the lattice. The
set of all representatives of a lattice is denoted by R(M). We have the following
relationship between R(M) and U(M): R(M) = L(I) () U(M).

There are precisely [|M|] elements in R(M). Therefore for an integer matrix M
there are | M| representatives. While discussing filter bank theory it will be necessary

to consider a more general notion than R(M) - generalized sets of representatives.

Definition 2 A set S(M) C IR? (of [|M]] points) is a generalized set of
representatives of L(M) if S(M)(mod M) = R(M).

For a given lattice L(M) there are infinitely many generalized sets of representatives.
An important property of any generalized set of representatives S(M) is that for any
two points in S(M), if the U parts of their LU decompositions are equal, the points

are the same.

Lemma 3 Ifk,le S(M), thenk—1le L(M)iff k=1

Proof: If S(M) = R(M) C U(M), then the result follows directly from Lemma 2.
Else from the LU decomposition k — 1 = (k; — ;) + (k, — [,) and hence k — [ € L(M),
iff k, — 1, € L(M). But then from Lemma 2 k, = [,. Since S(M) is a generalized set

of representatives, k; = [; and hence k = [. a

Example 1 Consider the lattice of integers Z in R. Any sublattice is given by MZ
for integer M. Assume for simplicity that A is positive. Then unit cell of the lattice

is the interval [0, M). Any point € IR can be represented uniquely as, ;+ x,, where
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T

a1 = | %], z, = [2] and [z] denotes the fractional part of . No two points in [0, M)
differ by a lattice point (multiple of M). The representatives of this lattice are the
integers {0,1,2,..., M — 1}, precisely M of them. The set {2,3,..., M + 1} forms
one set of generalized representatives of L(M). It is obvious that two elements of this

set cannot differ by a lattice point.

We now define the upsampling and downsampling operators corresponding to a

non-singular integer matrix M (see Fig. 2.2).

Definition 3 Given a non-singular integer matrix M, the upsampling

operator, [T M], is defined by

y(n) = [t M]a(n) = z(]\l‘ln) forn € L(M) @.1)

otherwise.

Definition 4 Given a non-singular integer matrix M, the downsampling

operator, [| M], is defined by

y(n) =1l M]z(n) =z(Mn). (2.2)

z(n) o 1M - y(n) z(n) o |M L~ y(n)

Figure 2.2: Upsampling and Downsampling by M

In general, upsampling is a reversible process, while downsampling is an irreversible
process. The input/output relationships of upsampler and downsampler operators in
the frequency domain and Z-transform domain are often very useful. The Fourier
transform X (w) of a signal x(n) is periodic on the lattice 27L(I). Hence X(w) is
described completely by its values on 278([). Sometimes the periodicity lattice of

X(w) contains (i.e., is a super-set of) 27 L. This is precisely what happens after an
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upsampling operation:

Y(z)=[t M]X(2) = ) z(n)z"M" = X(2M). (2.3)
neZd
Y(w)=[1 M X(w) =Y an)e™ ™M =" g(n)e ™) = X(MTw). (2.4)
neZid neZid

Y (w) being the Fourier transform of y(n) is periodic on the lattice 2nL(I). However,
Y (w) is also periodic on the lattice 27 L(M~T):

Y(w+2eM k) = X(MTw + 27k) = X(MTw) = Y(w).

The fundamental period after upsampling is 2xeU(M~T), a subset of 2xU(I). There
are ‘MT‘ = | M| copies of Y (w) restricted to its fundamental period in 272/([). The
response in each fundamental period is the response of X (w) (appropriately scaled)
and therefore Y(w) has |M| images of X(w) in 27U (). Hence upsampling (when
|M| > 1) leads to imaging of the spectrum. One can avoid imaging by using an image
removal filter whose passband, for example, is 272/ (M~T).

Downsampling leads to aliasing distortion. Consider the sum Z 2Tk Mhn

kER(MT)
If n € L(M), M~'n is an integer vector and hence kT M~n is an integer, and the

sum becomes Z 1 =|M|. If n & L(M), the sum is zero. Hence the output of
kER(MT)
the downsampler is given by

Y(z)=[l M]X(2) = > a(Mn)z™"

neZd
1 -1 (-1
— Z W Z x(n)e—ﬂrkTM n Z—]\J n
neZd | 7 keR(MT)
1 -1 -1
i Y X(EM e M), (2.5)
kER(MT)
Substituting z = e*” we get
1 -
Y(w):uM]X(w):M Y X(MT(w —2xk)). (2.6)
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After downsampling Y(w) is periodic on 27 L([). At a given w, there are |M| alias
components of X (w) appropriately shifted. It is impossible to reconstruct X (w) from
Y (w) unless all but one of the components of X(w) in Eqn. 2.6 is zero. This can be

accomplished by using anti-aliasing filters before downsampling. Fig. 2.3 and Fig. 2.4

illustrate timaging and aliasing respectively in one dimension with M = 2.

-2 -7 0 T 27
w
UIr2]
Y(w)
) —2r -7 0 T 27 ]
w

Figure 2.3: Upsampling and Spectral Imaging

2.2 Cascades of Upsamplers and Downsamplers

In order to study multidimensional multirate filter banks it is often necessary to
know what happens when we take a product (cascade) of upsampling and downsam-
pling operators. The main difficulty stems from the non-commutativity of matrix
multiplication. Analysis of general cascades of upsamplers and downsamplers can
be studied by only considering the four possibilities for the cascade of two upsam-
plers/downsamplers. For this we require the notions of greatest common right/left

divisors (ger(l)d’s) and least common right/left multiples (ler(l)m’s) of integer ma-
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X(w)

) —2r -7 0 T 27 ]
U1l 2]
Y(w)

) —2r -7 0 T 27 ]

Figure 2.4: Downsampling and Aliasing

trices (see Appendix A). Using the Aryabhatta/Bezout over integer matrices several
new results for matrices relevant to the multirate signal analysis problem are obtained.

A fundamental mathematical result is the Representatives’ Mapping Theorem.

Example 2 (Construction of gerd/geld and lerm/lelm) Let

2 2 0 2 00
M = 01 —1 and N=| -2 1 1
-1 2 0 0 -2 2

Both matrices are non-singular with detM = 6, and detN = 8.
A gerd of M and N: It can be shown that

-1 2 0
D’/‘ = 0 1 -1
0 0 -2
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is a common right divisor since

-2 6 -3 -2 4 -2
M = 01 0D, and N = 2 -3 1 |D,.
1 0 0 0 -2 0

Moreover, in this case D, turns out to be a greatest common right divisor. Since

det D, = 2, it is not unimodular and hence M and N are not right coprime.

A gcld of M and N: The matrix

20 0
D, = 01 0
-1 3 -1
is a common left divisor since
11 0] 100
M=D |01 —-1| and N=D;| =2 1 1
00 —3_ -7 5 1

Again Dy is a gcld of M and N and since detD; = —2, M and N are not left coprime.
An Iclm of M and N:

2 =2 =2
Mi=16 -3 -3
0 2 =2
is a common left multiple since
0 2 -2 -1 -2 0
Mi=]11 3 —4 | M and M, = 0 -3 0| N
02 0 0 0 —1
M; is also an lclm.
An lerm of M and N:
-2 0 0
M, = -5 4 =3

—14 12 —6



16

is a common right multiple since
4 —4 2 -1 0 0
M, =M| -5 4 -2 and M, =N 0 —1 0
0o 0 1 -7 5 =3
M, is an lerm of M and N.

Fact 2 (Aryabhatta/Bezout Identity) M and N are right coprime iff
there exist right coprime matrices X and Y, left coprime matrices M and
N, and left coprime matrices X and Y such that

Y X || M X 10

. . = . (2.7)

N —M N -Y 0 1

An example of the Aryabhatta/Bezout identity follows:

Example 3 Consider the matrices

2 =3 -1 1
M = and N =
—2 1 0 2

M and N are right coprime although detM = —4 and det N = —2 are not relatively

prime integers. Since

(0 -1 10| 2 -310] [1000]
0 -1 20|[-2 100 0100
1 -1 40||-1 100| o010
0 2 —4 1 0 20 1 000 1

2 3|1 0]
MoX] | -2 1|00
N —v | | =1 1loo

0 2001
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and ) )
0 —1| 1 0

Yy X | |0 -1] 20
No—a | |1 o—1] 40

0 2| —4 1|

Using the Aryabhatta/Bezout identity we obtain the Representatives’ Mapping
Theorem, the one dimensional version of which is a standard result in number the-
ory. If MiZ and MyZ are sublattices of Z (generated by positive integers M; and
M,) their unit cells are [0, M;) and [0, M3) respectively and their representatives
are the integers modulo M; and the integers modulo M; respectively; L(M;) =
{..,=2M;,—M;,0, M;,2M;, ...}, U(M;) = [0, M;), and R(M;) = {0,1,2,...,M; — 1}.
If My and M, are relatively prime then [77]

MgR(Afl) mod M1 = R(All) and ﬂ{lR(Mg) mod M2 = R(Alg) (28)

Eqn. 2.8 states that the representatives of a lattice are mapped back onto itself under
multiplicative mapping provided the multiplication is by an integer coprime to the
generator of the lattice. The extension of this result to the case of general lattices in

Z% is the Representatives’ Mapping Theorem.

Theorem 1 (Representatives’ Mapping Theorem) 1f My and M, are left

coprime, there exist right coprime matrices Ny and N;, such that

MyR(Ny) mod My = R(M,). (2.9a)
MyR(N;) mod My = R(M,). (2.9b)
NIR(MT) mod Nf = R(N]). (2.9¢)
NIR(MT) mod NT = R(NT). (2.9d)

Conversely if Ny and N, are right coprime, there exist My and M, left
coprime, such that Eqns. 2.9a-2.9d are true.
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Proof: Since M; and M, are left coprime, by the Aryabhatta/Bezout identity there
exist integer matrices Py, P, (1, )2, N1, and N, such that

Py Py Ny Q2 I 0
All —A[Q N1 _Ql O ]

In particular we have the equations:

AJlNQ = M2N1. (210&)
P1N2—|—P2N1 =1. (210C)

First consider consider Eqn. 2.9a. It states that under the action of M5, there exists a
set that maps into the set of representatives of the lattice M. Moreover, this set is the
set of representatives of a certain lattice Ni. We first show that MyR(N;)modM; C
R(M;) and then show the converse.

MyR(Ny)modM; C R(M;)| For any n € Z¢, n mod M; € R(M;). Therefore, in
particular, for any fixed k € R(Ny), M2k mod M, € R(M).

M3yR(Ny)modM; 2 R(M;)| In order to prove this we show that the mapping in-

duced by M, is a one-to-one onto mapping of the representatives of the lattice

L(Ny) onto the representatives of the lattice L(M;).

one-to-one We need to show that for any two integers £ and [ in the unit cell

of the lattice generated by Ny, if
M3k mod M; = Myl mod My, (2.11)
then £ = [. From Lemma 1 the LU decomposition of k and [ gives us

k= Nia and [=N;p (2.12)



19

with «, 3 € U. Hence from Eqn. 2.11 there exists an n € Z? such that

MyNi(a — ) = Min Eqn. 2.12.
= M Ny(a— ) = Min. Eqn. 2.10a
= Ny(a—f) =n. M is invertible
—~ PNy(a—B) = Pin.
= ([ — P,Ny)(a— )= Pin. Eqn. 2.10c
= (a—p)=Pin+ P(Il—k). Eqn.2.12
= (a—p)=0. Lemma, 2
= k—1=0.

The last step follows from the fact that if o, 3 € U then the only integer of

the form a — 3 is 0. Hence the mapping is one-to-one. This implies that
|Ny| < | M. (2.13)

onto It suffices to show that there are at most |/V;| representatives of the lat-
tice L(M;). In that case every representative of the lattice £(N1) maps
into a unique representative of £(M;), and conversely. Using the above
arguments with the transposed form of the Aryabhatta/Bezout identity we
can show that under multiplication by NI, R(M[') is mapped into R(N{)

in a one-to-one fashion and hence

| M| < [N (2.14)
From Eqn. 2.13 and Eqn. 2.14 it follows that |AM;]| = |/V1]| and hence the
mapping is onto.

We have thus proved Eqn. 2.9a. Eqn. 2.9b follows using the same arguments by
replacing My with My, Ny and N, etc. Eqn. 2.9¢ and Eqn. 2.9d also can be shown
by considering the Aryabhatta/Bezout identity in its transposed (dual) form:

NI NF Pt MT 10

Q7 —Qf | | A —Mf 0 I
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Remark: The crucial fact used in the proof is that My, M, N; and N; are non-
singular. It follows that if 1 and P; (or equivalently () and P,) are non-singular

the following equations are also true.

PyR(Qy) mod P, = R(P) (2.15a)
P/R(Qy) mod Py = R(P,) (2.15b)
1 R(PY) mod Q7 = R(Q3) (2.15¢)

Q7 R(P) mod Qf = R(QY) (2.15d)

The Representatives’ Mapping Theorem has several consequences some of which illu-

minate the similarities and differences between the scalar and matrix cases.

Corollary 1 Let M; and M, be non-singular, left coprime and let N;
and Ny be non-singular, right coprime. If M; Ny = M;N; then

|1111| = |N1| and |M2| = |N2| . (216)

Proof: First note that we can always obtain an Aryabhatta/Bezout identity in-
volving the four matrices My, My, Ny, and N;. This can be done by taking an
Aryabhatta/Bezout corresponding to the N’s and tweaking the unimodular matrix U
in order to makes the lower block becomes [M; — M,]. Now the proof of Theorem 1
gives the result. O
The result implies that commuting matrices behave like integers as far as coprimeness

is concerned.

Corollary 2 Non-singular commuting matrices are left coprime iff they

are right coprime.
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Proof: Let M; and M, be left coprime. By hypothesis, we have an Aryabhatta/Bezout
identity with Ny and N; right coprime and

AJlNQ - M2N1 == AJ (217)

Since M; and M, commute, their product M is a right common multiple of both
M, and M,. Hence there exists a matrix R such that My = Ny;R and M; = N, R.
Therefore M = MR. From Corollary 1 |M| = |M||Ny| = |My]|M,| = M‘, and

therefore R is unimodular. Hence the result. O

Remark: Corollary 2 has been obtained recently by other researchers [10]. Their
technique does not use the Representatives” Mapping Theorem.

Another result that we require later is the following:

Lemma 4 If k,l € R(M), (or more generally if k,1 € S(M), a general-
ized set of representatives of £L(AM)), then

[l M)+ = Lokt (2.18)

0 otherwise.
Proof: Let (n) = 6(n—k+1). Then y(n) = [| M]x(n) = 6(Mn — k+1) and hence
is non-zero only when & — [ = Mn € L(M). But from Lemma 3, k¥ — [ € L(M) iff
k =1, and therefore, y(n) = 0 if £ # [ and y(n) = §(Mn) = é(n) when k = [. Taking

the Z-transform on both sides we get the result. O

We now analyze cascades of upsamplers and downsamplers.

2.2.1 Upsampler-Upsampler Identity

Consider the cascade of two upsamplers as shown in Fig. 2.5. In the Fourier transform
domain using Eqn. 2.4 we have Y (w) = V(M w) = X(MI(MIw)) = X((M;M;)Tw).
Therefore [T M3 [T Mi] = [T MaM;] as shown in Fig. 2.5.
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a(n) 1M, b wi(n) 1M, b y(n) & 2(n) 1M, M - y(n)

Figure 2.5: Upsampler-Upsampler (UU) Identity

2.2.2 Downsampler-Downsampler Identity

For a cascade of downsamplers as shown in Fig. 2.6, using Eqn. 2.1 we have y(n) =

y1(Man) = x( My Man) and therefore [| M) [| M1 =[] M1M,).

z(n) — My = y1(n) — M, |~ y(n) e @(n) o | MM, |~ y(n)

Figure 2.6: Downsampler-Downsampler (DD) Identity

2.2.3 Upsampler-Downsampler Identity

In Fig. 2.7, for simplicity let £(My) C L(My). Since upsampling onto L£(M;) is
followed by by downsampling onto a sublattice of £( M), intuitively one expects this
to be equivalent to upsampling on a reduced lattice. Indeed even more is true. Since

y(n) = [l Mz]yi(n) = y1(Mzn), and y1(n) = [T M1]z(n), Eqn. 2.2 implies

M;'Myn)  for Man € £(M
y(m) = { “M M) for M€ L(G) (2.19)

0 otherwise.
If M is a geld of My and My (i.e., L(M;) and L(M;) are sublattices of L(M)),
then My = MK, and My = MK,. Therefore M1_1M2 = Kl_lKQ and Myn €
L(M)eKan € L(K7) (from the nonsingularity of M). Moreover,

K;'Kon)  for Kon € L(K
y(n) = { SO Fam)for fan € LUG) (2.20)

0 otherwise.

From Eqn. 2.19 and Eqn. 2.20 we get [| M| [T My] = [| K2][T Ki] implying the

Upsampler-Downsampler identity in Fig. 2.7. In an upsampler-downsampler cascade
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z(n) 1M, - Yi(2) M, - Y(2)

0

z(n) | 1K, - Ya(2) — |K, [ Y(2)

Figure 2.7: Upsampler-Downsampler (UD) Identity

one may always assume that A, and M, are left coprime. In particular, when M, =
My K, M is indeed a gcld and therefore one can collapse it into upsampling by K as

our intuition suggests!

2.2.4 Downsampler-Upsampler Identity

In a downsampler-upsampler cascade there is no simplification. Assume downsam-
pling by M; followed by upsampling by M;. Then
z(MyM;'n)  for n € L(M;)

y(n) =
0 otherwise.

If Mi = KiM and M; = Ky;M (notice that there are no sublattice conditions),
then My M; "' = K, K;'. However, n € L(M,) is different from n € L(K,) implying
reduction is not possible unless My and K, are related by a unimodular matrix (i.e.,
M, and M; are right coprime). This impossibility of of reduction is even seen in the
one dimensional case. It has to do the inherent irreversibility of the downsampling.
In summary, pure cascades of upsamplers/downsamplers can be reduced to a single
upsampler/downsampler that is the product of the constituents. Upsamplers followed
by downsamplers can always be reduced to the case of a single upsampler followed by
a downsampler with left coprime matrices. No simplifications are possible when we

have a downsampler followed by an upsampler.
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2.2.5 Swapping Upsamplers and Downsamplers

Swapping of upsamplers and downsamplers is useful in many applications like the
rational sampling rate filter bank problem (Section 3.8). The following result char-
acterizes conditions under which one can swap upsamplers and downsamplers. It

explicitly constructs the swapped upsamplers and downsamplers.

Theorem 2 (The Swapping Theorem) 1f My and M, are left coprime

there exist right coprime matrices N; and N, such that

[l A'fz] [T Ml] = [T Nl] [l Nz] . (2-21)

Conversely, given Ny and N; right coprime, there exist left coprime ma-

trices My and Ms, such that Eqn. 2.21 holds.

Proof: From the hypothesis, and the Aryabhatta/Bezout identity, we have right

coprime matrices N; and N, such that,

P P, N. I 0
1 2 2 QZ _ ‘ (222)
Ml —17‘42 N1 _Ql 0 7

We now show that NV; and N; can be used for swapping. From the Aryabhatta/Bezout

identity, notice in particular that the following equations are true:
NImMI = NI T, (2.23a)

NIPI + NITPT = | (2.23b)
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First consider upsampling by M, followed by downsampling by M;. In the Fourier

domain we have (from Eqn. 2.6),

Y(w) = |N}2T| Y V(M T(w —2rk))
keR(MZ)
= |]V}—T| > XM M7 (w - 2rk))
kER(MT)

= L1 Z X(NyITNTw =22 N;TNEE)  from Eqn. 2.23a

|Mf|
keR(MT)
- |Nl?| Z X(NQ_TNlTw — 27rN2_TN1Tk) from Corollary 1
kER(MT)
= |]\}T| Z X(Nz_TNlTw — QWNQ_Tk) from Lemma 1.
keR(NT)

The last expression is precisely the Fourier domain equation for the process of down-
sampling by N, followed by upsampling by Nj. a
If My and M, are commuting coprime matrices one can commute upsampling and

downsampling.

Theorem 3 (The Upsampler/Downsampler Commuting Theorem) If
M; and M, commute and are coprime [T Mq][| My] = [| M,][T M;] and
[T M) [L Ma] = [ Ma] [T Ma].

Proof: Since M; and M; are (left) coprime, the Swapping Theorem applies. It suffices
to show that one can choose Ny = M; and Ny = M,. First note that MyN; = M N,
and MyM; = MyM,. By Corollary 2 M; and M, are also right coprime. Hence
both M,M; and M;N; are lcrms of My. Therefore there exists a unimodular U such
that MoNU = MyM; = MM, = M;N,U. Multiplying the Aryabhatta/Bezout

identity in Eqn. 2.22 on the left and right respectively by the unimodular matrices

U=t o U 0
and we get
0 I 0 I
I 0 U1 0 P P, Ny QQ U 0
0 7 0 I My, —M, Ny — 0 I
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U-th, U'P N, U
_ 1 2 2 QZ ‘ (224)
All —A[Q NlU _Ql

Relabeling U~ P, and U~1P; by P, and P, and using the fact that VU = M; and
NoU = M, one has

Py P, M, Q. I 0
All —A[Q All _Ql 0 ]

From the above Aryabhatta/Bezout identity and Theorem 2 one gets Theorem 3. O

2.3 Commuting Filters and Upsamplers/Downsamplers

Once we know how to handle filters and delays with upsamplers/downsamplers we will
have all the basic tools for the analysis of arbitrary multirate linear-shift invariant sys-
tems. The situation in which a filter is followed by an upsampler (Filter-Upsampler)
and the situation in which the filter follows a downsampler (Downsampler-Filter) are
duals and easy to analyze [84, 70]. The reverse situations of Filter-Downsampler
and Upsampler-Filter combinations have important identities associated with them
and play an important role in filter bank theory. The identities involve polyphase
representations. We introduce the new concept of a generalized polyphase represen-
tation giving more general results than available in the literature. A novel identity,

Upsampler-Delay-Downsampler identity, is also obtained.

2.3.1 Filter-Upsampler Identity

Let yy(n) = h(n) * 2(n) and y(n) = [T M]y(n) as shown in Fig. 2.8. In the Fourier
and Z domain we have Vi(w) = H(w)X(w) and Yi(z) = H(z)X(z) and there-
fore Y(w) = H(MTw)X(MTw) and Y(z) = H(z™)X(:M). Equivalently Y (w) =
H(MTw) {[T M] X(w)} and Y(2) = H(M) {[1 M] X(2)}. This establishes the equiv-
alence in Fig. 2.8.
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X(2)  H(z) = N(2) — 1 1 Y(2)

0

X(z) 1 e Val5) gl Y

Figure 2.8: Filter-Upsampler (FU) Identity

2.3.2 Downsampler-Filter Identity

Here y1(n) = (Mn), and y(n)(= yi(n) * h(n)) is given by the convolution

y(n) = D h(k)yi(n—k) = h(k)z(Mn — Mk) (2.25)

keZd keZd

= Zh M= ME)x(Mn — ME)

= ZhMlk (Mn — k')

k'eL(M)

[L MTATT M] () * 2(n)}.

The equivalence is shown in Fig. 2.9.

X(2) — M |~ N(2) —H(z) ~ Y(2)

X(2) i) Yals) —d u e Y()

Figure 2.9: Downsampler-Filter (DF) Identity

2.3.3 Filter-Downsampler Identity

The Filter-Downsampler identity is useful from both theoretical and computational
points of view. Since downsampling throws away samples it is more efficient to down-

sample a signal before filtering and the Filter-Downsampler identity does precisely
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that. One requires the notion of a polyphase representation [4, 70] - also known as
lifting in control theory and mathematics community [1]. The essential idea is to “ift”
a scalar valued sequence/function into a vector-valued sequence/function by block-
ing. The components of this lifted signal are referred to as polyphase components of
the original sequence. We also introduce the new concept of a generalized polyphase
representation.

The polyphase representation of x(n) is the vector valued signal x,(n) (whose
components are labeled for convenience by the representatives of £L(M) and) given
by

zr(n) =z(Mn —Fk) =[] M]{z(n —Fk)} for k€ R(M). (2.26)

There are

M| polyphase components. If X;(z) is the Z transform of zx(n), then

X(z)= > #Xp(M). (2.27)

keR(M)

The above polyphase representation will be called the first-orthant polyphase. (also
referred to as the synthesis polyphase [91] or Type 1 polyphase [85]). Another
polyphase representation, the dual first-orthant polyphase, (also called the analysis
polyphase and Type 2 polyphase) is defined by

zr(n) =a(Mn+ k) =[] M]{z(n+k)} for k € R(M). (2.28)

There are infinitely many choices for the polyphase representation correspond-
ing to different choices of lifting the signal z(n) to x,(n), the only restriction being
that the components of the polyphase must be labeled from a set of generalized rep-
resentatives of the lattice £(M). From Eqn. 2.27 we can get the identities shown
in Fig. 2.10 and Fig. 2.11, called the polyphase-inverse-polyphase (PIP) and inverse-
polyphase-polyphase (IPP) identities respectively. Given any set S(M) of generalized
representatives of L(M), the generalized polyphase representation of a signal z(n) rel-

M| of them

ative to S(M), is the vector signal z,(n), whose components (precisely
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Z—ko ZkO
M ™
Z—kl Zkl
M ™
X(z) . X(z)
» kM- okiar—1
M ™

Figure 2.10: The Polyphase-Inverse-Polyphase (PIP) Identity

Zko
— M
zk
— M
Xp(z>
PLILYiEet
— M

z~ko
M —
2=k
M —
Xp(z)
>~ ki1
M —

Figure 2.11: The Inverse-Polyphase-Polyphase (IPP) Identity
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labeled from S(M)) are given by
zr(n) =a(Mn — k) for k € S(M). (2.29)

The dual of the generalized polyphase representation relative to S(M) is obtained by
replacing k£ by —k in Eqn. 2.29. Corresponding to this representation we have the
generalized PIP (GPIP) and generalized IPP (GIPP) identities respectively, which
look exactly like the PIP and IPP identities in Fig. 2.10 and Fig. 2.11, except that
ki € S(M) instead of R(M).

We are now ready to obtain the Filter-Downsampler identity. Let X,(z) denote a
generalized polyphase representation of X (z) relative to S(M), and let H,(z) denote
the dual polyphase representation of H(z). If Y(z) is the output as shown in Fig. 2.12,

then
Y(2) = HI(2)X,(2) = Y Hi(2)Xx(2), (2.30)
because -
Y(z) = [l MJH(2)X(z)
= (LM > aFH(M) D AX(M)
kes(M) les(M)

= LM > ZEH(M)X(M)
k,leS(M)

= SUM] DY 2 H(2)X(2)
k1€S(M)

= Z Hi(z)Xi(2)6(l — k) from Lemma 3
k1ES(M)

= Y Hi(2)Xi(2). (2.31)

keS(M)
Remark: The analysis of the filter-downsampler situation is simplified by the careful
choice of notation. If both the filter and signals had been represented by the same

polyphase representation, then the analysis would have become cumbersome, and we



