91

where the filters are all of fixed length N, and the symmetry is about % For these
three symmetries, we will now study the form of H,(z). We will only consider the case
of even M. For even M, if the filters are linear-phase half the filters are symmetric,
while the other half are anti-symmetric [76].

Let J denote the exchange matrix with ones on the anti-diagonal. Post-multiplying
a matrix A by J is equivalent to reversing the order of the columns of A, and pre-
multiplying is equivalent to reversing the order of the rows of A. Let V denote the
sign-alternating matrix, the diagonal matrix of alternating +1’s. Post-multiplying by
V, alternates the signs of the columns of A, while premultiplying alternates the signs
of the rows of A. The polyphase components of H(z) are related to the polyphase

components of H(z) by reflection and reversal of the ordering of the components.
M-1

For, if H(z) is of length Mm, and H(z Z ~'Hy(zM), then

HR(Z) = ~Mmtl ZZZHI(Z_M)

Therefore,

(H")i(2) = (Hy-1-1)"(2) (3.53)
and for linear-phase H(z), since H?(z) = £ H(z)

Hi(2) = £(H®)p_121(2). (3.54)

Lemma 23 For even M, H,(z) is of the following forms for the different

types of symmetry:

PS Symmetry:
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{J o] { Wo(2) Wi(z) |
_ (3.55)
0 J Wo(2)V  (=1)MP2W,(2)V
PCS Symmetry:
H() = Wo(z) Wy (z)J
| IWER)V (—D)MPIWE(2) TV
= Wile)J (3.56)
— MW (2)JV
Linear Phase:
- | Wo(2) DOWR(Z)J]
_Wl(z) DyWE(2)J
_ [ W) DOW(F(Z)] [I o] -
| Wiz) DiW(z) 0 J
He) - | W W ]
| Wi(z) —W{(2)J
N RCGE ] [] 0]‘ .
_Wl(z) -Wl(z) 0 J
Linear Phase and PCS
) = Wo(z) DWE(z)J
| JDWo(2)V  (=L)MEIWE(2)JV
_ | To Wo(2) DWE(2)J (3.50)
0 J DWy(2)V  (=1)MPPWE(2) IV
Linear Phase and PS:
e - [ Wo(2) DWE(2)]
| IWo(2)V (=D)MPIDW(2)JV
o Wo(z) DWE(z)J (3.60)
0 JD DWy(2)V  (=1)MPWE(2)JV
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Proof: For PS symmetry, since Hayrq_;(2) = Hi(—2), Hy_1-:1(2) = (=1)'H;(2).

Thus if [Wo(z) Wi(2)] is the first M/2 rows of H,(z), the rest is given by reversing
the order of rows of [Wy(z) Wi(z)] and alternating the signs of the columns. Hence
the result follows. For PCS symmetry, since Hpy_1_;(z) = H(—z), from Eqn. 3.53

Hi(z) = (_1)1H1\]}—1—i,M—1—l(2)'

Therefore if H,(z) is a 2 x 2 block matrix, the 10 and 11 blocks are obtained by
reversing the order of rows and columns of the 00 and 01 blocks respectively and
alternating signs of columns, which is equivalent to Eqn. 3.56. For linear-phase, from
Eqn. 3.54, H;(z) = £ H; m-1-1(z), and therefore Eqn. 3.57 follows with Dy and Dy
diagonal matrices of £1’s to account for the type of symmetry. From the fact that
half the filters are symmetric and the other half anti-symmetric, by a permutation
(), we can stack the symmetric filters in the first M/2 rows and the anti-symmetric
filters in the rest, giving Eqn. 3.58 The combination of linear-phase and PCS (or PS)
is then immediate. Notice also, that one needs to consider only one case (i.e., linear

phase and PCS or linear phase and PS). O

Thus in order to generate H,(z) for all symmetries other than PS, we need a
mechanism that generates a pair of matrices and their reflection (i.e., Wy(z), Wi(z)
WH(2) and WE(z)). In the scalar case, there are two well-known lattice structures
that generate such pairs. The first case is the power-complementary (or orthogonal
lattice) [86], while the second is the linear-prediction (or hyperbolic) lattice [T1]. A
K™ order (i.e., polynomial degree K) power-complementary lattice is generated by

the product

Sl oa 2 ap  bo | aer | Yo(2)  Yi(2) | e

11 1 = = X(2).

-1 | —=b; z7la; —by ag ~YE(z) Y{i(2)
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This lattice is always invertible (unless a; and b; are both zero!), and the inverse is

anti-causal since

-1
a; Z_lbi 1 a; —b;

—b; z7la; - ai + b zb, za;
This lattice plays a fundamental role in the theory of FIR unitary modulated filter
banks, and many other areas. The hyperbolic lattice of order K (i.e., polynomial

degree K') generates the product

- 2T ao bo | g | Yo(2) Yi(2) | ae

" 2 X(2),

=1 | b 27 a; bo ao Vii(z) Y(z)

where Y5(z) and Yi(z) are of order K. This lattice is invertible only when a? # b?
(or equivalently (a; 4 b;)/2 and (a; — b;)/2 are non-zero), in which case, the inverse is

non-causal since

a; z7'b; 1 ai  —b
b, z7la, aj — b —zb; za;
a; bZ
Since the matrix can be orthogonal iff {a;,b;} = {£1,0}, or {a;, b;} =
bi a;

{0, £1}, the (2 x 2) matrix generated by the lattice can never be unitary.

We now propose the following matrix generalizations of these two lattices which
will play a fundamental role in the characterization of H,(z) for the various symme-
tries we considered earlier. In the matrix case it turns out that both the lattices can
generate unitary matrices. This leads to a parameterization of FIR unitary H,(z) for
PCS, linear-phase, and PCS+linear-phase symmetries. We prefer to call the general-
ization of the orthogonal lattice, the anti-symmetric lattice and the generalization of
the hyperbolic lattice the symmetric lattice, which should be obvious from the form
of the product. The reason for this is that the anti-symmetric lattice may not gener-

ate a unitary matrix transfer function (in the scalar case, the 2 x 2 transfer function
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generated is always unitary). The anti-symmetric lattice is defined by the product

K _
A 2B Ay B
X() ] : N (3.61)
=1 | —Bi z7'A; —By Ao

where A; and B; are constant square matrices of size M /2 x M /2. 1t is readily verified

that X(z) is of the form

X(oy= | ) nE (3.62)
-Yi(z) Y(2)

Given X (z), its invertibility is equivalent to the invertibility of the constant matrices

A;  B; . A; Z_IBZ' A, B; I 0
since = . (3.63)
—B; A; —B; Z_IAZ' -B; A; 0 z7'I
This is related to the invertibility of the complex matrices C; = (A; + 1B;) and

D; = (A; —B;) because

20 1 0 D; I _B;, A

Moreover, the orthogonality of the matrix is equivalent to the unitariness of the

complex matrix C; (since D; is just its Hermitian conjugate). Since an arbitrary

M/2
complex matrix, of size M /2x M /2, is determined by precisely 2 / parameters,
2
, A B
each of the matrices has that many degrees of freedom. Clearly when
-B; A

these matrices are orthogonal, X (z) is unitary (on the unit circle) and X7(271)X(z) =
I. For unitary X(z), the converse is also true as we will shortly prove.

The symmetric lattice is defined by the product

K _
A 2B Ao B
X(:) ] : o (3.64)
=1 | Bi z7'Ai By Ag
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Once again A; and B; are constant square matrices, and it is readily verified that

X(z) written as a product above is of the form

Yo(z) Yi(e)
X(z2) = . (3.65)
Yii(z) Y(2)

The invertibility of X(z) is equivalent to the invertibility of
since = . (3.66)
B; A; B; Z_IAZ' B, A; 0 =271

This is equivalent to the invertibility of C; = (A; + B;) and D; = (A; — B;) because

1|1 1 C; 0 I I A; B

2071 -1 0 D; | | T —I Bi A

Once again, the orthogonality of the constant matrix, is equivalent to the orthogo-
nality of the real matrices C; and D;, and since each real orthogonal matrix of size
: : M/2 :
M/2 x M/2 is determined by parameters, the constant orthogonal matri-
2
M/2 :
ces have 2 degrees of freedom. Clearly when the matrices are orthogonal
2
XT(271)X (z) = I. The converse is also true.
Theorem 14 Let X(z) be an FIR M x M, polynomial matrix of order
(polynomial degree) K unitary on the unit circle. If X(z) is of the form
in Eqn. 3.62 or Eqn. 3.65, it is generated by an order K anti-symmetric

or symmetric lattice.

Proof: In both cases, we prove the results by induction on the order K. First consider
X(z) as in Eqn. 3.62. When K = 0, the result is evident. For any X(z) of order K,
we reduce its order by 1 to complete the proof. Let

K K

X(z) =Y e()em =Y 7 yo(#) (i)

i=0 i=0 —yl(K - ‘i) ’yo(K - ‘i)
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I —BE

It suffices to find an orthogonal matrix such that
BL AL
K K
yo(K) y1(K
[an —pp e = [z —pL | wl ) nlB) ) (3.67)
—51(0)  o(0)
AL —BL
for then N | X(2) is equal to
zBE  zAL
- Afeyo(i) + By (K — i) Afa(i+1) — Beyo(K — 1 —1)

i=o —Afyr(K — i) + Bicyo(t)  Afyo(K — 1 —14) + By (i + 1)
and gives the desired order reduction. The right hand side is unitary (since it is a

product of unitary matrices), of degree K —1 and of the form in Eqn. 3.62. Also X(z)is

A[{ Z_IBIX" . . .
times the reduced order unitary matrix. We now construct such an

—Bg z'Ax

orthogonal matrix using the crucial assumption of unitariness. Since X7 (271)X(z) =

I, the coefficient of 2 in XT(271)X(z) zero.

T (0)a(K) = yi (0) —yi (K) yo(K)  yi(K) o (3.68)
y1(0) o (K) —11(0)  y0(0)

Hence the rank of #(K) (= rank of z(0)) is some P < M/2. Let T be an M x P

matrix that orthogonalizes (Gram-Schmidt) the columns of this rank P matrix.

T oK) yi(K T U,
x(K)T def x(K) 0 _ yo( ) !/1( ) 0 def 0 7
Ty ~41(0)  »o(0) T Uy
and
Uy
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Ui
By appending M — P orthogonal columns appropriately to ° | one can unitarily

Ux
complete it to give the desired orthogonal matrix. Since
T y(0)  y1(0) T Uy
-I(O) - = s
_TO _yl([() yo([() _TO —Uo
from Eqn. 3.68,
o —uf Jem) =0= 7 -0t ]
Uo

Therefore, U, = (Up + tU4) and U, = (Uy — 1Uy) are M/2 x P, matrices of unitary
columuns, that are Hermitian conjugates. Let [U.V,] and [U,V,] be M /2 x M /2 unitary

matrices obtained by unitary completion (Gram-Schmidt again, though compleal!).

to

I 0| — O
o v.vilo ollorlo —a| [ owlu v
200 | o 0|, Vo[ 10la 0| |-t w0 W
0 I] 0 z]_

Clearly this matrix is orthogonal, and moreover, satisfies Eqn. 3.67.

Now consider the case when X(z) is of the form in Eqn. 3.65. Once gain for K = 0
the result is evident. Again it suffices to reduce the order X(z) by one to complete
the proof. Let

K K

X0 =Y ei=y | el

i=0 i=0 yl(K - i) ‘yo(K - ’i)

It suffices to find an orthogonal matrix { A}Q B}f, } such that

AL BT AL BT yo(K) yi(K
K K t([() _ K K yo( ) yl( ) _ 07 (369)
BIT( AIT{ BIT( AIT( ’!/1(0) ;‘/0(0)
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A om )
because then X(z) is equal to

T T
2By zAx

KU ARyo(i) + BTy (K —4) ALyi(i+1) + Byo(K —1—14)

z

i=0 Afeyi (K — i) + Bieyo(i)  Afyo(K —1— i)+ Bigya(i +1)
This gives the desired order reduction. The right hand side is unitary (since it is

a product of unitary matrices), is of degree K — 1 and is of the form in Eqn. 3.65.
: Ak z7'Bg : : .
Also X(z) is times the reduced order unitary matrix. We now

Bk z7'Ag

exhibit such an orthogonal matrix. Since X7 (271)X(z) = I, the coefficient of z¥ in

XT(Z_l)X(Z) is zero.

yl'(0) yI'(K Yyo(K) (K
0V () = b0 (0) w1 (K) || wo(K) wi(K) | _ o (3.70)
yi(0) wo (K) | | 91(0) wo(0)
Therefore the rank of #(K) (= rank of x(0)) is some P < M/2. Let T be an M x P

matrix that orthogonalizes (Gram-Schmidt) the columns of this rank P matrix.

T Ui Ui
KT k)| "= " | and { ur T } R
T; Uy Uy
: Uo : : :
We will complete by appending M — P orthogonal columns to give the desired

1
orthogonal matrix. From Eqn. 3.70 it follows that

T U
2(0) Ll 1
Ty Uy
and therefore
T | (K =0= | ;7T 7T s
Lor g ey =0=or ug ] .

Now U, = (Uy + Uy) and U, = (Uy — Uy) are M/2 x P, matrices of orthonormal
columns. Let [U.V.] and [U,V,] be unitary completions to square M /2 x M /2 orthog-
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onal matrices (Gram-Schmidt again!). Set to
(1ol 1 0]
111 1 U Ve 0 O rpo 1| | il Vo
200 -1 o ofu, v [ rol-1 o] [t |
010 1]
Clearly this matrix is orthogonal, and moreover, satisfies Eqn. 3.69 O

3.6.1 PS Symmetry

The form of H,(z) for PS symmetry in Eqn. 3.55 can be simplified by a permutation.

Let P be the permutation matrix that exchanges the first column with the last column,

the third column with the last but third etc. That is,

Wo(2)

Then the matrix

000
010
000

Wi(z)

0 0 1
000
1 00

in Eqn. 3.55 can be rewritten as

Wo(2)V  (=1)MPW,(2)V

Wi(z)  Wi(z)
—Wo(z) Wi(z)

1

V2

Hy(z) =

P, and therefore

Wo(z)
Wo(2)V  (=1)M2W,(2)V

Wi(z)
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1|10 Wiz) Wits) |,
V2 0T | -WE(z) Wi(2)
1 I I | Wiz 0
= — P
V200 g || -1 1 0 Wi(z)
1| 1 T || W) 0
V2| g 0 Wi(z)

For PS symmetry one has the following parameterization of unitary filter banks.

Theorem 15 (Unitary PS Symmetry) H,(z) of order K forms a unitary
PR filter bank with PS symmetry iff there exist unitary, order K, M/2 x
M /2 matrices W{(z) and W](z), such that

L1 1| | W) 0

H,(z)= — P. (3.71)
VR gy 0 Wi(z)
A unitary H,, with PS symmetry is determined by precisely 2(M/2 —
M/2
DK +2 parameters.
2

3.6.2 PCS Symmetry

In this case

ne 1 0 Wo(z) Wi(2)J
0 T | WV (D)MW (2) TV
w [T O] W Wy
Lo s [ —mr g
o] owm ow 10
I A R U UL R

Hence from Lemma 23 H,(z) of unitary filter banks with PCS symmetry can be

parameterized as follows:



Theorem 16 H,(z) forms an order K, unitary filter bank with PCS

symmetry iff

I 0 K| A, 1B Ao Bo I 0
H,(z) = {H } P

0 J i=1 —B; Z_IAZ' — By Ao 0 J
3.72)
A B : :
where are constant orthogonal matrices. H,(z) is charac-
-B; A
terized by 2K parameters.
2

3.6.3 Linear Phase

For the linear-phase case,

Wo(z) WR(2) ]
Wi(z) —Wi(2)

Hy(z) = Q{

2

o ] me e wae) wEe) - wEe) | 1o
I -1 J

w L[ 1w wie 1
V2 I —1 (WDHE(z) (WHE(2) 0 J

Therefore, we have the following Theorem:

Theorem 17 H,(z) of order K, forms a unitary filter bank with linear-

phase filters iff

1 I 1 ol A 2B Ao Bo | | T 0
Hy(z) = EQ H :
I —I i=1 B; Z_IAZ' By Ag 0 J
(3.7
A B : :
where are constant orthogonal matrices. H,(z) is character-
ized by 2K parameters.
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3.6.4 Linear Phase and PCS

In this case, H,(z) is given by,

H) - 7 0 Wo(z) DW§(z)J
P o g DWy(2)V (=1)MPWE(2)JV
w L[ O]] Wi by
o 1 P
V2 0 T | [ -DW(2)  (W)R(2)J
_L_]O__]D Wy(2) 0 ]OP
B V2o g || -D 1 0 W) | |0 g

Therefore we have proved the following Theorem:

Theorem 18 H,(z) of order K forms a unitary filter bank with linear-
phase and PCS filters iff there exists a unitary, order K, M/2 x M/2
matrix Wj(z) such that

H()—L R ’ POl (3.74)

R A AU I B
M2
2

In this case H,(z) is determined by precisely (M/2 — 1)K +

parameters.

3.6.5 Linear Phase and PS Symmetry
From the previous result we have the following result:

Theorem 19 H,(z) of order K forms a unitary filter bank with linear-
phase and PS filters iff there exists a unitary, order K, M /2 x M/2 matrix
W{(z) such that

I D WY (2) 0

1 .
= R P. (3.75)

103
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M/2
H, is determined by precisely (M/2 — 1)K + / parameters.
2

3.7 Completion of Filter Banks and Transmultiplexers

Consider the following problem: If a set of L(L < M) filters in a filter bank are chosen
a priori, how does one design a set of M — L filters to give rise to an M channel PR
filter bank? This section solves this problem for unitary and causal filter banks. The
completion problem for filter banks is related to the PR problem for transmultiplexers
and vice versa. This section deals with the completion problem for filter banks only

(similar results for the transmultiplexer can also be obtained).

3.7.1 Unitary Completion Theory

Theorem 20 (FIR Unitary Completions) A set of L filters can be com-
pleted to a unitary filter bank iff the filters can be considered to be filters
of a unitary transmultiplexer. If the McMillan degree of H,(z) and the

McMillan degree of the polyphase matrix of the completed filter bank are
M- L

equal, then the completing set is parameterized by parameters
2
(and is independent of the length of the filters).

3.7.2 Causal (or unimodular) Completion Theory

For causal filter banks PR is equivalent to the (first-orthant) polyphase component
matrix H,(z) being unimodular over the ring of polynomials or stable proper rational
functions (depending on the FIR or IIR cases respectively). Therefore the comple-
tion problem for causal filter banks becomes one of unimodular completions. This
fact brings a connection between the celebrated Youla (YJBK) parameterization of

compensators in control systems theory [30] and the completion problem.
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Polynomial matrices U and V with the same number of columns are said to be

left-coprime if | 7 V } is right invertible [49]. This can be generalized to the case
where U and V are matrices in any Euclidean domain [92], and therefore in particular
for matrices of stable proper rational entries. Notice that left coprimeness is not a
v v }

Since right-invertibility is equivalent to a transmultiplexer being PR, it readily follows

property of U or V individually but an aggregate property of the rows of

that a causal transmultiplexer is PR iff the corresponding H,(z) is coprime over the
ring of polynomials (in the FIR case) and the ring of stable proper rational functions
(in the IIR case).

It turns out that coprimeness is precisely the property that is related to unimod-

ular completions [92]:

Fact 6 A matrix H over a Euclidean domain has a unimodular comple-

tion iff the rows of H are coprime.
Therefore we have the following results:

Lemma 24 (Causal FIR Completions) Given {h;}, ¢{0,1,..., L —1},
all causal FIR filters, they can be completed to form a causal FIR filter
bank, iff the rows of H,(z) are (left) coprime over the ring of polynomials in

27! (or equivalently if the filters form a causal FIR PR transmultiplexer).

In the FIR case the Euclidean algorithm can be used to completely parameterize
all possible completions. To see this, let the rows of H,(z) be coprime. Then by
elementary column operations ([49]) one can construct a unimodular matrix U(z)

such that
Hy(z) = {1 0 } U(z) = {1 o} ZHEZ Zmii , (3.76)
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where [ is the L x L identity matrix. Let V = U~! be also partitioned similarly.
Then

L ) e | | Va) Val)
| Un(z) Un(2) | | Va(z) Vaa(2)
o o] e vee) | | e vee) I 0
Q) T | Ualz) Usle) | | Vale) Vaalz) | | -Q(z) 1
B Uni(z) Ut2(z) Vin = Via(2)Q(2)  Via(2)
L U0 4 QEUNE) Un(=) + Q) | | Vale) = Val2)Q(2) Vale)

From this it readily follows that all possible completions are given explicitly by the

formula

] Uni(2) Ura(2)
UQl(Z) + Q(Z)Ull(z) UQQ(Z) + Q(Z)Ulg(Z)
where ()(z) is an arbitrary polynomial matrix. In particular the smallest degree

completion (i.e the one with filters of smallest possible length) is given by U(z).

Lemma 25 (Causal [IR Completions) Given {h;}, ¢ € {0,1,..., L —1},
all causal FIR filters, they can be completed to form a causal FIR filter
bank, iff the rows of H,(z) are (left) coprime over the ring of stable proper
rational functions (or equivalently if the filters form a causal stable IIR

PR transmultiplexer).

In the ITR case also a complete parametrization is given as above. There is a cleaner
approach that gives a complete parameterization of all completions that have the same
McMillan degree. This follows directly from the Youla parameterization of controllers
given in [30].

The so called standard problem is control theory is as shown in Fig. 3.9. The
plant P is a stable proper MIMO shift-invariant system. That is, its transtfer function
P(z) is a matrix with entries from RH*. The goal is to design a compensator C,

whose transfer function C'(z) is a matrix with entries in RH*, and such that the the
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Figure 3.9: The Standard Control Problem

closed loop system is internally stable. The final design goal is to choose among all
internally stabilizing compensators, the one that minimizes some desired objective
function. Thus a parameterization of internally stabilizing controllers reduces the

control problem to an unconstrained optimization problem.

Fact 7 Let P(z) = N(2)D7'(z) and C(z) = N(z)D~'(z) left coprime
factorizations of the plant and the controller. Then C is internally stabi-

D(z) N()

N(z) D(z)

lizing iff is unimodular.

By taking the transpose one readily sees that H,(z) in the completion problem is
analogous to being given the plant and the parameterization of completions is equiv-
alent to the parameterization of internally stablizing compensators. In the controller
problem state-space formulae for the parameterization of all compensators with the
same McMillan degree are well-known. This directly leads to a parameterization of

all causal IIR (rational stable) filter bank completions [27].

3.8 Rational Sampling Rate Filter Banks

Consider the rational sampling rate filter bank problem (Fig. 3.10) where the signal
is spectrally split into nonuniform bins. The sampling rate change is different in
each branch of the analysis bank. In one dimension this problem has been studied

recently [53, 65]. Using the tools developed in Chapter 2 an algebraic reduction of
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the multidimensional rational sampling rate filter bank problem to a multidimensional

uniform sampling rate filter bank problem is given.

3.8.1 Multidimensional Rational Sampling Filter Banks

do(n)

—> TPO  — }Lo(n) | lQO — —> TQO | go(n) | lPO —»

d1(n)
— TP —> hi(n) > Q1 — — 1Q1 (> a5an) — P

dn—
Lt Pyl s () ot @ o ) Ely P

Figure 3.10: A Rational Sampling Rate Filter Bank

In Fig. 3.10 let P; and (); be left coprime such that the “sampling-feasibility”
condition, Z |P;| /|Q:| = 1, holds. This condition is not sufficient for the existence

of perfect réconstruction rational sampling rate filter banks even in one dimension
[53]. In any case, we algebraically reduce the problem to a |@Q)|-channel filter bank
problem for some appropriate (). The result is a direct generalization of the one
dimensional result in [53]. The reduction is algebraic and says nothing about the
relationship between the responses of the original and reduced filters. The reduction
is a two step procedure, one to slide the upsampler in each branch past the filter and
the downsampler and the other to then replace the downsampler by the least common
left multiple of the downsamplers (that are different from the original downsamplers

due to the first step).
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Rational Filter Bank Reduction: Transform 1

X(z) — 1M H(z) My Y ()

X(2) —Hyo(2)— 1M, My | Yo(2)
X(2) —Hyy (2)f—] ,Q2h0 M, LM, @ik [ Yo(2)
X(2) —Hyy (2)f—] ,Q2k0 LN, ™, @ik | Yo(2)

Figure 3.11: Rational Filter Bank Reduction: Steps in Transform 1

Along any branch in Fig. 3.10 if the matrices corresponding to the upsampler and
downsampler are left coprime one can transform the structure. For example, consider
the cascade: [T M|, filter, [| M) with M;, M, left coprime. This can be converted to
the following cascade: filter, delay, [| N1], [T N2] and delay with Ny, N, right coprime
and M;N; = M3yN;. An outline of this reduction is as follows (see Fig. 3.11): (1)
Use the UF identity to swap [T M;] and H(z), (2) Use the UAD identity (Lemma 5)
to slide delays introduced in Step 1 along each polyphase branch and (3) Use the
Swapping Theorem (Theorem 2) to introduce [| N;] and [T N3] along each branch.

The delays z92% in Fig. 3.11 can be absorbed into the filters Hy,(z). Moreover the
delays 221 can be thought of as implementing a generalized polyphase representation
of Y(z) with respect to Nj, the upsampler. This fact is important since the original
problem reduces to the problem of design of the modified filters in Fig. 3.12 with only
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1 Hk'o(z) ZQ2k0 lNQ TNl ZQlkO —
1 Hk-l(Z) ZQ2k1 lNQ TNl ZQlkl —
_EHk|M1—1I (Z ZQleMll_l lN2 TNI ZQ1k|M1|—1 >
— Hy,(2) LN, TNy L@k
— Hy, (2) LN, (A Sk
X(z) — L Y(2)
_"HJIC|M1|_1 (Z lNQ TNl leklMﬂ—J —

Figure 3.12: Rational Filter Bank Reduction: Transform 1
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downsamplers. So see this notice the following Aryabhatta/Bezout identity:
Ny Qq P P, 10
Ny = M, —M, 0 7

Since N; and )y are left coprime, from Theorem 1 (Eqn. 2.9b) Q1 R(M;) mod N; =
R(N1) showing that the generalized representatives in question is S(NV;) = Q1 R(M;).

Rational FB Reduction: Transform 2

X(2) —f H(z) IN —Y(z)
X(2) —f H(z) N e : IL 1L o e Yo(2)
X(2) — H(z) | 2~Nko IN ﬂ |L 1L ko Yo(2)
X(2) —{ H(z) | z~Vko Ez 1L o Yo(2)

Figure 3.13: Rational FB Reduction: Steps in Transform 2

After Transform 1 the downsampler in each branch of the original filter bank are
not the same. By making these downsamplers the same the reduction to a uniform
sampling rate filter bank would be complete. The idea is to replace [| N] by [| NL],
for some L, followed by an inverse polyphase transform corresponding to L as shown
in Fig. 3.14. The steps in transform 2 are as follows: (1) Use GPIP identity with
respect to L as in Fig. 2.10 and (2) Use DF identity to slide the delays after the
downsampler to before it. This derivation of Transform 2 is much simpler than even

corresponding result in the one dimensional case in [53].
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Figure 3.14: Rational FB Reduction: Transform 2

X(z) —f H(z) IN —Y(?)
— H(z) z~Nko 1Q TL zho ™
— H(z) =Nk 1Q TL ZM 1
L Y(2)

L~ H(z) -~ NVEag -1 1Q TL Sk -1

— H'(z) 1Q TL ZFo

— H'(z) 1Q TL P e
X(z) _. . Y(2)

7 HI(Z) 1Q TL PAlEA e
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1 1 Qo
GIPT(R) |- Yo(2)
1Py |— Ho 1Qo —Yo(2) — 1 Qo
X(2)—»
TPy 1 Hy 1 Q1> YN-1(2) [ 1 Qo
GIPT(?) |- Yn-1(2)
— 1 Qo
L 1Q
IPT(Lo)
L 1Q
GIPT(R) |, Yo(2)
- 1Q
TPT(Lo)
L 1Q
X(z)
- 1Q
TPT(Ly_1)
N Y B SN
GIPT(Py_1)|—» ¥Yn_1(2)
- 1Q
TPT(Ly_1)
L 1Q

Figure 3.15: Rational FB - Reduction to a Uniform Filter Bank
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The Reduction to a Uniform Filter Bank

Consider the original problem in Fig. 3.10. Transform 1 is applied in each branch.
This expands the i’ branch into |P;| branches giving an analysis bank with Y, |5
branches. The downsampler in each new branch is, say Q; (which is different from
Qi). Let @ be an lcrm of these matrices with ) = Q.L; for suitable matrices L;.
Apply Transform 2 in each branch. The branch corresponding to Q; expands into
|L;| branches giving a (uniform) analysis filter bank with vaz_ol | P;| | L;| branches.
Since |Li| = 1Q1/|@:| and (from Corollary 1) Q| = [PI, T/ [PIIL] = |Q.

In summary one has a () channel uniform band filter bank corresponding to the

downsampling matrix (). A final question is whether Transform 2 can be modified so
that the generalized inverse polyphase transform blocks in Fig. 3.15 can be replaced
by an ordinary IPT block. The answer is in the affirmative and is an easy consequence

of the GPIP identity.
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Chapter 4

Wavelet Theory

4.1 Bases, Frames and Generalized Frame Pairs

A set of vectors {¢;} in a separable Hilbert space H is a basis if, Vf € H, there exists
a unique set of scalars, {f;}, such that f = Z fid;. A set of vectors {¢;} is complete

if every vector f € H can be approximateél (in the Hilbert space norm) by finite
linear combinations of ¢;. A set of vectors {¢;} is minimalif it ceases to be complete
on removal of any one vector. Every basis is both minimal and complete. A basis
is bounded if sup; ||¢;]| and inf; ||¢;|| are bounded above and below respectively by
positive constants. For example, an orthonormal basis is bounded above and below
by one. A wide class of bounded bases called Riesz bases (or biorthogonal bases) can
be generated from a orthonormal basis. To define Riesz bases we need the notion
of a bounded linear operator. An operator T' : 'Hy — Hy is bounded it Vf € Hy,
T f]| < Al f|| for some A. The least such A is called the norm of 7', ||T'||. If H; and
H, are finite dimensional, 7' is a matrix, and ||7']| is just the maximum singular value
of T' (square root of the maximum eigenvalue of T*T', where T™ is the (conjugate)

transpose of T').

Definition 9 If 7' : H — H is bounded and has a bounded inverse 7!,
then any set {T'e;} o {#;}, where {e;} is an orthonormal basis, is said

to be a Riesz basis.



116

Every Riesz basis is bounded. Since ||¢;]| = ||T¢;ll < ||T|| llejll = ||T|| and 1 = ||¢;|| =
1772 ll < T[Nl 5]l, we have

< inf ||¢;|| < Al < ||
T S sl < supllsl < T

Though most useful (familiar) bounded bases are Riesz bases, there do exist bounded
bases that are not Riesz bases [96]. The adjoint operator 7™ is defined by (f,Tg) =
(T*f,q),¥f,g € H. T* satisfies the following properties [28]: ||T'|| = ||T*]| and (if

T is invertible) (T~1)* = (T*)~!. Hence for a Riesz basis there exists a unique dual

Riesz basis, {q;j}, defined by qgj = (T%)te;.
<<zi,¢>j> = (1) e, Te;) = {e;, T Te;) = 8(i — ) (4.1)

Because of Eqn. 4.1 Riesz bases are also known as biorthogonal bases. Expansion
coefficients in Riesz bases are easily evaluated since (from Eqn. 4.1)

f=z<fa</~5j> 6= (f.4) 95 (4.2)

j j

The vector qgj can be characterized geometrically: qgj is that vector in the orthogonal
complement of Span {¢; | ¢ # j} scaled so that <g2>]-, ¢]> = 1. If H is finite dimensional
every non-singular square matrix 7' is bounded with a bounded inverse (in fact the
bounds are the maximum and minimum singular values of 7'). Hence there is a one-
to-one correspondence between invertible square matrices and Riesz bases. One can
read off {¢;} and {éj} from the matrix T": ; is the j%* column of T, and qf;j is the 5t
column of (T~1)*. Moreover, from Eqn. 4.2, Z q;j ) é; = I just says that 7717 = I!

J
In finite dimensions every basis is a Riesz basis.

In finite dimensions given a non-minimal set of vectors one can always throw out
some of them to get a basis. In infinite dimensions given a complete but non-minimal
(redundant) set of vectors, one cannot always throw out some of them and obtain a
basis (minimal set). One encounters sets of vectors that are complete, but not minimal

leading to the notion of frames.
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Definition 10 A set {¢;} forms a frame in a separable Hilbert space H
if there exist constants A, B > 0, such that Vf € H,

AJlfIF < Z [(F el < BISIP (4.3)

The lower bound ensures that {¢;} is complete, since if f is orthogonal to {¢;} it
implies that A|[f|| = 0, or equivalently that f = 0. Define the self-adjoint frame
operator T : 'H — H given by T f = Z (f,¢;) ¢; The upper and lower bounds in

j
Eqn. 4.3 imply that 7" is invertible and that both 7" and T~! are bounded:

AN <ITAI<BIfl @ A<ITI<Be g < |77 <7 (44)
The upper bound follows from
ITFII* = (LT =Y (f 6a) (6, T)
< {Z| (£, 6n)] } {Z| (60, T1)| }
— BB ITS = BIANTS (45)
and the lower bound from (see Equ. 4.3)
AW < (5.0) = S 1ol < ITANA < TN 6

Therefore A < ||T'|| < B and T' is invertible. Eqn 4.5 can be applied to the vector
T=1f to give ||f]| < BT f|| < B|IT7Y ||f|| and Eqn. 4.6 can be applied to the
vector T f to give [T f|| < L |If]l. AlsoVf e H

f=TT7"f= Z (T7'F,65) 65 = Z<f,T '6;) ¢ (4.7)

It qﬁj Lt - '¢;, Eqn. 4.7 looks like the expansion of f in a Riesz basis. Hence {43]}
is called the dual frame. Indeed {qb]} is a frame since (from Eqn. 4.4) for all f € H,

S < 32| (1.4:)

Lo
<
<1l
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The frame operator for the dual frame is 771,

> <f7 <Z>]> 6; = Y (LT T™'¢;

J J

= 71

J

= (T =T

> _(T7'1,4) %']

It qgj = ¢; for all j the frame is said to be a tight frame. A tight frame is to an
orthonormal basis what a frame is to a Riesz basis (recall that a Riesz basis with
self-dual vectors, i.e., qgj = ¢, is an orthonormal basis).

In signal analysis one is interested in the representation of signals. Hence Eqn. 4.7,
which gives an expansion of a signal, is more natural than Eqn. 4.3 (which precisely
defines a frame). One could take Eqn. 4.7 as the definition of a frame, dual frame
pair for H. The disadvantage with this approach is that for a fixed frame, the dual
pair may not be unique (see Example 8). However, the construction of the dual
frame from Eqn. 4.3 by inversion of the frame operator is unique. The particular
dual frame constructed by inversion of the frame operator has an extremal property.
It {q;]} is any dual frame, {qzj} is the dual frame obtained by inversion of the frame

operator and q;]- = qgj + ¢;, then, Z e; ){ ¢; is the zero operator. We now introduce

the notion of a generalized frame ];ai'r’, which is useful in the study of the action of
PR filter banks on separable Hilbert spaces. Generalized frame pairs have two sets
of vectors spanning different Hilbert spaces, with the additional property that from
the projection of a vector in one space onto the other, one can recover the vector. In
a sense, the pair of Hilbert spaces are at an angle with respect to each other (i.e not

perpendicular).

Definition 11 The (bounded) sets of vectors ({qﬁ]} , {q%}) is said to
be a generalized frame pair in a separable Hilbert space X if Vf € H,
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F=3"(F.0) ¢ and Vi € H [ =3 (£,6;) &y, where H = Span {4}
and H = Span {(Zy}

In particular if H = H, {#;} forms a frame for H, and hence the terminology general-
ized frame pair. It turns out that PR filter banks give a natural change of coordinates
for separable Hilbert spaces with generalized frame pairs. A generalized frame pair

is said to span the pair of spaces H and H. A generalized frame pair is said to be a

generalized Riesz basis pair if <¢>Z, (ZJ> =6(1 — 7).

Example 8 (Frame) Let H = IR?. The vectors {1, ¢2, ¢3} given by

1 -1 0
def
{451 ¢z ¢’3} =
0 -1 1
form a frame with frame operator
1 0
1 -1 0 2 1
zj: SR I RS 12
0 1

A dual frame is given by

2/3 —1/3 —1/3

$1 b ¢3}:T_1{¢1 2 ¢s | = —1/3 —1/3  2/3

The frame bounds (extremal eigenvalues 7') are A = 1 and B = 3. Also

1 0
N 2/3 —1/3 —1/3 10
i)\ Pj = -1 —-11]=
;qﬁ e —1/3 —1/3  2/3 . 0 1

Another dual frame (there are infinitely many of them) is given by

1| 5/6 —1/6 —1/6
—2/3 —2/3 1/3

O

~

AN

[N}

©-
|
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In general if A is an m x n matrix (m < n) of rank m with no trivial columns, the
columns of A form a frame. The columns of the transpose of any right inverse of A
(with no trivial columns) form a dual frame. The frame operator is given by AA*,
and the unique dual frame obtained by inversion of the frame operator is given by
the columns of (AA*)*A. This dual is related to the minimum norm solution of the
linear equation A*x = y, which is = (AA*)"*Ay. This extremal property is always
exhibited by the particular dual frame {T7'¢;}.

Every right-invertible matrix (with non-trivial columns) gives rise to a frame. In
particular right-unitary matrices are right invertible and they give rise to all possible

tight frames.

Example 9 (Tight Frame) For R? the set of vectors {¢;} given by

1/2 /2 —1/2 —1/2
1 92 3 Pa = /2 —-1/2  1/2 —1/2
1/v2 0 0 1/Vv2

form a tight frame with frame bounds A = B = 1 since the frame operator

/2 1/2 1/V2
/2 1/2 =1/2 —1/2 100
1/2 —1/2 0
T = /2 —1/2  1/2 —1/2 =10 10
—1/2  1/2 0
1/v/2 0 0 1/v2 001
—1/2 —1/2 1/V2

If {¢;} forms a tight frame and ||¢;||* = L then o > 1 measures the redundancy of
the tight frame relative to an orthonormal basis. If ¢; = \/ag¢;, ||¢;|| = 1 and

f= EZU,&M%-

«

j
Consider the construction of such tight frames in IR”™ with n vectors ¢;. In some coor-

dinate system they are described by an m x n right unitary matrix. Right unitariness



