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Figure 2.12: Filter-Downsampler (FD) Identity

would not have a neat (delay-free) formula for the output in terms of the polyphase

components (for a comparison see [91]).

2.3.4 Upsampler-Filter Identity

This is the dual of the filter-downsampler situation, and hence once again the com-
mutation is simplified by using polyphase components. To analyze this situation, it is
simpler to use the same polyphase representation for both the signals and the filter.
Let Xi(z), Yi(z) and Hi(z) denote the generalized polyphase components of X(z),
Y (z) and H(z) relative to a generalized set of representatives S(M) of L(M). Then

Y(z) = Z zkYk(ZM) and
keS(M)

Y(z) = H(z)[1 M]X(2) (2.32)
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and therefore it follows that
Yi(z) = Hi(2)X(z) for all k € S(M). (2.33)

Hence the mapping from X (z) to Y(z) may be represented as shown in Fig. 2.13.

Xt e ne) Jae e v

Zko
Hko (Z) TM
P
Hk1 (Z) TM
X(z) ] . Y(z)
ka1
Hk|M|—1 (Z) ™

Figure 2.13: Upsampler-Filter (UF) Identity

Remark: The Filter-Downsampler and Upsampler-Filter identities are true for any
generalized polyphase representation, and in particular for the first-orthant polyphase

representation.

2.3.5 Upsampler-Delay-Downsampler Identity
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Figure 2.14: Upsampler-Delay-Downsampler (UAD) Identity

L, TMI ZRm lMQ L
— 1M, i MiQarm o M2Q1m 1My —
— Zsz TMI lMQ Zle .

Figure 2.15: Upsampler-Delay-Downsampler Reduction Steps

In this situation the delay could be considered as a filter and one could use the
UF or FD identities (both involving polyphase representations) to shift the filter
out from between the up/downsamplers. However, a look at Fig. 2.13 and Fig. 2.12
should make it clear that this will introduce new delays (coming from the polyphase
representation) between the upsampler and downsampler. Therefore delays squeezed
between upsamplers and downsamplers cannot be released (by using the UF and F'D
identities). This problem is quite different from the the one where a delay being
squeezed between a downsampler and an upsampler. In that case the DF' identity
or the FU identity can be used to release the delay onto the upsampler side or
downsampler side. This section shows the conditions under which squeezed delays

between upsamplers and downsamplers can be released.
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Lemma 5 A delay squeezed between an M;-fold upsampler and M;-fold

downsampler can be released iff My and M; are left coprime.

Proof: Let z™ be squeezed between [T M;] and [| M,]. We have to show that there
exist integer matrices (); and () such that the delay can be released as shown in
Fig. 2.14. Let R = gcrd(My, My). Then from the Aryabhatta/Bezout identity, it
follows that there exist matrices P, and () such that

MlQQ —|— Mng = R (234)

and therefore any integer of the form Rm can be expressed in the form M;Q).m +
M;Q)1m. This composite delay may be thought of as two filters in cascade and by us-
ing the F'U and DF identities on these filters we can release the delay. In particular,
when M; and M, are left coprime, R = [ and we can release any delay. Conversely,
given that we can release the delay we can show that the delay has to be of the form

Rm. Fig. 2.15 outlines the steps involved in the reduction. O

2.4 Generalization of Kovacevic’s Theorem

This section gives another application of The Swapping Theorem (Theorem 2). In
the two dimensional case a set of necessary and sufficient conditions for commuting
upsamplers and downsamplers has been reported [52]. Using the tools developed
earlier we now show that the result extends readily to higher dimensions. The proof
in the two dimensional case involved the detailed analysis of scalar lcms in a number
of special situations and used a special representation of integer matrices generating
a given lattice [52]. The power of the methods developed in this chapter should be

evident from the proof of this theorem.
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Theorem 4 (Generalized Kovacevic’s Theorem) Given commuting ma-

trices My and M,
[l M2] [T Ml] = [T Ml] [l M2] (2-35)

iff the determinant of generator of the the greatest common sublattice

(ges) of L(My), and L(My), viz., L(M1)NL(M3), is equal to &+ | M| | M.

Proof: Let M be the generator of the ges of £L(M;) and £(M;). Then from Fact 1,
there exist integer matrices K; and K, with K; and K, right coprime, such that
M = MK, = M;K,. Therefore M is an lcrm of M; and M;. By assumption
M= MM, = MyM,; and hence M is a common right multiple of My and M,. There
exists a matrix R (which is a gerd of M; and M;) such that M = MR. Now R is

—~

M

unimodular iff |M| =

= |M;||M;|. In this case M; and M, are right coprime.

Hence by Corollary 3 we can interchange upsampling and downsampling. a

The various multirate identities developed in this chapter is tabulated in Table. 2.1.

Table 2.1: Summary of Multirate Identities
Filter-Filter (FF) Hi(z) | Ha(z) Hi(z) H;(z)
Downsampler-Downsampler (DD) L M) || [ My M)

[L M

Upsampler-Upsampler (UU) [T My] | [T Ma] || [T MyMy]
Upsampler-Downsampler (UD) [T M) | [I Ms] T K4 [l K]
Downsampler-Upsampler (DU) [| My] | [T Ms] -
Filter-Upsampler (FU) H(z) | [T M] [T M] H(=M)
Downsampler-Filter (DF) [l M] | H(z) H(=M) [l M]
Filter-Downsampler (FD) H(z) | [| M] [l M] Hi(z)
Upsampler-Filter (UF) [T M] | H(z) Hi(z) [T M|
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Chapter 3

Filter Banks and Transmultiplexers

3.1 Introduction

Filter Banks and transmultiplexers have been studied for several years in Digital
Signal Processing [75, 82, 83, 85, 91, 88, 62, 84, 70]. The introduction of the Smith-
Barnwell example of a two-channel perfect reconstruction (PR) filter bank sparked
a flurry of new results in filter bank theory that have recently found applications in
wavelet theory. This chapter describes the filter bank and transmultiplexer problems

and gives several solutions depending on restrictions on the classes of filters used.

3.1.1 The Filter Bank Problem

The structure of the classical one-dimensional filter bank problem is depicted in
Fig. 3.1. The input signal x(n) is filtered by a set of M filters {h;},7 € R(M). The
desired filter responses are shown in Fig. 3.2. The response of the i** filter occupies
only a subband of [—m,x]. The filter outputs are called subband signals. Subband
signals are then downsampled by M to give the signals d;(n). Downsampling preserves
the average data rates at the input (z(n)) and the output of the M subbands (d;(n)).
In subband coding the signals d;(n) are quantized (using standard scalar or vector
quantization schemes) and encoded (using standard techniques like Huffman coding
or arithmetic coding) so that interesting features of each subband (like energy level,
sensitivity of the ear to that subband etc.) is exploited. For example, more bits (finer
quantization) could be allotted to subbands that are more important perceptually.

The quantized and encoded signals are transmitted. At the receiver they are decoded
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Figure 3.2: Ideal Frequency Responses in an M-channel Filter Bank
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to produce approximations czz(n) to d;(n). These subband signals are then upsampled
by M, and the :'" subband is passed through the filter g;(n). The outputs of these
filters are added to give the reconstructed signal y(n) which is an approximation to
the input signal x(n). The filters {h;(n)} are the analysis filters constituting the
analysis filter bank and the filters {g;(n)} are the synthesis filters constituting the
synthesis filter bank. The filter bank problem is to design the analysis and synthesis
banks so that the subbands have desired frequency responses and y(n) approximates
z(n). The non-linearities and lossiness introduced by quantization and encoding are
difficult to analyze (we are unaware of any results in filter bank theory that incorpo-
rates quantization and encoding effects). Traditionally filter banks are designed by
assuming that d;(n) = czz(n) One desires that y(n) is a scaled and delayed version
of z(n), i.e., y(n) = ax(n — ng). If g;(n) is replaced by a='g;(n + ng), then the new
output y(n) is equal to z(n) and therefore by perfect reconstruction we shall mean
y(n) = x(n). This may force the synthesis (or analysis) filters may become finitely
non-causal (we will have more to say about this later).

In summary, the filter bank problem involves the design of the filters h;(n) and
g:(n), with the following goals:

1. Perfect Reconstruction (i.e., y(n) = x(n)).

2. The filter responses must approximate ideal filter responses as shown in Fig. 3.2.

In some applications other frequency responses may be desired.

3. The filters must be real and realizable and hence must be FIR filters or causal

and stable IIR filters.
There are a number of variations of this problem.

1. The number of channels, say L, is different from the downsampling factor M.

2. A subset of the analysis filters is predetermined by an application. In this

case PR may be impossible. One is interested in the necessary and sufficient
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conditions on this set of filters such that PR is possible. If possible one desires

to obtain a complementary set of filters.

3. The signals z(n) (and hence y(n)) are periodic. In this case the causality or
rationality of H;(z) and (;(z) is not important for realizability (since all filters
can be implemented by circular convolution). It may still be useful to have

rational IIR filters (in order to avoid long circular convolutions).

4. The filters are all linear-phase or have other symmetry restrictions. For instance

linear-phase symmetry is useful in image processing applications [76].

5. The filters are allowed to have complex coefficients. The DFT filter bank [87]
falls in this category. In this thesis filter coefficients are assumed to be real.
The magnitude frequency responses of the filters will be symmetric about the

origin.

6. PR may be weakened to alias-free reconstruction, where Y (z) = T'(2)X(2) for
some filter 7'(z).

7. The filter bank problem is cast in multiple dimensions where the sampling is
by matrices M, and the downsampling factor is |[M|. The PR conditions in this

case is no more complex than in the 1-d case.

3.1.2 The Transmultiplexer Problem

The transmultiplexer problem is the dual of the filter bank problem [91]. A trans-
multiplexer is a device for converting time-domain-multiplexed (TDM) signals to
frequency-domain-multiplexed signals (FDM). The basic structure of a transmulti-
plexer is shown in Fig. 3.3. Inputs y;(n) are the TDM signals which are upsampled,
filtered and combined (by a synthesis bank of filters) to give the FDM signal d(n),

which is then transmitted. At the receiver d(n) (assuming lossless transmission) the
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Figure 3.3: An M-channel Transmultiplexer
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zo(n)

z1(n)

Tap—1(n)

FDM signal is filtered and downsampled (by an analysis filter bank) to give the out-

put TDM signals x;(n). The goal in a transmultiplexer is to design the synthesis

and analysis filters so that PR is guaranteed (i.e., for all 7, z;(n) = y;(n)), the filters

approximate ideal bands, and that the filters are realizable. Just as in the filter bank

problem there are variations of this standard problem.

1. The number of channels, say L, is not equal to the downsampling factor, M.

2. The signals are periodic. Here arbitrary choices of filters is realizable.

3. The signals and filters are multi-dimensional.

4. A subset of the filters are predetermined. The design problem is to find a com-

plementary set of filters so that all the goals of a transmultiplexer are satisfied.

ot

Xi(z) =Ti(2)Yi(z).

Only cross-talk free reconstruction is desired. That is, it is sufficient to have
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3.2 PR Filter Banks and Transmultiplexers

For PR the coefficients of the filters h; and g¢; have to satisfy a set of algebraic con-
ditions that do not depend on whether the filters are rational, causal, etc. The PR
conditions have the same form in the multidimensional case also. We characterize
PR for the most general (multi-dimensional) filter bank and transmultiplexer. We
assume that there are L filters in the analysis/synthesis banks and that upsampling
and downsampling is by the integer matrix M.

Along each branch of a filter bank there is an analysis filter, a downsampler, an
upsampler, and asynthesis filter. Using the Filter-Downsampler (FD) and Upsampler-
Filter (UF) identities the analysis and synthesis filters can be brought in cascade
giving explicit relations between the input and the subband signals, and the subband
signals and the output.

Both the FD and UF identities require use of a generalized polyphase represen-
tation of the signals. Let S(M) be an arbitrary set of generalized representatives of
L(M); that is S(M) = {ko,kl, . .,k|M|_1}. For k € S(M), let Xi(2), Yi(z) and G4
be the components of the generalized polyphase representations of X(z), Y (z), and
(#;(z) respectively with respect to S(M). Let H,(z) be the components of the dual

polyphase representation of H;(z) with respect to S(M).

X(z)= ) #X(M); V()= ) V(M)

keS(M) keS(M)

Hi(z)= Y =z FHp(M). (3.1)
keS(M)

Gi(z) = Y #Gix(z"). (3.2)
keS(M)

Along each branch of the analysis bank, the FD identity (Eqn. 2.30) implies

Di(z)= Y Hix(2)Xx(2). (3.3)

kES(M)
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Along each branch of the synthesis filter bank, the UF identity (Eqn. 2.33) implies
Yi(z) = Gir(z)Di(2). (3.4)

Fori:€{0,1,L — 1} = R(L) and k € S(M), define the polyphase component matrices
(Hp(2))ix = Hix(z) and (G,(2))ir = Gix(2). There are | M| columns in H,(z) and
G,(z). Let the " column correspond to k; € S(M). Let X,(z) and Y,(z) denote the
Z-transforms of the polyphase signals z,(n) and y,(n), and let D,(z) be the vector

whose components are D;(z). Eqn. 3.3 and Eqn. 3.4 can be written compactly as

Dy(z) = Hy(2)Xp(2), (3.5)
Y, (2) = Gy (2) Dy(2), (3.6)

and
Y,(2) = GI(2) Hy(2) X, (2). (3.7)

Thus the analysis filter bank can be considered to be a multi-input multi-output
(MIMO) linear-shift-invariant system H,(z), that takes in X,(z) and gives out D,(z).
Similarly, the synthesis filter bank can be interpreted as the MIMO system Gg(z),
that maps D,(z) to Y,(z). Clearly we have PRiff Y,(z) = X,(z). This occurs precisely
when GT(z)Hy(z) = 1.

For the transmultiplexer problem let Y,(z) and X,(z) be vectorized versions of
the input and output signals respectively and let D,(z) be the generalized polyphase
representation of the signal D(z). Now D,(z) = GI(2)Y,(z) and X,(z) = H,(2)Dp(2).
Hence X,(z) = H,(z)GY(2)Y,(z) and for PR H,(z)Gl(z) = I.

Theorem 5 A filter bank has the PR property iff Gg(Z)Hp(Z) = [ and
a transmultiplexer has the PR property iff Hp(z)Gg(z) = [ where H,(z)
and (,(z) are generalized polyphase representations with respect to any

generalized set of representatives S(M) of the lattice L(M).
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Remark: If Gg(z)Hp(z) = [ then H,(z) must have at least as many rows as columns
(i.e., L > [M|). If Hy(2)G](z) = I then H,(z) must have at least as many columns
as rows (i.e., [M| > L). If L = |M|, GI(2)H,(z) = I = H!(z)G,(z) and hence a
filter bank is PR iff the corresponding transmultiplexer is PR.

The PR conditions in the Z-transform domain are useful in the study of unitary
filter banks. In some applications (theory of modulated filter banks, wavelet theory

etc.) the the PR conditions in the time-domain are useful.

Theorem 6 A filter bank is PR iff
Z > hi(Mn + ny)gi(—Mn — nz) = §(n1 — na). (3.8)

A transmultiplexer is PR iff
> hi(n)gi (=M1 —n) = §(1)8(i — ). (3.9)

If the number of channels is equal to the downsampling factor (i.e., L =

|M|) Eqn. 3.8 and Eqn. 3.9 are equivalent.

Proof:
Filter Bank PR : Since G (z)H,(z) = I, for k,l € S(M)
Z H; i (2)Gia(2) = 8(k — ). (3.10)
Consider f(ny,ns) defined by
fna,nq) = Z > hi(Mn 4 n1)gi(—Mn — ng).

For n € Z* f(ny + Mn,ny + Mn) = f(ni,n;). One has to only consider
n1 € R(M) and arbitrary ny. Let ng = =M1+ k, be the LU decomposition of
ny where k € R(M). Then f(nq,nz) is of the form Z Z hi(Mn4ny)g:(M(I—

n)—k). Taking the Z-transform of this expression as a sequence in [, say a,, x({),
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for fixed n; and ny, we get ZH““(Z)G”C(Z) = A, k(). But from Eqn. 3.10

Ap k(2) = 6(ny — k) and heznce is zero except when ny = k. When n, = &k,
Ay (2) = 1. Therefore ap,, n, (1) = 6(1). This is zero except when [ = 0 (in

which case it is one). But when [ = 0, and k = ny, ny = ny! Hence the result.

Transmultiplexer PR : Since H,(z)G7(z) =

Z Hip(2)Gh(2) = 6(1 — 7). (3.11)

keS(M

Define o Z hi(n)g;(MI—mn). Then from Eqn. 3.1, Eqn. 3.2 and Eqn. 3.11

Z(a(l)) = [l M]H(2)Gj(z)
= [LM] D =TFH(2M)Gu(M)

klES(M)

— Z Hi(2)G(z) = 6(2 — )

kES(M)

Therefore, taking the inverse Z-transform on both sides we get
Z hi(n)g;(M1—n) = 6(1)é(i — 7)
and replace [ by —[ to get Eqn. 3.9.

O

The filter bank and transmultiplexer PR properties can be obtained directly in the
time domain. Consider a PR filter bank. If the input is z(n) = é6(n — ny), then
d;(n) = hi(Mn—ny) and y(nz) ZgZ ne—Mn)d;(n). But by PR y(ny) = 6(ny—nq).

The filter bank PR property is prec1sely a statement of this fact:

Zzgz ny — Mn)d ZZgzng Mn)h;(Mn —nq) = 6(nz — nq).

Consider a PR transmultiplexer. If the input x;(n) = 6(n)é(z — j) then d(n) =
gj(n) and y;(! Z hi(n)d(Ml—mn). But by PR y;(1) = 6(1)6(¢ — j). The transmul-
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tiplexer PR property is precisely a statement of this fact:
yi(l) = hi(n)d(MI— k) =" hi(n)g;(MI —n) = §(1)6(i — j).

PR filter banks and transmultiplexers can also be studied in an infinite matrix
representation [90]. If x = [+, 2(0),2(1),---], ¥y = [--,9(0),y(1),---] and d =
[-+,do(0),d1(0), -, dp-1(0),do(1),d1(1),---], then there exist infinite matrices G
and H such that

d=Hx, and y=G'd. (3.12)

For example in the FIR case if the filter lengths are N we have

ho(N—=1) .. ho(N—M—1) ... ho(0) 0
def hM_l(N— 1) hM_l(N—M— 1) hM_l(O) 0
d =Hx = X.
0 0 ho(N — 1)
0 0 haoa(N—1)

(3.13)
In this case we have the following theorem:

Theorem 7 A filter bank if PR iff GTH = I and a transmultiplexer if
PR if HG! =L

The three forms of the PR conditions obtained above are the most useful. Another
form of it based on the modulated representation can also be found in the literature
[91]. This thesis is written with the strong belief that as far as PR filter bank theory
is concerned the modulated representation is dispensable. In the frequency domain

the transmultiplexer PR property becomes (take the Fourier transform of Eqn. 3.9)

L > H(M ™ (w = 27k))Gi(M " (w — 27k)) = 8(i — j). (3.14)

|M| keR(MT)
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There is no elegant frequency domain characterization of the filter bank PR property.

However the filter bank PR property implies that

1 1
M Z HZ(Z)GZ(Z) = m Z Zm_l Z HZ’I(ZM)Ghm(ZM)
i 1,meS(M) i
1 m—I
l,meS(M)
1
= — 1=1.
| M| 2
1€S(M)
and hence in the frequency domain
1 .
] Z Hi(w)Gi(w) = 1. (3.15)

We now give several algebraic properties of PR filter banks (FBs) and transmul-

tiplexers (TMs).

Lemma 6 PR property is preserved under interchange of the analysis

and synthesis filters (along each branch).

Proof: Readily seen from Eqn. 3.8 for the filter bank case, and Eqn. 3.9 for the trans-
multiplexer case. An alternate proof illustrating the use of the generalized polyphase
representation is as follows: For the filter bank case Gg(z)Hp(z) = [ (assume that
the polyphase representation is taken with respect to S(M)). If the filters are in-
terchanged and if we use polyphase representations with respect to —S(M), PR is
equivalent to Hg(z)Gp(z) = I, which is the transpose of GZ(Z)Hp(Z) = [! Similarly,

for the transmultiplexer case also. a

Lemma 7 PR property is preserved under reflection of all the analysis
and synthesis filters. That is, PR is preserved if h;(n) is replaced by
hi(—n) and g;(n) is replaced by g¢;(—n) for all 1.



47

Proof: Readily seen from Eqn. 3.8 and Eqn. 3.9. O

Given a filter bank, for [ € Z%, consider a new filter bank with filters given by
/V"cz(n) = hi(n — 1) and g;(n) = g(n + ). Notice that if S(M) is a generalized set of
representatives of £(M), then necessarily, for [ € Z¢, S(M) + [ is also a generalized
set of representatives. Now by representing h; and g; in polyphase with respect to
this set of representatives, [;i’p(z) = H,(z) and ép(z) = G,(2).

Lemma 8 PR property is preserved under fixed shifts of all the analysis

and synthesis filters in opposite directions.

Lemma 9 PR property is preserved if analysis/synthesis filter pairs are

shifted in opposite directions by points in L(M).

Proof: The result will be proved for the transmultiplexer PR property and the filter
bank case follows similarly. Given a PR transmultiplexer consider another with the

following filters

iLz(n) _ hi(n) for @ # 19

hio(n — Mng) for i = 1.
y 9:(n) for @ # ig
gi(n) =

Gio(n + Mng)  for i = io.
For ¢ and j both not equal to i the PR condition Eqn. 3.9 holds without change.

When one of them is 4g
th (=Ml —n) = th — Mng)g;(—MI —n)
= th M(l — ng) — n)
_ 0.
When both are 4

th —Ml—n) th — Mng)gi, (=M1 —n + Mnyg)
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= Zhio(n)gio(_Ml_n)
"

Thus all the PR conditions are satisfied, and hence the new filter bank is PR. O

In FIR case one can (by appropriately shifting the filters) assume that all the analysis
filters h;(n) are supported in the first-orthant (i.e., causal in the one dimensional case).
Using Lemma 9, one can also ensure that the non-zero coefficients of h;(n) are as close
to n = 0 as possible. In most of the one dimensional results in this thesis h;(n) will be
assumed to be causal with its support as close to the origin as possible. This is useful

in obtaining minimal parameterizations of unitary filter banks and transmultiplexers.

3.3 Some PR Results in One Dimension

There are two goals other than PR in the design of filter banks and transmultiplexers:
that the filters approximate ideal responses, and that the filters are constrained to be
realizable. If the input is periodic, then, any rational transfer function can be realized.
However, if the input is not periodic, the only transfer functions that can be realized
are FIR and finitely non-causal IIR transfer functions (that are also stable). This
section tries to discuss these problems. Moreover, for filters constrained to be in a
variety of classes we give necessary and sufficient conditions for PR. Throughout this
section we will assume that ,(z) is made of first-orthant polyphase components and

that H,(z) are made of the corresponding dual polyphase components.

Definition 5 A filter bank is said to be causal (or finitely non-causal)

iff the entries in H,(z) and G,(z) are causal (or finitely non-causal)

If H,(z) is causal, then the filters h; ; are causal, and hence necessarily the filters h;

are causal. This is because H,(z) is a first-orthant polyphase representation of the

filters: h; ;j(n) = hi(Mn — k) for k € {0,1,.... M —1}. If G,(2) is causal, the filters
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g:(n) may be non-causal since g; ;(n) = g;(Mn — k), k € {0,1,..., M — 1}. However,
gi(n — M — 1) will be causal. Thus the structure of a filter bank or transmultiplexer
naturally introduces a delay of M — 1.

Clearly all finitely-causal filter banks are realizable. We now show that the class
of all possible PR filter banks is quite large. First let L = M and let GL5;,,, be the
set of all M x M matrix functions of z that have an inverse on the unit circle. Then
any H,(z) € GL3j s can be interpreted as the polyphase component matrix of the
analysis bank of a PR filter. One can set G,(z) = (Hp_l(z))T to get the synthesis
bank. This allows one to construct a PR filter banks, not design them. There is
explicit control only over h; ;(n); not over the filters h;(n). However, realizability
can be easily imposed. Let RH® denote the set of real, causal (stable), rational
functions; that is real, rational functions, analytic in the exterior of the closed unit
disc in the complex plane. Given H(z) € RH*, by reflecting all the exterior zeros of
the function inside the unit circle one can obtain the well-known allpass/minimum-
phase factorization: H(z) = Hu(2)Hpin(2). The function H,,;,(2) has all its poles
and zeros on or inside the unit circle and is called minimum phase because for all
other functions in RH* that have the same magnitude on the unit circle, H,,;,(2)
has the least phase. The function Hy;(z) is allpass because its magnitude on the unit

circle is unity: [Hg;l(z_l)Ha”(Z)] = 1. The minimum-phase function is invertible

|z|=1
on the unit circle if it has no zeros on the unit circle. The minimum-phase function
always has an analytic inverse outside the unit circle and therefore is also in in RH*
Minimum phase rational functions with no zeros on the unit circle, have minimum-
phase rational inverses. Notice that these functions are causal and have causal inverse.
Similarly, the all-pass function is also invertible on the unit circle and has an all-pass
inverse. Now if we can find an equivalent all-pass/minimum-phase factorizations
for matrices in G LS, s, with entries in RH3;, s, then we can construct causal filter

banks, by choosing H,(z) to be the minimum phase factor. Also we would get another

filter bank by choosing H, to be the all-pass factor. A matrix U(z) € RHyj p is
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said to be unitary, if it is unitary on the unit circle (sometimes referred to as inner

or lossless functions).

UT(zYU(2) =1 (3.16)

This generalizes th notion of an allpass function. A matrix ) € RHRj, 5, is said to be
minimum phase, if its inverse is also in RHy;, ;. This occurs precisely when det () is
a minimum phase function and generalizes the notion of a minimum-phase function.

Matrices in RHp;, 5, also have an allpass/minimum-phase factorization [30, 45].

Fact 3 Let H € RHjj, - Then there exists an all pass Hyy(z) and
minimum phase H,,;,(z) such that H(z) = Huu(z)Hopmin(2).

In a state-space representation we can construct H(z) € RHy;, ;. This is equivalent
to choosing the system matrix (the A matrix) in the state-space description to have
all its eigenvalues insides the unit circle. Moreover, almost all random choices of H(z)

will also be in GL$,,,. Therefore, from H,y(z) and H,,;,(z) we can construct two

filter banks.

3.3.1 Causal FIR and Causal IIR filter banks

This section discusses necessary and sufficient conditions for PR for classes of filter
banks. For example, one might require that the filters in a filter bank (transmulti-
plexer) are FIR, or that the filter bank is causal and the filters are IIR etc. Since
the PR conditions are essentially the invertibility of H,(z) (or G,(z)) one naturally
expects an algebraic structure to the problem.

Let A be an commutative ring with identity [44]. An element in A is said to be a
unit if it is invertible over A. A matrix H over A is invertible iff det H is a unit in A.
This follows from the fact that the inverse is the reciprocal of the determinant times
the adjoint, which has entries in A being made up of sums of products of elements in
A. An invertible matrix over A is said to be unimodular over A. In a filter bank (or

transmultiplexer) with L = M if H,(z) is a unimodular matrix with elements from
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an appropriate ring then it is invertible with inverse Gg(z) and moreover Gg(z) also
has entries from the same ring.

For FIR filter banks H;(z) and (;(z) are Laurent polynomials (polynomials in z
and z7!) which form a commutative ring with identity the units of which are given

by the Laurent polynomials Az" n € Z, A € R\ {0}.

Lemma 10 (FIR PR) An FIR filter bank (with L = M) is PR iff
det H,(z) (or det Gp(z)) is of the form Az" for some n € Z and non-zero
AeR

Now consider a causal FIR filter bank. Then (from Definition 5) H,(z) and G,(z)

have entries from the ring of polynomials in z71.

form A € R\ {0}.

The units of this ring are of the

Lemma 11 (Causal FIR PR Lemma) An FIR causal filter bank (trans-
multiplexer) is PR iff det H,(z) (or det G,(z)) is a constant A € R\ {0}.

An interesting result for FIR filter banks is that H,(z) for an FIR filter bank can

always be factored into a causal part and an allpass part.

Lemma 12 Let H(z) be invertible over the Laurent polynomials. Then
H(z) is of the form 2V H,(z)H,(z), where H,(z) is allpass and Hy(z) is

unimodular over the ring of polynomials in z7*.

Proof: From Lemma 10 H(z) is a Laurent polynomial. By multiplication by z=%

for large enough N, H(z) can be converted into a polynomial in z~*. From Fact 3
we can do an allpass/minimum phase factorization of this matrix so that H(z) =
N H (2)Hy(2). O
For designing filter banks with respect to some criterion it is desirable to be able to

parameterize all invertible H,(z). For FIR filter banks, the above result states that
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this is equivalent to parameterizing FIR allpass and FIR minimum phase functions.
Unfortunately there is no known parameterization of FIR minimum phase functions,
while FIR allpass functions can be parameterized as we will see in Section 3.4.
Consider the case that the filters have rational transfer functions. In this case
H,(z) and G,(z) are rational matrix functions of z. Every rational function is a unit
in the ring of rational functions. Hence one would expect that a filter bank with
rational filters is always PR. However for PR we require invertibility of H,(z) on the
unit circle. The only rational functions that are invertible on the unit circle are the

ones with neither zeros nor poles on the unit circle.

Lemma 13 (IIR PR Lemma) An IIR filter bank is PR iff det H,(z) has

no zeros or poles on the unit circle.

Remark: Notice that we have not discussed about the stability of the filters (i.e.,
(* summability of the sequences h;(n) and g;(n)). If det H,(z) has no zeros or poles
on the unit circle, then by analytical continuation there is an open annulus around
the unit circle where H,(z) is invertible. This implies the existence of a unique
Laurent series expansions for the entries in H,(z) and GG,(z). The coefficients in these
sequences are absolutely summable and therefore stability is guaranteed. However,
the filters could be two sided sequences (since a Laurent series has terms with both
positive and negative powers of z).

Since IR filters are in general not realizable, we have to impose causality in order
for the filter bank to be realizable. For causal IIR filter banks, it should be clear that
H,(z) € RHyj, ;- The units in this ring are precisely the minimum-phase functions

that have no zeros on the unit circle.

Lemma 14 (Causal [IR PR Lemma) An IIR causal filter bank is PR iff

det H,(z) is a minimum phase function with no zeros on the unit circle.
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3.3.2 Alias-Free/Cross-Talk-Free Reconstruction

Sometimes PR is not required and then it may be possible to design better filters for
the same computational cost if only alias-free reconstruction is demanded. Similarly,
for a transmultiplexer one sometimes only desires that the channels are cross-talk
free. We give the necessary and sufficient conditions for these two situations in the
one dimensional case. The results are well known [84]. The novelty in our presentation
of the proof (which uses the polyphase representation) which is in the spirit of the

rest of the thesis. The multidimensional problem is relatively more complex [84]. For

M-1
alias-free reconstruction Y (z) = 7'(2) X(2). Let T'(z) = Z 2*T}.(2) be the polyphase
k=0
representation of 7'(z). Then
M-1 M-1
Y(z) = ZIXZ(ZM) Zka(Z)
=0 k=0
M-1 TM—1+1
= XI(ZM) Zka_l(Z)]
(=0 L k=l
M-1 M- M-1
= X;(2M) FEMTy ) + Zka—z(Z)]
(=0 L k=0 k=l

and can be written in the form

To(zM) My y(2M) MTy_y(zM) ... 2MTy(M)
Ty (M) To(zM) My (2M) ... ZMIy(M)
Y,(sM) = : : : . : X (M),
Tara(2M) Taros(zM)  Tarea(zM) .. 2MTar_y(2M)
| Twoa(2M) Twea(2M) Tass(zM) L To(zM)
and hence
To(2)  2Taroa(2) 2Tar—a(2) ... 2Ti(2)
Tu(z)  Tolz)  2Tuoa(z) ... 2Ty(2)
Yi(z) = : : : : Xp(2)
Thio(z) Taros(z) Tarea(z) ... 2Tha(2)
| Twoi(2) Twea(z) Twea(z) ... Tolz) |
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Gy (2)Hy(2) X, (2).

The matrix in the above equation is referred to as right pseudocirculant because the
rows are right shifts and there is a z in some of the terms (hence pseudo). The

corresponding time domain conditions are obvious.

Lemma15 A filter bank provides alias-free reconstruction iff Gg(Z)Hp(Z)

is right pseudocirculant.

A transmultiplexer satisfies cross-talk free reconstruction if the input signals and

output signals are related as X;(z) = 7;(z)Y;(z). Therefore

To(z) O ... 0
Hg(z)Gp(z) _ 0 Tl(z) ... 0
0 0 . Tia(e) |

Lemma 16 A transmultiplexer satisfies cross-talk free reconstruction iff

H,(2)GI(z) is diagonal.

3.4 Unitary Filter Banks

Unitary filter banks (in all dimensions) are a very important class of PR filter banks.
In one dimension unitary filter banks can be parameterized. One can walk over this
parameter space to get to an optimal point with respect to any given design criterion.
Unitary filter banks are also important from a wavelets perspective since they give

rise to wavelet tight frames.

Definition 6 A filter bank (or transmultiplexer) is said to be unitary if
Hg(z_l)Hp(z) =1 (or Hp(z)Hg(z_l) =1).

Lemma 17 For unitary filter banks g;(n) = h;(—n).
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Proof: Since G,(z) = H,(z7!), from Eqn. 3.2 and Eqn. 3.1 we have

Gi(z) = Y #Gin(z)= Y ZFHip(z7") = Hi(z™").

keS(M) kES(M)

Therefore one readily has the following result (from Eqn. 3.8 and Eqn. 3.9):

Theorem 8 A filter bank is unitary iff
ZZhi(Mn—l—nl)hi(Mn—l—ng) = 6(ny — ny). (3.17)
A transmultiplexer is unitary iff
> hi(n)hi (M1 +n) = 8(1)s(i — ). (3.18)

If the number of channels is equal to the downsampling factor then a filter

bank is unitary iff the corresponding transmultiplexer is unitary.

Since g;(n) = h;(—n), in the infinite matrix representation G = H. and therefore for
unitary filter banks it follows (from the PR condition) that H'H = T or equivalently
H is a (left) unitary matrix. Similarly for a unitary transmultiplexer H is a (right)
unitary matrix and HH” = I. The frequency domain version of the transmultiplexer

PR property now becomes (see Eqn. 3.14)

1 Z Hy(M ™Y (w = 27k)HA (M (0w — 27k)) = (1 — ) (3.19)

M Z f' S |
keR(MT)

and the filter bank PR property implies (in the frequency domain - see Eqn. 3.15)

fm z_: |H;(w)|* =1 (3.20)

For a unitary filter bank, if H,(z) is causal, then necessarily G,(z) is anti-causal.
Thus the only realizable unitary filter banks are FIR (unless the inputs are periodic).

Moreover, the minimal delay in the implementation of an FIR unitary filter bank is
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precisely N — 1, where N is the maximum length of any filter. This follows imme-
diately from Lemma 17 The importance of unitary filter banks in filter bank theory
stems from the fact that (in one dimension) H,(z) for FIR and IIR (not irrational)
unitary filter banks can be parameterized [85]. We will give a new parameteriza-
tion of unitary FIR H,(z) and obtain the factorization in [85] as a corollary. Using
this parameterization, unitary filter banks can be numerically designed so that the
filters approximate ideal frequency responses (or satisfy any other optimality crite-
rion). Moreover, unitary filter bank theory is a natural starting point for the theory of
wavelet tight frames and orthonormal bases. It must be emphasized that FIR unitary
H,(z) is well understood only in one dimensions. Very little is known about param-
eterizations of multidimensional unitary matrices on the unit poly-circle. Recently it
has been shown that all two dimensional FIR unitary matrices on the unit circle can
be parameterized [2]. The precise result is that every two dimensional FIR lossless
system can be obtained by terminating some one dimensional lossless two-port with
a set of delays in the second dimension.

The parameterization of unitary filter banks is intimately related to a certain
energy preserving property of unitary filter banks. For a real scalar signal x(n) its
energy is given by

Joll? = S lel* = o= [ dolx@)f = o [ XEXE) e

T -

Now consider a vector signal xz(n), with components z;(n), ¢ € R(M). If ||z(n)]|

denotes the Euclidean norm of z(n), then the energy of the signal is given by

M-1
2l =) llaill® = la(n)]*
1=0 n

Just as in the scalar case it is easily verified that

ol = 5 [ o [XTGX G

ks
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Consider a unitary filter bank. The energy of the subband signals is given by

4l = 5= [ de DECDLE)]
= o | LX) X))
- 5 | W XENE) ..
= Jlal”
Similarly, ||d,||*> = ||ly,||*>. Therefore, the input, output and subband energies of

a unitary filter bank are the same. Moreover, unitariness is characterized by this
energy preservation property.

If U is an orthogonal matrix, then the signals xz(n) and Uxz(n) have the same
energy. If P denotes the orthogonal projection onto a subspace of R, then I — P

denotes the orthogonal projection onto its orthogonal complement and hence
2 2 2
]| = [[Pz[|” + [[(1 = P)z”.

For any give X(z), X(z) and z7'X(z) have the same energy. Using the above facts

we have for any projection matrix P,
D,(z) = [I — P+ Z_IP] X,(z) = T(2)X,(2)

has the same energy as X,(z). That is T'(z) is unitary. Moreover T'(z) is also a first
order polynomial matrix in z7!. For a set of K — 1 projection matrices P; of rank é;

we have )
K-1

T(z)=[ I -P+7"P] W,

k=1

is unitary. We now prove that every polynomial matrix of polynomial degree (K —1)
can be factored in the above form. If the length N of the filters in a filter bank satisty
M(K —1) < N < MK then H,(z) is a polynomial matrix of degree (K — 1).
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Theorem 9 Every unitary polynomial matrix H,(z) of (polynomial)

degree (K — 1) can be uniquely factored in the form

Hy(z) = f[ [[-P +:'P]V, (3.21)

i=K—-1
where P; are projection matrices of rank ¢; and V; is a constant unitary

matrix.

K-1

Proof: Since H,(z) def Z hy(n)z™" is unitary hg(O)hp(K — 1) = 0 and therefore
h,(0) is singular. Let P;__(i be the unique projection matrix onto the nullspace of
h,(0) (say of dimension 85 _1). That is, h,(0)T Px_y = 0 = Px_1h,(0) (because Px_;
is symmetric). Also, since h,(K — 1) is in the nullspace, Px_1h,(K —1) = h,(K — 1)
and hence (I — Px_1)h,(K —1) = 0. Therefore [I — Px_1 + zPx_1] H,(2) is a matrix
polynomial of degree at most degree K — 2. However if £,(0) and h,(K — 1) are not
zero (an assumption one makes without loss of generality) then the degree is precisely
K — 2. Moreover, it is unitary since I — Px_; + zPx_1 is unitary on the unit circle

(complementary projections taken together preserve energy). Repeated application

of this procedure (K — 1) times gives a degree zero unitary matrix V5. O

A rank n projection matrix is of the form wyw! + ... 4+ w,wl, where w; are unit
K-1

norm M-vectors that are mutually orthogonal. Therefore if L = Z 0;, one has the
=1

(non-unique) Householder factorization [83]

1
H,(z) = H [I — viv;[ + z_lvivﬂ Vo. (3.22)

t=L—1
L is the McMillan degree of H,(z) [84]. The unit M-vectors v; are known as Householder

parameters, and each is determined by (M — 1) scalar parameters. Moreover the uni-

M

tary matrix Vg is determined by parameters. Therefore a polyphase matrix

2

M
H,(z) of polynomial degree (K —1) is completely determined by +(M—-1)(L-1)
2
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parameters where L is the McMillan degree of H,(z). Factorization of polynomial
matrices unitary on the unit circle is also a consequence of classical results in network
theory [3, 84].

Another result that we find useful when we discuss wavelet theory is the following
representation theorem for unitary vectors on the unit circle. An M x 1 vector V(z) is
said to be unitary on the unit circleif VI (271)V(z) = 1. Let (K —1) be the polynomial
degree of V(z) (in this case the polynomial degree is equal to the McMillan degree).
We have the following factorization theorem for unitary vectors of degree (K — 1)

analogous to the result for unitary matrices [83].

Fact 4 Every polynomial vector of (polynomial) degree (K —1) is uniquely
determined by (K — 1) projection matrices F;, ¢ € {1,..., K — 1}, each

of rank one (i.e., P; = v;v) and the vector vy
K-1
V(z)= H [] — 'viv;‘r + z_lvl-vﬂ Vo,
=1

The McMillan degree of this vector polynomial is precisely (K — 1). Therefore, the
McMillan degree of any one filter in an M-channel filter bank with filters of length
MK is always K — 1. However, the McMillan degree of H,(z) could be L > K.

Therefore in the FIR case unitary filter banks may be designed from Eqn. 3.22 by
appropriate choice of the Householder parameters v; and V4 [67]. Another advantage
of unitary filter banks is that once the analysis filters are given the synthesis filters
are just time-reverses of the analysis filters.

In many applications it is desirable to have h; and g¢; to be linear-phase filters,
so that there is no dispersion. Unitary FIR filter banks with filters that are linear
phase have been constructed in [67]. Recently, a complete parameterization of unitary
FIR linear phase filter banks has been obtained in [76]. Later in Section 3.6, we will
give a complete parameterization of FIR unitary filter banks with various types of

symmetry, that includes the results in [76]. An important property of linear phase
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unitary filter banks is that [%w filters have to be even-symmetric and {%J filters
have to be odd-symmetric [76].

We now describe the parameterization of Vo and {v;} using angle parameters
helpful for design purposes. First consider v; € RM, with ||v;|| = 1. Clearly, v;
has (M — 1) degrees of freedom. One way to parameterize v; using (M — 1) angle
parameters 0;,, k € {0,1,..., M — 2} would be to define the components of v; as
follows:

i-1
{H sin(9i71)} cos(6; ;) forje{0,1,...,M —2}

(=0

(vi); = M-1
{ H sin(@iJ)} for j = M — 1.

(=0

M

As for Vg, it being an M x M orthogonal matrix, it has degrees of freedom.
2

There are two well known parameterizations of constant orthogonal matrices, one

based on Givens’ rotation (well known in QR factorization etc. [25]), and another

based on Householder reflections. In the Householder parameterization

M-1

Vo = H [] — 2'02"0;[] ,

i=0
where v; are unit norm vectors with the first ¢ components of v; being zero. Each
matrix factor [] — 2'02-1);[] when multiplied by a vector ¢, reflects ¢ about the plane
perpendicular to v;, hence the name Householder reflections. Since the first ¢ compo-
nents of v; is zero, and ||v;|| = 1, v; has M — ¢ — 1 degrees of freedom. Each being
a unit vector can be parameterized as before using M — ¢ — 1 angles. Therefore, the

total degrees of freedom is

M-1 -1
Y M-1-0)=) i= M
i=0 i=0 2

In summary, any orthogonal matrix can be factored into a cascade of M reflections

about the planes perpendicular to the vectors v;.



