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Appendix A

The Aryabhatta/Bezout Identity

A fundamental result in the theory of integer matrices is the Aryabhatta/Bezout
identity that arises from the Smith form of integer matrices. First consider the scalar
case. For m,n € Z let r = ged(m,n) and [ = lem(m,n). Geds and lems are are
unique modulo multiplication by +1, the integers with integer inverse. Now there

exist integers ¢,d € Z, such that
em=dn=1 and gecd(c,d)=1. (A.1)

As a consequence of Euclid’s algorithm the ged is also a linear combination of m and

n [6]: there exists a,b € Z, such that
r=am+bn and gcd(a,b)=1. (A.2)

Unlike ¢ and d (which are unique modulo 1) a and b are non-unique. For instance

a could be replaced by @ — kn and b by b+ kn where k € Z. Also
l=+mn/r, (A.3)

or equivalently ad + be = F1. Eqns. A.1-A.3 summarizes all basic facts about gcds

and lems and can be written in the compact form

a—kn b+ km m . m r
Ly : (A.4)
c —d n n 0

with det U = 1 and k£ € Z. Notice that det U = £1 is a strong condition and forces
ged(a,b) = ged(e,d) = 1. For example when m = 6 and n = 10, [ = 30, g = 2,
a=2—10k,b=1+6k,d=5,c=3 and det U = —1.
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In the matrix case the invertible integer matrices are precisely the unimodular

ones. A fundamental fact about integer matrices is the following [49]:
Fact 10 Every integer matrix M can be written in the form

Left Hermite Form M = UR, where U is unimodular, lower-triangular,

and R is an integer upper triangular matrix

Right Hermite Form M = LV, where, V is unimodular, upper-triangular,

and L is an integer lower triangular matrix

Smith Normal Form M = UXV, where U unimodular, lower-triangular,
V' is unimodular upper-triangular and ¥ is diagonal. Moreover, the

The diagonal elements of ¥, say A;, can be arranged such that A, 1 |);

Divisors and Multiples of Integer Matrices

Let M, L and R be integer matrices such that M = LR. R is a right dwisor of M
and L is a left divisor of M. Moreover, M is a left multiple of R and a right multiple
of L. R is said to be a common right divisor of M and N if it is a right divisor of
both M and N. In this case, M and N must have the same number of columns and
there exist integer matrices, M and N such that M = MR and N = NR.

M is said to be a left common multiple of matrices Ry and Ry if M = L1 R; and
M = L;R, for some L; and L,. M is also a right common multiple of L, and L.
Notice that B; and R, must have the same number of columns while L; and L; must
have the same number of rows.

R is a right divisor of M iff RT is a left divisor of MT. M is a left multiple of R
ifft M7 is a right multiple of RT. Hence it suffices to talk about right divisors and left

multiples only.
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GCRDs/GCLDs and LCLMs/LCRMs

Definition 16 R is a greatest common right divisor (gerd) of M and N
if for every right divisor, f{, of M and N there exists an integer matrix

W such that R = WA.

Definition 17 M is a least common left multiple (Iclm) of Ry and R; if
every other left multiple is of the form M = WM for some W.

Definition 18 If a gerd of M and N is unimodular then the matrices

are said to be right coprime.

Remark: If one gerd is unimodular, all gerds are unimodular as can be seen (from

Definition 16) by comparing determinants.

Construction of a GCRD and an LCLM

can be reduced to its left Hermite form

Given M and N, the matrix { MT NT

[ RT 0 } (from Fact 10) by a unimodular matrix U/. R in this construction is a gerd
of M and N.

I M _ Uin Uiy M _ R
N Up Uy N 0
v R _ Vin Vie R _ M
0 Var Vo 0 N

M = ViR and N = V51 R and so R is a right divisor. Also R = Uy3M + UyoN. For
any other right divisor Ry, with M = My R, and N = N1 R,

R - [UHMl —|— UlgNl]Rl (A5)

and therefore R is a gerd. Also L = Uy N = —UyyM 1s an lclm of M and N since

Usy and Uss are left coprime (as we shall shortly see).
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Lemma 35 (Characterization of Right Coprimeness) M and N are right

coprime iff one of the following is true:
1. XM + YN = [ for some integer matrices X and Y.

2. The matrix has an integer left inverse.

N

Proof: By coprimeness the gerd is unimodular and hence from Eqn. A5 [ =
R7U M + R7'U;3N. Take X = R71'U;; and Y = R71U4,. O
The first result is known as called the Bezout identity [49]. The second result says
that coprimeness is an invertibility property. For any left invertible (over the integers)
integer matrix, any partition of the rows of the matrix gives two right coprime matri-
ces. Coprimeness is a collective property of the rows of M and N (taken together).
It also follows (by transposition) that X7 and Y7 are right coprime. Hence X and
Y are left coprime. From the unimodularity of U and V', Uy Viy + UyaVoy = 1. Hence
(from Lemma 35) Uy and Usq are left coprime that L is an lelm of M and N.

All the above results about coprimeness can be summarized results in the following
Aryabhatta/Bezout identity over integer matrices. Right coprimeness of M and N is
equivalent to the existence of matrices M, N, X, Y, X and Y such that

Y X M X I 0
N —M N -Y 0 I

GCRD/LCLM of sets of matrices

The concepts of gerds and lclms can be directly generalized to the case of many
matrices (provided all of them have the same number of columns). From Lemma 35
computing the gerd of a set of matrices is the same a computing for just two of
them. As for the lclm of a set of say n integer matrices, Mg, My,..., M,_1, an lclm

is obtained recursively. Let P; = lelm(P;_1, M;) with Py, = My. Then P, is an lclm.
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Appendix B

Form of Modulation in Modulated Filter Banks

Assume that ¢; and v; (in Eqn. 3.25 and Eqn. 3.26) are linear functions of ¢ of the
form

€ o2t + Dag + 35

Vi or(2t+ Daa + 35
For an MFB to satisfy the PR property we will show that it is necessary that the
pairs (aq, az) and (81, #2) have the same parity. We have PR iff

M-1
f(n1,m2) < Z Z hi(Mn + n1)gi(—=Mn —ny) = 6(n1 — ny)
=0 n
def

= a1(n1,n2)bi(n1,n2) + az(ng, ng)bz(ng, na)

where
[ %Zh(Mn—l—nl)g(—Mn—M) |
ay(ny,nz) %Z(n—l)”h(Mn—l—nl)g(—Mn — 1)
a(niyna) || L, "
by (s, ) > o (ﬁ(% 1)y -y ¢ D0 TS ﬂ2>>
b M-
L Belrera) | _ 2:01 cos (ﬁ(zi 1)1 4y + =) + W(IBI:Z_ 182)> |

Notice that a1(ny + M,ny + M) = a1(n1,n2) and az(ny + M,ny + M) = az(nq, na).

One can compute the sums by(ny,n2) and by(ny, n2) using the fact that

Z COS((:Zi —I— 1)u + v) — 2 Sin(u)
=0 M(_l)k COS('U) fu=nxk.

M-1 1 | sin(2Mu+v)—sin(v) ifu ?é Tk
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Indeed
L |sntrlmaone £ 25204 PR s R | gy oy o eten 9y,
2 T 1ta 2
bl (nl, n2) — sin( 537 (n1 —n2+—15-2)
M(—1)} cos(TErti2)) if ny — ny + 2322 — 27,
. aq —a w(B1—B2) _sin w(B1—B82) .
% [Sln(ﬂ(nl-l'mf 12; )+ aj_Lz (= )] if ny +ng + M52 #2Mm
bg(nl,ng) _ sin( 537 (n1 +n24+—-15-2)
M(-1)" cos(@) if ny 4+ ny + 4522 = 2Mm

Consider the FIR case and assume (for simplicity) that h(n) and g(n) are prototypes
of length N = 2M#k. Then, it is easy to see that f(ni,nz) = é(ny — ny) implies, for
fixed nq, a set of 4Mk — M constraints (since outside of a range of extent 4Mk — M,
hi(Mn+ny) and g;(—Mn —ny) do not overlap) However, since f(ny + M,ny+ M) =
f(n1,ng), it suffices to consider ny € {0,1,..., M — 1} only. Therefore f(ni,ny) =
6(n1 — n2) implies a total of 4Mk x M = 2MN constraints. However, this is more
than the number of free parameters, 2N, by a factor of M. Hence it is necessary for
bi(n1,ng) and by(ng, ny) to vanish appropriately in order to be able to satisfy the PR
constraints. Now we can write ai(ny,ng) as a.(ny,ng) + a,(n1,n2) and az(ny, ng) as

ac(ni,ng) — ay(ny,nz). Then

f(n1,n2) = ac(ny,ng)(bi(ny, ng) + ba(ng, n2)) + ao(n1, n2)(b1(n1, n2) — ba(ng, ng)).

Therefore by(ny,ny) and by(ny, ny) have to vanish for all integers that are not a mul-
tiple of 2M. In that case there are 2k — 1 constraints for fixed n; for a total of
2Mk — M = N — M equations. Clearly this is less than 2N, the number of free
parameters and hence PR is possible. In this case ay + ay € 2Z, 31 + By € 27,
oy —ay € 27, and By — [y € 2Z. Therefore the pairs (aq,a2) and (f1,82) must be
integers of the same parity. Since we can assume 73; € [0,7), wlog #; = 3, = 0 or
By = B2 = 1. Choice of 3; = 1 merely changes the modulation from cosine to sine
(since it is a phase shift of 7). Therefore we will assume that 3, = 3, = 0. By letting

N tend to infinity, one sees that, if b(n1,n2) and bz(ny1,ny) do not vanish as above,



270

then the density of PR constraints is more than the density of free parameters and
hence PR is impossible.

With 8y = By = 0, if we shift the analysis filters to the right by MT” and the
synthesis filters to the left by C”"'Q'—QQ (from Lemma 8 it follows that the PR property

is unaffected), and define o = — #1522

(since a; and ay have the same parity, « is an

integer), then for the new filter bank

€ —ﬁ(% + a
Vi ﬁ(Zi + o



