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imposes (m + 1)m/2 constraints and the fact that ||¢;|| is a constant imposes n — 1
constraints. Since the sum of the squares of the entries of the matrix is m, a = m/n.
Given such a tight frame every possible rotation in R™ of the frame vectors also gives
a tight frame (with constant norm frame vectors). Therefore (modulo rotations and
reflections about the origin - any vector p; can be negated) all such tight frames are
characterized by a manifold of dimension mn—m(m+1)/2—(n—1)—m(m—1)/2 =
(m—1)(n—m—1). When n = m+1 the there is only one solution (modulo rotations
and reflections) as n — m — 1 = 0. In this case {p;} is given by the n = m + 1

vertices of a regular simplex with edges of length and whose centroid at the

2n+2
origin. For example when m = 2 the vectors {¢;} are the vertices of an equilateral
triangle with edges of length /3, and when m = 3 they are the vertices of a regular
tetrahedron with edges of length \/g. For arbitrary m and n there seems to be no
obvious characterization of the solution manifold. However when m = 2 solutions for

arbitrary n are given by

cos f3; e

;= , for je{l,2,...,n} where Ze”ﬁf:().

sin j3; j=1

Example 10 (Generalized Frame Pair) Let

1 -1 0 0 0 0

def ~ ~ ~ def
(60 6 b |E 1 11| and [ 4 b &Y 1y3 13 13
1 -1 0 1/2 —1/2 0

The pair ({qﬁj} , {éj}) forms a generalized frame pair for H and H. The operator

1 =1 0|0 1/3 172 00 1
=11 1 1]]01/3 —1/2|=]010],
! 1 -1 0|0 1/3 0 00 1
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is the identity operator on H since

0 01 1 -1 0 1 -1 0
010 1 1 1 |=|1 11
0 01 1 -1 0 1 -1 0

The transpose of this operator is the identity operator on H. This generalized frame

pair is not a generalized Riesz basis pair because the matrix of inner products <<Z>Z, ¢J>

is given by
0 1/3 1/2 1 -1 0 5/6 —1/6 1/3
0 1/3 —1/2 I 1 1|=]|-1/6 5/6 1/3
0 1/3 0 1 -1 0 /3  1/3 1/3

Example 11 (Generalized Riesz Basis Pair) Let

- 10 R -1 1
{¢’1 ¢’2} = L1 and {¢’1,¢’2}— Lo
-1 1 -1 1

10 -1 1 -1
. -1 1 -1
d b= 11 = 0o 1 0
n 1 0 1
-1 1 2 -1 2
is the identity operator on H since
-1 1 -1 10 10
0o 1 0 11 |= 11

DO
|
[
DO
|
[
—_
|
—_
—_
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The transpose is verified to be the identity operator on H. Also note that the matrix
of inner products (<<Z>Z, ¢]>) is given by

10

-1 1 -1 10
1 1] =

1 0 1 0 1
-1 1

If J is a subset of the index set of a Riesz basis, {qﬁj}jeJ and {q%} form a gener-
jed
alized Riesz basis pair.

4.2 Hilbert Space Decomposition/Recomposition Theorems

There is a natural connection between PR filter banks and transmultiplexers and
change of bases for separable Hilbert spaces. Let {¢, } be a set of vectors in a separable

Hilbert space X. For FIR sequences {h;} define the vectors
Yin = Y hi( Mk —n)g,. (4.8)

If Span {¢,} = H, the sequences {h;} specify H; = Span {1; x} (which are subspaces
of H). What are the conditions on {k;} for H; to be a decomposition of H? When
is such a decomposition orthogonal? Similarly given FIR sequences {g;} and vectors

{ir} C &, we may define the vectors
b= giln— Mk)i . (4.9)
ik

This specifies H = Span {¢,} contained in the direct sum of H;. What are the
conditions on {g;} so that H is a direct sum of H;? If the spaces H; are orthogonal
and {t; 1} is an orthonormal basis for H;, when is {¢,} is an orthogonal basis for H?

This section answers these and related questions.

Theorem 21 (Decomposition Theorem) Let {¢,} C X and let Span {¢,} =
H. Let {tx}, ¢ € {0,1,...,L — 1}, be defined as in Eqn. 4.8 and let
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H; = Span{t;r}. Then H; is a decomposition of H with {¢,} recover-
able from {¢; x} as in Eqn. 4.9 (for arbitrary {¢,}) iff {h;} and {g¢;} form
analysis/synthesis banks of an FIR PR filter bank.

H=Ho@Hy...5Hp_1. (4.10)

Proof: Eqn. 4.9 follows from the filter bank PR property because

DD wiln = Mk = ZZZgzn—Mk (Mk— 1)y

= lezgzn—mﬁ Mk—l)]qﬁ
= zl:(sn—msl:

Conversely Eqn. 4.9 implies

Z [ZZgz n— Mk)h Mk—l)] é1,

and by choosing {¢,} to be an orthonormal system the filter bank PR property
(Eqn. 3.8) follows. O
For a decomposition the number of constituent spaces L must be lower bounded by

M in Eqn. 4.8.

Theorem 22 (Recomposition Theorem) Let {11} C X and let Span {¢; 1} =
H;. Define {¢,,} as in Eqn. 4.9 and let H = Span {¢,}. Then H is a re-
composition of H; with {; 1} recoverable from {¢,} (for arbitrary {t;1})
as in Eqn. 4.8 iff {h;} and ¢; form analysis/synthesis filters of an FIR PR

transmultiplexer.

Proof: Eqn. 4.8 follows from the transmultiplexer PR property because

Zh (Mk —n)¢ ZZZh (Mk —n)g;(n — MU)y;,
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= ZZ [Z hi(Mk —n)g;j(n — Ml)] Vi
= ZZ L_J)]¢Jl_¢

Conversely Eqn. 4.8 implies

Vi = Z > [Z hi(Mk —n)g;(n — Ml)] bit,

and by choosing {t; 1 } to be an orthonormal system the transmultiplexer PR property
(Eqn. 3.8) follows. O
For a recomposition the number of constituent spaces L must be upper bounded by

M in Eqn. 4.9.

Theorem 23 (Orthogonal Decomposition/Recomposition) If {¢,} is an
orthonormal basis for H then {i;;} forms an orthonormal basis for H;
(as defined in Theorem 21) and H; L H;,¢ # j iff {h;} forms analysis
filters of an M channel unitary transmultiplexer. Also, if {t;;} forms
an orthonormal basis for H; and H; L Hj,© # j, then {¢,} forms an
orthonormal basis for H (as defined in Theorem 22) iff {g;} forms the

synthesis filters of an M channel unitary filter bank.

Proof: Let (¢, ¢,) = 6(m —n). Then

<Zh (Mk — m¢m,2h (M1 —n)¢ >
= ZZh (Mk —m)h; (M1 —n) (¢, )

= ZZhZ (Mk —m)h;(Ml—n)é(m —n)
= 5zk—ml)5(i—j)

(tik Vi)

iff {h;} forms a unitary transmultiplexer. However Theorem 21 implies {k;} and

{gi} must form a PR filter bank. This is possible iff L = M, and g;(n) = h;(—n).
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Conversely let (¢, x, ;1) = 6(k — 1)6(¢ — 7). Then

() = <zzgzm M 3t Mwﬂ>
= ZZ;Z% m — Mk) gy-<n = M) (i, 32)]
ST o — Mg n — M)k~ (i =)
= zt:i::gi(m_Mk)gi(n_Mk):5(7”_")

iff {g;} forms the synthesis filters of a unitary filter bank. However, from Theorem 22,
{g:} must form synthesis filters of a PR transmultiplexer. Therefore L = M and
hi(n) = gi(—n). =
In summary, decomposition requires the filter bank PR property, recomposition re-
quires the transmultiplexer PR property, and either in conjunction with orthogonality
requires the M channel (i.e L = M) unitary PR property.

The PR properties give a more structured decomposition/recomposition of sep-
arable Hilbert spaces than discussed until now. Given {&n} let Span {gi)n} =
Define

Vik =Y giln — Mk)g. (4.11)

Then H; = Span {1/3219} forms a decomposition of H iff {¢;} forms synthesis filters of
a PR filter bank (from Lemma 6 we can interchange analysis and synthesis filters).

Moreover
=33 hi(Mk = n)i. (4.12)
ik

The analysis filters {k;} of this PR filter bank may be used on another set of functions
{én} to give a decomposition of Span {¢,} = H. These two sets of functions {¢,}
and {(Z)n} could be arbitrary. Assume that they are such that the operators I =
Z én ) ¢>n I= Z én ) { ¢, are well defined. I will be called the projex operator of

the pair ({ } {qbn}), and similarly, I, the projex operator of ({¢n}, {qﬁn})
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Theorem 24 (Main Decomposition Theorem) Given {¢,}, {q?n} Cc X,
and a PR filter bank with analysis and synthesis filters {h;} and {g;},
t€40,1,...,L—1}, let {¢;x} and {@/Nhk} be defined as in Eqn. 4.8 and
Eqn. 4.11. Then there is a natural decomposition of Span {¢,} = H, and
Span {q;n} = H with a corresponding decomposition of projex operators.

I —

=
~
=

Z Uik ) l/;zk = I;
Lk ;

o
L

]:Z¢n><<z’n

k3

Il
=}
o
Il
=}

and

j:Z§Zn><¢n: ZQZNCM@Z)Z,]C =

T
—
o
o]
L
T
—
R

.

k3

Il
=]

=0

Proof: The decomposition of the spaces H and H follow immediately from Theorem 21.
As for the projex operators from the filter bank PR property

L-1

ko= 3 Y )b
= TS M D6 )Y il — MBS

= 3N o) dnlbln—m) = 6 ) u=1.

The decomposition of I follows similarly. a

We now give the corresponding recomposition theorem.

Theorem 25 (Main Recomposition Theorem) Given {; 1}, {%Z)zk} cXx
fori € {0,1,...,L — 1}, and a PR filter bank with analysis and synthesis
filters {h;} and {g¢;}, let {¢,} and {qzn} be defined as in Eqn. 4.9 and
Eqn. 4.12. Then there is a natural recomposition of Span {t;} = H; and



and

]N:Zénﬂgbn:

.

> i )ik

=0 L
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Proof: The recomposition of spaces follows directly from Theorem 22. Also from the

transmultiplexer PR property

ZZZh ME —n); ) ZZgzn—Mm);/)]m

= Z d)zn I7Z)]’m [Zh Mk—n)g](n—Mm)

2,7,k,m

= Z ,(/)Zn

2,7,k,m
L-1

1=0

Theorem 26 (Main Orthogonal Decomposition/Recomposition)

Vim [0(2 — J)6(n — m)]

Sl £

It {¢n}

and {&n} form a biorthogonal system then the decomposition (described

in Theorem 24 and Theorem 25) is biorthogonal iff {h;} and {¢;} form

analysis and synthesis filters of an M channel filter bank (or transmulti-

plexer).

Proof: Let <¢>m,q§n> = 6(m —n). Then

<1/%',k, l/;j,l> = <Z hi( Mk = m)m, Y gi(n — Ml)i’n>
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= 33 WMk = m)gi (= MU+ 1) (G, 60
= Y hi(Mk—n)g;(n — MI)

= Y hi(n)g;(M(k = 1) = n) = 6(i — j)8(k - 1)

iff {h;} and {g:} form a PR transmultiplexer. Theorem 21, however requires that
{h;} and {g;} form a PR filter bank. Therefore they must form an M channel PR
filter bank. H; L H;,i # j, and moreover, {t;;} and {m} forms a biorthogonal
system. Conversely let (¢, 4, %;,) = 8(i — j)8(k — ). Then

(60 6m) = <Zzgi<n—Mzm-,l,zzwk—m)r@,&

= 3 (buartie) lgiln — MOR;(ME = m)]

0,5,k1

= Z Zgz(n — ME)hi(Mk —m) = 6(n —m),

iff {h;} and {g;} form a PR transmultiplexer. From Theorem 22 these sequences must

form a PR filter bank and hence the result. O

Remarks: Notice that in the above theorems {¢,} and {&n} could be arbitrary.

Therefore, we have a number of consequences that must be noted.

1. Let ({4}, {&k}) form a (generalized) frame pair for (M, H). If {A;} and {g;}
forms a PR filter bank then from Theorem 24 (decomposition of projex oper-
ators), ({i}, {fi}) also forms a (generalized) frame, dual frame pair for
(H,H). It may not be the case that H; L H;,7 # j.

2. Let ({¢n}, {qén}) form a (generalized) Riesz basis pair for (H, H) It {h:)
and {g;} form an M-channel PR filter bank from Theorem 26 the decomposi-
tion gives (generalized) Riess basis pairs ({ti}, {4 }) for (H:, H;) with an
additional biorthogonality property: H; L Fj,i # 3.
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3. Let {¢r} be a tight frame for H. If {h;} forms a unitary filter bank, {v,; x} also
forms a tight frame for H. The decomposition may not be orthogonal. One

may not have H; L H;,1 # j.

4. Let {¢,} be an orthonormal basis for H. If {h;} forms an M channel unitary
filter bank, the decomposition is orthogonal and {t;;} forms an orthonormal

basis for H;.

5. Let ({¥ix}, {zﬁzk}) be a (generalized) frame pair for (H“'F(z) If {h;} and {g;}
form a PR transmultiplexer then from Theorem 25 (recomposition of projex

operators), ({¢n}, {qzn}) forms a (generalized) frame pair for (H, H).

6. If ({vir}, {I/N)Zk}), is a (generalized) Riesz basis for pair for (H;, 7:(2), and H; L
H;, for i # j, then if {h;} and {g;} form an M-channel PR transmultiplexer
(filter bank), then ({¢,}, {qzn} forms a (generalized) Riesz basis pair for (H, H).

7. If {¢; 1} is a tight frame for H; and {h;} forms a unitary filter bank, then {¢,}
forms a tight frame for H.

8. Let {¢;x} be a tight frame for ‘H; and let H; L H;,¢ # 5. If {h;} forms an M

channel unitary filter bank, then {¢, } forms an orthonormal basis for H.

The preceding discussion gives a rich family of ways to decompose a separable
Hilbert space. No assumptions are made on the dimension of the analysis or synthesis
bank; all results hold in the multidimensional case also. The only difference is that
the functions {¢,}, etc. are indexed by n € Z¢, rather than n € Z. Consider an
M channel PR unitary filter bank. This gives an orthonormal decomposition of a
Hilbert space H equipped with an orthonormal basis into M orthogonal subspaces
each equipped with an orthonormal basis. By changing the filters {h;} one obtains
a rich family of decompositions. One could further decompose each of the subspaces
H; using a variety of unitary FIR filter banks (with probably a different choice of

of the factor M). Again, sets of spaces (leaves of this tree decomposition) could be
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recombined using a unitary synthesis filter bank. Moreover, the synthesis filter bank

could be different from any of the analysis filter banks.

4.3 Multiplicity M Wavelet Tight Frames

Wavelet orthonormal bases have been constructed and studied extensively from both
mathematical and signal processing points of view [21, 56, 57, 19, 15, 89, 90, 19, 73].
Wavelets overcome some of the shortcomings of Short-Time Fourier decompositions
[61, 35, 90, 22, 40, 33], by decomposing a signal into channels that have the same
bandwidth on a logarithmic scale. High frequency channels have wide bandwidth and
low frequency channels have narrow bandwidth. This is well adapted for the anal-
ysis of sharp transients (spikes, impulses etc.,) submerged in low frequency ambient
signals. However, if one has to resolve high frequency signals with relatively narrow
bandwidth (like a long RF pulse), then the relative narrow bandwidth, makes the
wavelet decomposition unsuitable. In this section we propose a solution to this prob-
lem, namely multiplicity M wavelet tight frames (WTFs). Multiplicity M wavelet
theory is a compromise between the short-time fourier transform, and the multiplicity
2 wavelet transform (octave band frequency decomposition). Multiplicity M wavelets
have been constructed independently by Heller, Wells and Resnikoff [43] and Zou and
Tewfik [98] (called M-band wavelets). This section derives a complete parameteriza-
tion of all compactly supported multiplicity M WTFs. Multiplicity M wavelets give
the required flexibility to multiplicity 2 wavelet decompositions.

Our development of multiplicity M wavelets will parallel the multiplicity 2 con-
struction of Daubechies [21]. As will be apparent from the development, filter bank

theory plays a fundamental role in multiplicity M wavelet theory.

Definition 12 A sequence hg(n) is called a multiplicity M, unitary

scaling vector if it satisfies the following linear and quadratic constraints:

ho(k) = VM (4.13)
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and

> ho(k)ho(k + M1) = 6(1). (4.14)

Eqn. 4.14 is precisely the unitary transmultiplexer PR property corresponding to
ho(k) (considered as a filter in a unitary transmultiplexer). Moreover, the linear
constraint ensures that hg corresponds to a lowpass filter. This observation leads to
a complete parameterization of multiplicity M finite length unitary scaling vectors.
Let ho(n) = 0 for n < 0 and h(0) # 0. Also (by padding with zeros if necessary) let
length of hg be N = M K.

M-1
Lemma 26 For hg of length N = MK let Hy(z) = Z 2R Ho 1 (2M)
k=0
and let ) ) ) )
H()’l(Z) 1
HQQ(Z) 1 1

ho(z) = and e=\/—M

HO,M—1(Z) 1

Then there exist K — 1 unit norm vectors v; such that

ho(z) = { 1__[ [] — 'vivg‘r + z_lviv;‘r] } e. (4.15)

=1

Moreover, the following equipartition property also holds:

Z ho(Mk +m)=vM for all m. (4.16)
&

Proof: From Eqn. 4.14 the unitary scaling vector may be considered to be an analysis

filter in a unitary FIR filter bank. Clearly, Hy ;(z) is the j* (dual first-orthant)
M-1

polyphase component of Hg(z). Therefore (from Eqn. 3.8) Z Hy (27 ) Ho;(2) = 1.
=0

Now hg(z) is a polynomial vector of degree K — 1 unitary on the unit circle. From

Fact 4, ho(z) is parameterized by K — 1 unit norm Householder parameters v;, ¢ €
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{1,..., K — 1}, and the unit vector vg. Also

K-1
hy(z) = { H [] — ’UZ"UZ-T -+ Z_I‘UZ"UZ-T] } Vg.

=1

From the linear constraint Eqn. 4.13,

VM =3 ho(k) = Ho(2)l.., = [Z Z_kﬂo,k(z)] =Y Hop(z)om.  (417)

k

7

Since, for all 7, [] — vl + 2_1vivT] =1, ho(1) = vg and VM = Z Hoj(z)].=1 =
k

Z(vo)k = 1, where (vo) is the k" component of vy € RM. The unique unit vector

k
vo that solves this equation is e. a

Remark: Therefore a length N = MK unitary scaling vector is parameterized by
K —1 unitary vectors v; € RM, and therefore has (M —1)(K — 1) degrees of freedom.
Also from Eqn. 4.16 all the (generalized) polyphase components of kg have the same
frequency response at w = 0.

The importance of unitary scaling vectors in wavelet theory stems from the fact
that they uniquely determine the multiresolution analysis that gives rise to a multi-

plicity M WTF. However, wavelets and hence the WTF, is not uniquely determined
M -1

by the unitary scaling vector. The wavelets are parameterized by precisely
2

parameters. We now state and prove this result.

Theorem 27 (Wavelet Tight Frames Theorem) Given a length N =
M K, multiplicity M, unitary scaling vector hg, there exists a unique, com-
pactly supported scaling function 1o(t) € L*(IR) with support in [0, %),

determined by the scaling recursion,
Yo(t) = VMY~ hi(k)po(Mt — k). (4.18)
k

Moreover, there exist (M —1) unitary wavelet vectors h;, 0 € {1,..., M — 1},
all of the same length N, that satisfy the equation,

> hilk)hi(k + M1) = 6(1)6(i — j). (4.19)
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M -1
The wavelet vectors are non-unique and parameterized by pa-
2
rameters If for each wavelet vector we define the corresponding wavelet,

¥;(t), compactly supported in [0, ]\]Z L], and given by,
= VM Z hi(k)bo(Mt — k), (4.20)
then, {t; ;x(t)} defined by

Vik(t) = M2 (Mt — k), (4.21)

forms a tight frame for L*(IR). In other words, for all f € L*(R),

ZZ Fotbig(0) Wi (1) (4.22)

i=1 gk
Also
M-1 o
Z (f3%0,04(1)) Yo,0,k(t) +ZZZ (f, Vi gw(t)) ije(t). (4.23)
k =1 7=1 k%

Proof: The proof is similar to that for the multiplicity 2 case in [57]. The difficulty
in the multiplicity M case is in the construction of the wavelet vectors h;. The outline

of the proof is as follows:
1. tg(t) is constructed and shown to be in L*(IR).
2. The wavelet vectors are constructed.
3. The functions {t;;x} is shown to be a tight frame.

From Eqn. 4.18 () is fixed point of the operator T' defined by

= VMY ho(k)f(Mt — k).
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Let ¥§(¢), the characteristic function of [0, 1), initialize the recursion YO = T
This recursion converges to the scaling function. At each stage this recursion preserves

both the integral and energy of 1/)8:

/R;bg(t)dtzl and |||, = 1. (4.24)

Both results follow by induction. Since ¥{(t) is the characteristic function of [0, 1),
Eqn. 4.24 is true for j = 0. By induction on j

/ Yoty dt = /R VMY ho(k)a(Mt — k) dt

_ ﬁ;ho(k) [/R;bé(t—k)dt]
_ ﬁ;ho(k)ﬂ

and

(et (1), 5 (t — k)

= <\/_Zh0 Vb (Mt — n), \/_Zho (Dl (Mt — Mk—l)>

= Y ho(n)ho(l) [M / DY (Mt — ) (Mt — Mk — 1) dt]

= Y ha(n)ho(1)8(n — Mk — 1) Z ho(n)ho(n — Mk) = 6(k).

Since HI/J(JJH =1, 1/)(]) is a sequence in the unit ball in L*(IR). By the weak compactness
of the unit ball [28], a subsequence of 1/)6 converges weakly to some function ¢ € L*(IR).
Since the sequence of Fourier transforms, zz;é(w), converges uniformly on compact
subsets, I/Jg(t), converges uniquely to the tempered distribution tg(¢) that satisfies
Eqn. 4.18.

Pat(w) = (%) [VLMHO (%)} . (4.25)
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Since Hy(w) is a trigonometric polynomial and Hg(0) = VM, the sequence @/A)é(w)

converges pointwise uniformly on compact subsets to the function

do(w) =[] [ﬁﬂo(%)] . (4.26)

i>1

Let C = max 1/38(@)

for |w| < 1. Let A = max[ﬁ |Ho(w)|] <1 by Eqn. 4.15. For
any w, o] > 1,

MUeam(@)] <, < pyltogn(@)]

and therefore from Eqn. 4.25

;/)é(w)‘ < O Alogn(@)]

thus showing that g/?é are bounded by polynomial growth for large w. In the time
domain ¢é(t), converges to a unique distribution () that satisfies Eqn. 4.18. Since
the distribution topology is weaker than the weak topology in L*(IR) [46], vo(t) = g(¢)
and therefore ¥y(t) € L*(R).

We now show that ¢g(t) is compactly supported in [0, %] If Supp {1/)6} = [0,a;)
it is easy to see that a;41 = (a; + N — 1)/M and hence

, Mi—1
aj:M_]<1+(N—1)M_1>.

N _ N-1
Therefore as j—o0, a;— 3777

The scaling vector determines the unitary vector hg in Eqn. 4.15. This unitary
vector polynomial can be completed to give a unitary matrix polynomial - one just
completes the unitary vector e to an orthogonal matrix V4 by a Gram-Schmidt process.
The resulting unitary matrix may be considered to be the polyphase component
matrix of the filters h;(n) of a unitary transmultiplexer. These filters satisfy Eqn. 4.19

and are the wavelet vectors. By construction all of then have length N = M K. The

N—l]‘

wavelets defined in Eqn. 4.20 also have compact support in [0, $7=



137

For f € L*(IR), and fixed ¢ and j, let I; ; denote the projex operator corresponding
to ({sbik}, {¥ik})-
Ly =Y i Vi
k

Since ¥;(t) is compactly supported, these operators are well defined for all f € L*(IR).
Indeed, if L = (%W , then, {®¥; ; Lm+x(t)/ ||¥i]|} is an orthonormal family for any fixed

k=0,1,2,...,L — 1 and hence by Bessel inequality [74],

1 FIL< L1l A1 (4.27)

Moreover, the projex operators are uniformly bounded in j. Since {k;} constitutes an
M-channel unitary transmultiplexer, it also constitutes an M-channel unitary filter

bank and therefore from Theorem 24
-1
Ioj=Y I (4.28)
=0

By telescoping one concludes that, for a fixed J,

Now it suffices to show that I, ; approximates the identity operator in L*(IR).
lim fo;f = f.
]—)OO

One expects this since g ;o approaches the Dirac measure at the origin as 3 — oo.
From Eqn. 4.27 it suffices to show that ||y ;f — f||, = 0, for a dense subset of L*(IR).
For continuous f with compact support, if j and k& together approach infinity such

that M~7k — ¢, then,
lim (ox, f(2)) = f(2)

7 k—o0
uniformly in z. We will now show that M~=7/24q ; (1) forms a partition of unity and

this would imply that the result is true. In the construction of ¥ (t), we started with
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¥9(t), the characteristic function of [0,1). Clearly, ¥0(¢) forms a partition of unity

since
Ut +k) =1 (4.29)
k
Now by induction, we have for any j,

STwdt+ k) = VYN ho(1ywd (Mt — Mk — 1), (4.30)

Changing variables and interchanging the order of summation and invoking Eqn. 4.16

in Lemma 26 we get

Sowdt+k) = VMY Y ho(Mk— 15T (Mt +1)
k koo
- \/MZ[Z ho(ME — U)]d ™ (Mt + 1)
= Zzp (Mt +1) = (4.31)
and therefore M~/ . (1) forms a partition of unity. O
Multiplicity M, compactly supported WTFs have a natural multiresolution analy-
sis structure associated with them. It essentially comes from the filter bank structure

that leads to Eqn. 4.28. If we define the spaces, W, ; = Span{t; i}, then, for
feL*R), I, ;f € W;;, and in particular for f € W ;

M-1
F=Tloif =Y Lijaf
=0
leading to a decomposition
Wo,; =Wo; 1 &Wijq...8 Wy (4.32)

Also since I, ; approaches the identity operator on L*(IR) lim Wo,; = L*(R). Similarly
lim Wy ; = {0}. Hence we have a multiresolution analysm of L?*(R) with a chain of
j——00

closed subspaces:

{0} C...Wy_1 CWooC Wpyy...C L*(R).
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In general, the spaces W;; for fixed j are not mutually orthogonal. But when the
WTF is an orthonormal basis, then W;; L Wy ; ¢ # k and ¢,k € {1,2,...,M —1}.
Notice that the multiresolution analysis is determined only by W, ;, i.e the scaling
function and not by the wavelets.

Given a unitary filter bank with a “DC” condition (Eqn. 4.13), there exists a
unique WTF. Given a scaling vector (and not the wavelet vectors) there is a unique

multiresolution analysis associated with a multiplicity M WTF. The WTF, however is

determined by B degrees of freedom that are required to specity the wavelet
2

vectors (of the same McMillan degree as the scaling vector).

4.3.1 Characterization of Orthonormality for a WTF

When is a WTF an orthonormal basis? Stated differently, what are the conditions
on the scaling vector such that the WTF constructed from it forms an ON basis? It
is relatively easy to see that if the scaling function and its integer translates form an
orthonormal system, then the WTF is an ON basis. First notice that

/R@Z’i(t)lbj(t —k)ydt = ) hi(m)h;(n) [M/R%(Mt — m)o(Mt —n — Mk) dt

= Y hi(n+ Mk)h;(n) = 6(i — j)é(k). (4.33)
and therefore W,y L W, for © # 7. Moreover W, is equipped with ON basis. For
any .J one readily sees that W; ; L W ;, for ¢ # j and hence the result follows.

When M = 2, Cohen [19] and Lawton [56] have independently obtained charac-
terizations of the scaling vector such that the scaling function and its translates form

an orthonormal system. We now extend these results to the multiplicity M case. Let

a(n) = /Rl/Jo(t)l/)o(t —n)dt. (4.34)

By taking Fourier transforms on both sides, a(n) = 6(n) iff

2.

k

'zﬁo(w +27k)| = L. (4.35)

‘ 2




any j, and w € I', from Eqn. 4.36 (since

Definition 13 A compact set I' is congruent to [—=, 7](mod2x), if the
measure of ' is 27 and for every point w € [—7, 7|, there exists an n € Z

such that w4+ 27xn € T.

Theorem 28 The following conditions are equivalent:

. () and its translates are orthonormal (i.e a(n) = 6(n)).

2. There exists I' congruent to [—=, 7|, containing a neighborhood of

zero such for w € I,

A

bolw) > C > 0 (4.36)

3. There exists I' (as in 2) such that for w € T,

.o w
inf inf —
i>0wel Mo

1
vl

. a(n) = 6(n) is the unique solution of the equation

)‘ =B >0 (4.37)

(4.38)

a(k) =Y a(Mk+n)

n

> ho(m)ho(n + m)
. A(w) =1 is the unique solution of the equation

< 2 ‘
H, <L;V‘[2”k> A <CL 2“) . (4.39)

M
. There is no non-trivial cycle II of the map w — Mw(mod 27), such

that Ho(w) =1, for all w € 1I.

M-1

A= 3

k=0

Ho(w)

NeTi < 1 and @Zzo(w) <1

J
1=

\/LMHO(A“;Z.)‘: 1/;2(;) > (> 0.

)

-

1
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Proof: 1 implies 2 by exactly the same arguments as the 2-band case in [23, p.
182]. 2 implies 1 follows by using the arguments in [23, p. 184] in conjunction with

Eqn. 3.19. 4 and 5 are equivalent via the Fourier transform. 2 implies 3 because for
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3 implies 2 and can be seen as follows:

2

o) — VA = Ho(w) = Ho(0)] < 3 ho(m)] e — 1] < Al

n

Il
=]

for some A > 0. Hence for w € I' and k sufficiently large, > 1 -

ZirHo (57%)

| ‘ >e |ﬁ| and therefore

. B w
dofw)| > BT [1-4)55]]
]:
i w
Y |35
> Bkle =k >

4 implies 1 since from Eqn. 4.18

Zho Yho(n + m)

?

= [ boltypolt+m)dt = 3 a(Mk+ )

and by hypothesis a(n) = 6(n) is the only solution.

One proves that 1 implies 5 by contradiction. Let {1g(t — k)} be an ON system
and let there exist A(w) # 1 that satisfies Eqn. 4.39. We may assume A(w) > 0 by
adding an appropriate constant to it if necessary (Eqn. 4.39 will still be satisfied).

Define
Aw)
A(Mw)’

Hy(w) = Holw)

Then H{(w) is also a unitary scaling vector since from Eqn. 4.39
M-1
1 w+ 27k
H/
i 2| (5|
Let () be the corresponding scaling function (possibly infinitely supported).
R ~ 1
) =TT | (55)| = dater VAT
1 M M

Since the zero sets of Hy and H| coincide (A(w) > 0), if @/;O(w) is bounded below on

=1.

a compact set I' then so is 'lﬁol(w). Therefore, {ty'(t — k)} is also an orthonormal
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system and

2

Therefore A(w) =1 (recall A(w) it is periodic), a contradiction. Equivalence of 5 and

N

Bh(w + 27k) dolw +27k)| JA@w) = 1.

=3

k

6 can be proved based on ideas for the 2-band case originally developed by Cohen in
his PhD thesis [18]. O
The characterizations of orthonormality may be used to show that a particular wavelet
basis constructed is orthonormal. Of all the characterizations of orthonormality
Eqn. 4.38 is the easiest to verify. It says that given an unitary scaling filter, the cor-
responding wavelet basis is ON iff the Lawton matriz (after Lawton who constructed
it for the 2-band case [56]) defined below has a unique eigenvector of eigenvalue 1. If
r(n) is the autocorrelation sequence of hg(n) (of length N = M K), Eqn. 4.38 becomes

a(n) =Y _r(la(Mn - 1) (4.40)

]
The Lawton matrix () is defined by

r(M(t—1)) for j =1
r(Mie—1)+7—-1)+r(M@i—-1)—j+1)for2<j; <N

G5 =

Ifov= a(0) a(l)... a(N —2) T, Eqn. 4.40 becomes Qv = v. v = [1,0,...,0]"
is always an eigenvector of () with eigenvalue 1. If there exists any other eigenvector
for @), then {¢o(t — k)} is not an orthonormal system (and the WTF may not be an
ON basis).

There is a well-known sufficient condition for orthonormality in the multiplicity
2 case due to Mallat [60] which is easy to verify and stated in terms of Hy(w). This
condition can be generalized immediately to the multiplicity M and we have the
following corollary of Theorem 28. The essential idea in this case one can show ﬁo(w)

does not vanish on the compact set I' = [—7, 7].

Corollary 3 If Hyp(w) does not vanish for |w| < then the wavelet

s
M

basis generated from it is orthonormal.
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Proof: If Hy(w) does not vanish on [— then Hy(w/M?) is non-zero on [—7, 7]

3 b
for all § > 1. Now from Theorem 15.5 in [74] it follows that I/A)O(w) (see Eqn. 4.26) is

non-zero on [—m, w]. Take I' = [—#, 7] in the previous Theorem to obtain the result. O

4.4 State-Space Approach to Orthonormal Wavelet Bases

The previous section gives a complete parameterization of multiplicity M, compactly
supported WTFs, and characterizes the conditions under which a WTF is an or-
thonormal basis. Checking whether a WTF is an orthonormal basis is equivalent to
checking whether the Lawton matrix of the unitary scaling vector has a unique eigen-
vector of eigenvalue one. An important property of multiplicity 2 wavelets in [21] is
that arbitrary large number of moments of the wavelets can be made to vanish. This
in turn implies that the corresponding scaling functions can represent polynomials of
arbitrarily large degree exactly. This property has found a number of applications in
the approximation of operators [39, 5]. The vanishing moments property is intimately
related to the smoothness or reqularity of the wavelet [21]. This section generalizes
these concepts to the multiplicity M case. Just as in the multiplicity 2 case, the
vanishing of the moments of the wavelets is equivalent to the vanishing of the discrete
moments of the wavelet vectors. It is our belief that in most practical applications
where regularity has been exploited, it is the vanishing moments property, rather than
regularity per se, that is crucial. Therefore, we define regularity to be a property of
the scaling vector, rather than the scaling function or wavelets.

For regular WTFs and orthonormal bases, this section gives yet another param-
eterization, using state-space techniques, of all compactly supported regular WTFs.
This does does not rely on the Householder factorization of unitary matrices on the
unit circle. Independently of this work, multiplicity M compactly supported orthonor-
mal wavelet bases have been obtained by several other researchers [98, 43]. Zou and

Tewtik [98], impose regularity on the the Householder parameterization, which results
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in a set of non-linear equations for the Householder parameters of regular unitary scal-
ing vectors. Heller et. al [43], approach the problem in a manner similar to ours, and
does not require the solution of non-linear equations. However, neither approach the
parameterization of of wavelets from a state-space point of view.

The two main results in this section are
1. Construction of regular multiplicity M scaling vectors and scaling functions

2. A state-space approach to the generation of the wavelet vectors and wavelets.

4.4.1 State-Space Description of Rational Matrices

This section briefly review the state-space description of rational matrices, and gives
results relevant to the state-space characterization of wavelets. Let Rpyas denote the
set of all real rational matrices (most of the results are true over an arbitrary field).
Every function in Rpyxas has a Laurent series expansion about any point in C. A

function in H(z) € Rpxar is said to be properif it is analytic at oc.

H(z) =Y Wz, (4.41)
k=0
Every proper real rational function has a realization of the form
H(z)=C(zI—A)"'B+D (4.42)

where A, B,C and D are matrices of appropriate dimensions with A being a square
matrix [49]. Realizations are not unique since [A, B,C, D] and [TAT~,TB,CT™!, D]

(for an arbitrary invertible T') give rise to the same rational matrix H(z). Note that

A0 B
bl b |: C 0 :| 7D
0 0 0
and [A, B, C, D] give rise to the same H(z). A realization is said to be minimal if the

matrix A has the least possible dimension among all realizations of H(z). Minimal
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realizations are necessarily related by a non-singular transformation 7' [49]. The
dimension of A in a minimal realization is called the McMillan degree of H(z). H(z)
is said to be stable if ||A]| < 1, for any realization of H(z).

Let [A, B,C, D] be a minimal realization for a stable H(z) of McMillan degree N.
For this state-space representation the controllability and observability gramians are
defined respectively as

W.=> A*BBT(A")* andW, =) (A")*CTC AR (4.43)
k k

If ||A]| < 1 (H is stable) the series converges and W, and W, are well defined are
seen to be symmetric. An important characterization of minimal realizations is that
[A, B,C, D] is minimal iff W. and W, are positive definite [49]. By pre-multiplying
and post-multiplying the gramians with A or AT appropriately, W, and W, are seen

to satisfy the Lyapunov equations,
W, = AW.AT + BBT (4.44)

W, = ATW, A+ CTC (4.45)

Lyapunov’s theorem says that if [A, B,C, D] satisfy the Lyapunov equations, for
some positive definite W, and W,, then H(z) is stable. Notice that the Lyapunov’s
equations are linear in W, and W. and hence, given [A, B,C, D], W. and W, can
be obtained by solving them (rather than computing the infinite sum in Eqn. 4.43).
If [A,B,C, D] and [A1, B1,C1, D] represent two minimal realizations of H(z) then
W, =TW.TT and W, = (T-HYTW,T~!. Clearly the gramians are not an invariant of
H(z). However the product W.W, transforms as WCWO = TW.W,T~! and hence the
eigenvalues of W.W, are invariants of H(z). If W, and W, are diagonal and equal the
realization is said to be balanced[64, 69]. Such realizations play an important role in
approximating H(z) with another matrix of smaller McMillan degree (using Hankel

norm approximations [31]).
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A rational function is left unitary (on the unit circle) if HT(z71)H(z) = I and
right unitary if H(z)HT (z71) = I. H(z) is unitary if it is both left and right unitary.
Unitary H(z), as we have already seen, plays an important role in unitary filter bank
theory and in the theory of wavelet tight frames. Unitary H(z) has the following

characterization [31, 41]:

Fact 8 Given a minimal realization [A, B, C, D] (not necessarily stable),

the following statements are equivalent:

1. H(z) is unitary on the unit circle.

2. There exists positive definite W,., and W,, with W.W, = I, that

satisfy the Lyapunov equations.

Moreover, given W, and W, are as above, D satisfies the equations,

D'D+B"W,B=1 (4.46a)
DDT +ow.ct =1 (4.46D)
DYC + BTW,A=0 (4.46¢)
DBT + CW. AT =0 (4.46d)

As stability is not assumed the gramians in Eqn. 4.43. However, if H(z) is stable
W. and W, in Fact 8 are precisely the gramians. If we have a balanced realization,
then W, =W, = I, and hence the Lyapunov equations and Eqn. 4.46a-4.46d can be

written in the compact form Y7Y = YY7 = [ where

A B
Y = (4.47)
C D

A similar result has been reported in [83]. Notice in particular, that if we partition

Y as

Y, Y, }, then, just the fact that W, = I, ensures that Y;Y! = I.
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4.4.2 K-regular Multiplicity M Unitary Scaling Vectors

In order to obtain regular scaling functions in the multiplicity 2 case, I.Daubechies
[21], imposes a set of linear conditions on the scaling vector hg, which essentially
amounts to a certain number of the moments of hy being zero. We impose similar
restrictions in the multiplicity M scaling vectors, referring to them as regular unitary

scaling vectors.

Definition 14 A multiplicity M unitary scaling vector is said to be K-

K
14z o= (M-1) ) ’ for
M

reqular if it has a polynomial factor of the form (

maximal possible K. That is

L4270 4. M- R 1 M "
HO(Z) = M Q(Z) = M](ZM]{_l _ 1 Q(Z)

) (4.48)

If a scaling vector is K-regular, Ho(z) and its first (K — 1) derivatives vanish for

z =M ke f1,2,... M —1}.

(dzdﬂ)j Ho(z)] o =0 (4.49)

This is equivalent to a set of (M —1)(K —1) complex linear constraints on the scaling

vector. Since the scaling vector is assumed to have real coefficients the zeros occur
in complex conjugate pairs. Hence the set of (M — 1)(K — 1) complex constraints
reduce to (M — 1)(K — 1) real linear constraints on the scaling vector.

It also follows from Definition 14 that every unitary scaling vector is 1-regular.
Indeed from the unitariness condition in the Fourier domain (see Eqn. 3.19), it is clear
that Ho(z) vanishes for z = ¢?™*/M | ¢ {1,2, ..., M — 1}. The scaling function and
wavelets associated with K-regular scaling vectors will be called K-regular scaling
function and wavelets respectively.

K-regularity has a number of equivalent characterizations, each of which shows

how regularity plays an important role in applications. K-regularity has been used
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by Daubechies in the 2-band case to ensure that the scaling vector gives rise to
multiplicity 2 ON wavelet basis (not a WTF) [21]. Daubechies also shows that that the
regularity of the scaling function (measured by the number of continuous derivatives it
has - or equivalently its Holder exponent) increases linearly with the K, the regularity
of the scaling vector. If the scaling function is K times differentiable it is necessary
that the scaling filter is (K — 1)-regular. K-regularity is equivalent to saying that
all polynomials of degree (K — 1) are contained in Wy ; for all j. This coupled with
the compact support of the scaling functions (and wavelets) implies that K-regular
scaling functions can be used to capture local polynomial behavior. This feature
of K-regular scaling vectors is particularly useful in image processing applications
[97]. K-regularity is also useful in numerical analysis applications [55], where one
tries to approximate operators in wavelet bases. In these applications the regularity
K of the scaling vector is a measure of the approximation order. From a purely
signal processing point of view K-regularity says that the magnitude squared Fourier
transform of the scaling vector is flat of order 2K at zero frequency.

The moments of h; and ;(t), and the partial moments of hg are defined respec-
tively as follows:

,u(z',k):/tkz/;i(t)dt, m(i,k) =Y n*hi(n) and =Y (Mn+1)*ho(Mn+1),

n

M-1
so that m(0, k) = Z M 1
(=0

Theorem 29 (Equivalent Characterizations of K-regularity) A unitary

scaling vector is K-regular iff

1. The frequency response of the scaling vector has a zero of order K

at the M roots of unity.
2. The partial moments up to order K of the scaling vector are equal.

3. The magnitude-squared frequency response of the scaling vector is

flat of order 2K at w = 0.
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4. All polynomial sequences up to degree (K — 1) can be expressed as

a linear combination of M-shifts of the scaling vector.

(&3¢

All moments up to order (K — 1) of the wavelet vectors vanish.
6. All moments up to order (K — 1) of the wavelets vanish.

7. Polynomials of degree (K — 1) or less are contained in Wy ; for all j.

Proof: From Eqn. 4.48

. in(Mw/2)\ ™
H _ —i(M-1)Kuw/2 sin(
(@)= c ) )
and therefore for small w, Hy (w + 2”) = O(wh), k € {1,2,...,M — 1}, implying
that the derivatives up to order (K — 1) vanish at the roots of unity. Equivalently for

ke{l,....M—1},:€{0,...,K —1}

[ dZ . 2mkn
0= Z.Ho(w)] =Y (=) ho(n)e™ 5"
-dw w=2rk/M n
M-1T N
= ZhoMn—{—l)(Mn—{—l A qu”eZM =0
(=0 L

= 1, s a constant independent of /.

Because of the unitariness of hg one also has for small w
M-1
w+ 2k

| Ho(w)[* = M =)

k=1

HO T) =M — O(C{JZI{).

k

It follows immediately that for £ < K — 1, one can express n” as a linear combination

of ho(M1+ n):
nt = Zai,lhO(Ml +n).
!

As a consequence of this representation, the moments of the wavelet vectors vanish

up to order (K — 1) since

m(i,k)zanh Za”[Zh (n)ho(MI1+n)

n

= 0.
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Now this implies that p(7, k) = 0 since (from Eqn. 4.20) they are related to m(z, k)

pli, k) = . 1 Z k m(z,7) (0, k — ).

k+=
M 2 =0 7

Since the wavelets are compactly supported, the form a basis for L _(IR) and therefore
for k € {0,..., K — 1},

o0 o0

Z<t @Z’OJk I/JOJk ‘|‘Z Z Z f7 wk( )>1/)i7j7k(t)

=1 j=J+1 k=—oo
Z<t Yo7,k (1) %Jk( ).

Therefore polynomials of degree (K — 1) can be effectively expressed as linear com-
binations of {tg ;x} for fixed j (one might loosely say Wy ; contains polynomials of

degree (K — 1), even though polynomials are not in L*(IR) D Wy ;). O

4.4.3 K-regularity and Regularity of Scaling Functions/Wavelets

The precise relationship between K-regularity of the scaling vector and the smoothess
of the scaling functions and wavelets is unknown even in the 2-band case. However,
using the techniques in [21] it is easy to show that if Q(w) is bounded above by an
appropriate constant, then the regularity of the scaling function can be estimated. It

can be shown that (see [78] for details)

Jo(w)| < O [+ | mre @K% (1.50)

Therefore if sup, Q(w) < ME=7=3 then 1y(t) associated with a K-regular scaling
vector is m times differentiable. However, since Q) (w)__, = VM, ¥o(t) can be at
most (K — 2) times differentiable. The sufficient condition for ¢o(¢) to be m times

differentiable is precisely given below [24]:



