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Fact 9 (Daubechies) 1f Q(z) is such that
I

sup H ‘Q (%) ‘ < Ml(K_m_li), (4.51)

weR j=0

then ¥o(t) is m times continuously differentiable.

The wavelets, being finite linear combination of translates of the scaling function,
are as regular as the scaling function. In particular if sup, Q(w) < ME~1, then the
scaling function and wavelets are continuous.

Remark: Regularity as defined here is a property of the scaling vector and not of
the scaling function. It is easy to construct examples of of unitary scaling vectors
with different orders of regularity such that the scaling function corresponding to the
less regular scaling vector is smoother than the scaling function corresponding to the
more regular scaling vector [36].

We now describe the construction of K-regular multiplicity M scaling vectors of
minimal length. We have seen that K-regularity is equivalent to (M — 1)(K — 1)
linear constraints on hg, and that an arbitrary multiplicity M scaling vector of length
N = MK is determined by (M — 1)(K — 1) parameters. By imposing the regularity
constraints on the general parametrization of unitary scaling vectors, one expects to
obtain K-regular scaling vectors. However, there is no analytical method to solve the
resultant set of (M —1)(K — 1) nonlinear equations (in the parameters) and until now
numerical techniques have been the answer. Here we provide a numerical scheme by
solving a systems of linear equations (these equations can be explicitly solved for also
[42, 78]). We postulate the form of the scaling vector (Eqn. 4.48) and try to solve for
the polynomial @(z) such that Hg(z) is a unitary scaling vector. This approach is
particularly simple because the unitariness conditions are linear in the autocorrelation
of Q(z).

With N = MK, )(z) is seen from Eqn. 4.48 to be a polynomial of degree (K —1)
in z7'. With the definitions Ho(z) = P(2)Q(z), R(z) = P(z)P(z7!), and A(z) =
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Q(2)Q(=71),

1 = [IM]Hy(z)Ho(z")

= [IM]P()P"HQ(2)Q(z""
= [IM]R(z)A(z). (4.52)

P(z) is explicitly known and is a polynomial of degree (M — 1)K. Therefore, R(z)
can be precomputed and is a polynomial with 2K (M — 1) + 1 terms.

(M-1)K
R(z)=P(z)P(z") = > r(i)z™
i=—(M-1)K
Then
(K-1)
A(z) = Q(2)Q(=71) = a(n)z""

K-1)

==
Define the K x K matrix, S = [s; ;] for ¢,7 € R(K),

r(M7) for j =0
Sij = (453)
r(Mi+j3—1)+r(Mi—j+1) for1<j<K-1

Then Eqn. 4.52 becomes,

a(0) 1
o I I (4.54)
ak-1) | | o]

For arbitrary M and K, S is invertible. However, for large M or K S may be badly
scaled. By scaling all but the first row of L (for which the rhs is zero), this problem
can be circumvented. Once A(z) is obtained, if it is positive definite by spectral
factorization ()(z) can be obtained. Positive definiteness of A(z) can be inferred from
the general Lagrange interpolation arguments in [80]. There is a degree of freedom in

the choice of Q(z) depending on which spectral factors are chosen. One may choose
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a minimum phase, maximum phase, or mixed solution. For each such choice of (Q)(z)
one has a corresponding K-regular unitary scaling vector.
Independently of our effort several authors have obtained explicit formulae for the

autocorrelation sequence A(z) [42, 78].

4.4.4 Examples of K-regular Unitary hy and (t)

The minimal phase solutions for K-regular unitary scaling vectors. for M = 3 and
M = 4 are given in Table 4.1. For K = 2, the minimal phase and maximal phase
solutions (there are only two solutions in this case) for arbitrary M is given by the

following formula:

14271 4. 4 o~ M-1)7? _
Hol) = | = | a0+ a
where
v M 2M?2 4+ 1 v M 2M?2 4+ 1

Figs. 4.1-4.3 show the scaling functions, their Fourier transform, and the Fourier
transform of the scaling vector, for 3-band, 4-band and 5-band case for K = 2,3,4
and 5. Notice that the shape of a multiplicity M, K-regular scaling function is largely
determined by its regularity, K. Notice also that the Fourier transforms of the scaling
functions vanish at multiples of 27, and that Hy(w) does not vanish for |w| < {7 (in
fact the first zero is at 27). This fact implies (from Corollary 3) that all K-regular

minimal length scaling vectors give rise to orthonormal wavelet bases.

4.4.5 Construction of Regular Multiplicity M Wavelets

K-regular compactly supported WTFs are now parameterized in state-space. In the
K-regular case since the scaling vectors are obtained independently of the Householder
parameterization the state-space approach gives an elegant way to generate the wavelets.

We have the following state-space characterization of compactly supported WTFs.
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Table 4.1: K-Regular Minimal Length Unitary Scaling Vectors

ho (’I’L)

3

ho (n)

3

ho (n)

0.33838609728386
0.53083618701374
0.72328627674361
0.23896417190576
0.04651408217589
-0.14593600755399

© 00 TIO0 U WO R WK - OIS

e
N )

0.07550761756143
0.23086070821719
0.51304535032014
0.59269796491023
0.50343156427108
0.07274582768779
-0.11559776131042
-0.21804646388388
0.00692356260197
0.02913316570545
0.07286749987661
-0.02130382202714
-0.00439071767705
-0.01176303929137
0.00593935060686

0.20313514584456
0.42315033910807
0.70731556228155
0.44622537783130
0.19864508103414
-0.17723527558292
-0.07201025448623
-0.04444515095259
0.04726998249100

O © W10 U b WO Utk W - O

—

0.12340698195349

0.31789563892953

0.62131686335095

0.56142607070711

0.36890783202512
-0.08625807908307
-0.12777980080646
-0.13375920464072
0.05875903404127
0.02029701733548

0.02430600287569

-0.01646754911953

01O Ut b WK H-O

0.04641991275121
0.16394657299264
0.40667150052122
0.56561987503637
0.58223034773984
0.24390438994869
-0.03360979671399
-0.25350741685252
-0.08274027041541
-0.00156787261030
0.11605073148585
0.00346097586136
0.00040170813801
-0.03676774192987
0.00823961325941
0.00008644258833
0.00539777575368
-0.00218593998563

3

ho(n)

ho(n)

ho(n)

0.26978904939721
0.39478904939721
0.51978904939721
0.64478904939721
0.23021095060279
0.10521095060279
-0.01978904939721
-0.14478904939721

M=3
K =2
K=5
M=14
K =2
K =3

—

H O © W10 Uk WKN OO Uh W =O

—

0.15083145463571
0.28192600003506
0.44427054543441
0.63786509083375
0.41021527232597
0.27302618152727
0.07333709072858
-0.18885200007012
-0.06104672696168
-0.05495218156233
-0.01760763616298
0.05098690923636

M=3
K =3
K =4
M =4
K =4

O ~1O0 U kWK~ O|S

0.08571412050958
0.19313899295294
0.34917971394336
0.56164878348085
0.49550221952707
0.41456599638527
0.21903222760227
-0.11453658682193
-0.09529322382982
-0.13069539487629
-0.08275002028156
0.07198039995437
0.01407688379317
0.02299040553808
0.01453807873593
-0.01909259661330

M=3
K =6
M=14
K=5

O ~1O0 U kW= O3

0.04916991424487
0.12913015554835
0.26140970524347
0.46212341604513
0.50348969444395
0.49742757908607
0.35826639102137
0.02935921939015
-0.06205420421862
-0.17204166252712
-0.16539775306492
0.03112914045751
0.01081024188105
0.05413053935774
0.05420808584699
-0.02997902951088
-0.00141564635125
-0.00864661146505
-0.00848642904691
0.00736725361809




155

Figure 4.1: K-regular, multiplicity 3 Scaling Functions: (a) 1o(t) for K = 2 (b) ()
for K = 3 (c) ¢o(t) for K = 4 (d) ¢o(t) for K =5 (e) to(w) for K = 2 through
K =5 with maximal flatness of the Fourier transform increasing with K (f) Ho(w)

for K =2 through K =5
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Figure 4.2: K-regular multiplicity 4 Scaling Functions: (a) 1o(t) for K =2 (b) o(t)
for K = 3 (c¢) ¢o(t) for K = 4 (d) ¢o(t) for K =5 (e) to(w) for K = 2 through
K =5 with maximal flatness of the Fourier transform increasing with K (f) Ho(w)

for K =2 through K =5
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Figure 4.3: K-regular multiplicity 5 Scaling Functions: (a) 1o(t) for K =2 (b) 1o(t)
for K = 3 (c¢) ¢o(t) for K = 4 (d) ¢o(t) for K =5 (e) to(w) for K = 2 through
K =5 with maximal flatness of the Fourier transform increasing with K (f) Ho(w)

for K =2 through K =5
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Theorem 30 Let Y be an (K+M ) x(K+ M) orthogonal matrix with an
N x N nilpotent submatrix. Without loss of generality (by permutation)

assume Y is of the form

A B
C D
where A is nilpotent. Furthermore for some row [ c dlof| C D }
(= A Btd=[——\. .. ——]—e (4.55)
=l = )

Then there exists a compactly supported WTF, with the functions ;(t)

supported in [0, ]\ﬁ‘;_ll], such that [A, B, ¢, d] is a realization of the (dual

first-orthant) polyphase representation of the scaling vector:

Ho(z) =e(z] — A)_lB +d.

MK-1
M-1

Conversely, given an arbitrary WTF with [0, ), there exists an or-

thogonal Y with the above properties.

Proof: Given a wavelet tight frame, let [A, B, C, D] be a balanced realization of the
polyphase matrix H,(z). Since H,(z) is unitary, Y is unitary (Fact 8). Also, from
Eqn. 4.13, if ¢ and d are the first rows of C' and D respectively, then, Eqn. 4.55 is
satisfied. On the other hand, given Y, we can unitarily dilate it (i.e add rows to make
it a unitary matrix) by a Gram-Schmidt process. We can also permute rows so that

{ c b } is the first row of

C B } Also, the fact that ﬁp(l) = e implies that
c(zI —A)'B+d=e

Conversely given Y define H,(z) = C(zI — A)™'B + D. The nilpotency of A ensures
that H,(z) is a polynomial in z7'. It is easy to check that [A, B] is controllable and
[C, A] is observable. Hence [A, B,C, D] is a minimal realization of H,(z). The fact
that c¢(z/ — A)~'B + d = e ensures that Hy(0) = /M. Therefore, since Eqn. 4.47 is
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satisfied we have a wavelet tight frame. O

Given hg Theorem 30 implies the existence of an orthogonal matrix (the state-space
wavelet matriz) Y. From Y, one can read off the associated wavelets. A complete
parameterization of all possible Y associated with a given hq (such that H,(z) has the
same McMillan degree as the polyphase vector of hg) gives a corresponding parame-
terization of wavelet vectors and wavelets. Let [121, B, C’, D] be a minimal realization
of ];ii’p(z) = [Hop(z), Ho1(2),..., Hoam-1(2)]. From this information we now explicitly

construct Y.

Lemma 27 If [A, B,C, D] is a minimal realization of E’p(z), there exists
a non-singular matrix 7' and an associated partition of any state-space

wavelet matrix Y (corresponding to hg),

A B
Y
Y = =|Cy Dy |, (4.56)
}/2 -
Cy D,
such that
A B TAT-' TB
= . . . (4.57)
Cl D, CT1 D

Proof: Theorem 30 implies the existence of ¥ which can be partitioned so that
Hy(z) = Cy(21 —A)"'B+ D, and Hy(z) = Cy(z] — A)"* B+ Dy where Hy(z)is 1 x M
. Hl(Z) . n
and Hy(z)is M —1x M and H,(z) = . Since Hq(z) = H(z), [A, B, C1, D]
HQ(Z)
and [A, B, C’, b] are similar realizations and hence there exists a non-singular matrix
T such that the result holds. O
Given a minimal realization [A,B, C’,D] of I—ii’(z), if by constructing 7" one obtains

Y1. Y, is then constructed by a Gram-Schmidt process (using the SVD algorithm).
Since Y is orthogonal 7' must be chosen so that ¥; Y’ = I. This implies that

AAT + BB =1, ACT+BDI'=0, and C,Cf+DDF =1. (4.58)
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Theorem 31 Let [A, B,C, D] be a minimal realization of f{(Z) Let W,
be the controllability matrix of f-ii’(z) Then T' = W, ? is the balancing

transformation for E’(Z)

Proof: Eqn. 4.58 follows from Eqn. 4.57 and Eqn. 4.44.

AAT + BBT = TAT Y (T YHYTATT + TBBTTT (4.59)

_1
2

= W,

D=

AW AW 2 + W2 BBTW,

LW IBBTWS

_1
2

— wE [Wc - BBT} Wi

1
2

= I
ACT + BDT = WIEAWS D) (W) 0T + W BDT (4.60)
= WoF [AW.OT + BDT] =0
C,CT + D DT = CW.H) W (Cwe )y Y)W + DDT (4.61)

= CW.CT+DDT =1.

O
It is interesting to note that though in principle 7' could have depended on any of
the four state-space matrices that describe the scaling vector, it really depended only

upon the state and input matrices (A and B respectively).

Parametrization Of Multiplicity M Wavelets

SVD completion of Y]

We now describe one way to construct the wavelet filters in this state-space setting
by using the singular-value-decomposition (SVD). Given right unitary Y7, one has to

find Y5 such that
T

= (4.62)
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Define the symmetric positive definite matrix X = Y,Y.I so that X = I — Y1 Y,I. Let
X = UXUT be the SVD of X. ¥ is a diagonal matrix of positive entries. Then a
general solution for Y5 is given by Y, = U(Y) 20 where O is an arbitrary M —1x M —1

constant unitary matrix. This follows since ;Y = U(2)7007(X)2U7 = X. The
M—1

number of degrees of freedom in the choice of the wavelet filters is
2

The state-space parameterization gives a method for the numerical design of
wavelets with respect to any objective function (of ©) as an unconstrained mini-
mization problem. It may also be used for the design of unitary filter banks. Since
the scaling vector could be considered as the lowpass filter of a unitary filter bank,

the above parameterization could be used to design the rest of the filters in a unitary

filter bank.

4.4.6 Regularity of the Wavelets: Is it Important?

There are many applications where K regular wavelet tight frames have been found
useful. Usually this is attributed to the smoothness (high order differentiability) of
the scaling functions and wavelets. This section argues that the smoothness of the
functions is usually irrelevant. It is the regularity of the scaling vector (and the
equivalent vanishing moments property of the wavelet vectors and wavelets), that is
critical.

Wavelet theory has been developed from a filter banks point of view. This is
the most general approach to the wavelet theory. In special cases, one can construct
WTFs independently of filter bank theory [17, 14]. We are not aware of any construc-
tion of multiplicity M wavelet bases, that do not start from a filter bank perspective.
Filter bank theory is more fundamental than wavelet theory. It is popularly believed
that wavelet theory gives an underlying continuous time interpretation of sequences
in a filter bank. Be that as it may, it must be realized that digital signal processing

had its roots in the Shannon sampling theorem, allowing one to go from continuous
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time to discrete time. Therefore, an underlying continuous time interpretation of
filter banks is classical.

Consider the practical analysis of a signal with respect to an orthonormal wavelet
basis {1; ;x(t)}. Assume that a finite set of samples of the signal f(¢) is given. In the
wavelet analysis of f(t) (see Section 5.2) usually, the samples of f(¢) are assumed to

be the expansion coefficient of f(t) at the finest scale of interest, say Js. That is,

f(t) = WHO, Jy5, k)oa, k(1) (4.63)

From this information using a filter bank, W f(¢, j, k) is computed for j < Js. These
coefficients (computed approximately) are the referred to as the DWT (discrete
wavelet transform) of f(¢). We now to give an ezact interpretation of this process,
that does not require knowledge of wavelet theory.

The idea is to interpret the samples f(%) as the the Nyquist rate samples of a
bandlimited signal. These turn out to be the expansion coefficients with respect to
the sinc basis. Notice that the sinc function is infinitely differentiable. There is no
problem with the fact that there are only finitely many samples of f, since bandlim-
ited signals could have finitely many Nyquist samples. Let H denote the space of
bandlimited signals in [0,7/7"). Then f € H. From Theorem 24, we are essentially
decomposing H, recursively using the filter bank, and the numbers W(e, 7, k) are
precisely the expansion coefficients with respect to the bases in the decomposition
subspaces. Since all the basis function at any level are linear combinations (finite
if the filter bank is FIR) of the sinc function, they are infinitely smooth, regardless,
of whether the filters in the filter bank give rise to K regular wavelets. Hence, even
assuming we have a filter bank with tight frame wavelets, there is no reason to im-
pose constraints on the sequences hg so that they give smooth wavelets, because, all

practical computations, can be interpreted as being, done with some other smooth

basis. Thus smoothness of the underlying functions, is not a valid argument for using
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K regular hy and associated WTFs. However, K regularity of kg is important only
we have an infinite cascade of decompositions.

For best frequency localization, therefore, the filters h;(n), need not even give rise
to a WTF, let alone be regular. However, in numerical analysis applications (like
the approximation of differential operators), the vanishing moments property of the
scaling vector (which causes smoothness of the corresponding tg(t)) is important [39].
However, in signal processing applications, usually regularity is unimportant (unless

filter banks are used in tree structures).

4.5 Modulated Wavelet Tight Frames

Unitary filter banks give rise to WTFs. We now show that modulated unitary filter
banks gives rise to modulated WTFs. In MFBs the filter hg determines the rest of
the filter bank (since it determines the prototype filter). Therefore for modulated
WTFs the scaling vector uniquely fixes the wavelet vectors (and hence the wavelets).
Since the scaling function determines the multiresolution analysis, the multiresolu-
tion analysis would also determine the wavelets. For large M modulated WTFs are

possibly the only WTFs that can be designed to meet desired specifications.

4.5.1 Parameterization of Modulated Wavelet Tight Frames

A unitary filter bank is associated with a WTF iff it satisfies Eqn. 4.13, i.e., Ho(1) =
VM. The filters in an MFB are given by h;(n) = cm_%h(n) where « is equal to (M —
1) or (M —2) depending on whether the MFB is Type 1 or Type 2. The modulation
vector satisfies ¢; nromsr = (—1)'¢;, and ¢;3r = —(—1)'s;0. This periodicity can be
exploited to express the filters h;(n) in terms of the polyphase components of the
prototype filter h(n). For | € Z, let py(n) = h(Mn + 1), and for 7 € {0,1}, let
prj(n) = h(2Mn + Mj +1). The analysis filters can be expressed as
Hi(z) = ZZ_”ciﬁn_%h(n)

n
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In particular

M-1

Ho(1) = 3 cos (ﬁ(z - %)) Pro(—1) — sin (2M(z - 5)) Pa(—1).  (4.65)

=0
For each of the J lattices of the unitary MFB (from Eqn. 3.47 substituting z = —1)

Po(—=1)  Paip(—1) _ i cos (©;) sin(0y) (4.6)
Pii(—=1) —Pa_sa(=1) M| sin(©) —cos(0))

where ©; = Z 01 r. Even if the MFB is not FIR we may define ©; as in Eqn. 4.66

k=0
and hence the results that follow hold in the IIR case also.

Type 1: M even

For Type 1 MFBs Ci,M-1-n—2 = Cipn_2 and SiM-1-n-2 = —Sin_2. The MFB forms
a WTF iff

VM = H,
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_sin (%(z — %)) [sin(0)) — cos(0))]

2 T « o
MZZOCOS<2M( )+ 61) +sin (537(=5) + 0
9 = bis « bis
= N an(=—u-SH+te _)
Ml:()m(?M( p) T O+
Equivalently
J-1
T a T M
in (-2 —):—:.
Sm(zM( o) Ot 5 =/

Since a sum of .J sinusoids is .J iff each individual sinusoid is 1

. T « T
sin (57700 = 5)+ O+ 7) =1 and O =T+ (5~ ). (4.67)

Type 1: M odd

Now J = @ and the situation is similar to when M is even except that the expres-

sion for Hy(1) in Eqn. 4.65 has an extra term corresponding to [ = J = @ Also
Pro(—1) = j:— _

= cop = 1 and S0,J-2 = So,0 = 0. Hence

w[Q

<

-1
s1

Se g 7
ling

=

Ho(1) (ﬁ(l 2) + 0, - Z> + cogPro(—1) — 50y Ps1(—1)

0
1

<
|

sin (ﬁ([ 2)+®1—z> \/LM

(=0

The MFB forms a tight frame iff

-

-1

11 M 1
-2 —|—®z—|—%)i—i—:7—J—l——

2 ) VM 2 2
Since a sum of J sinusoids is at most J, the above equation is satisfied only when

Py(—1) = \/LM whence O; satisfies Eqn. 4.67.

(71'(
Zssz

Il
=]
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Type 2: M even

) ) . )
Since a = (M —2), CiM-2-n-2 = Cip-2 and $; y—2—p—2 = —Sin—z. When M is even

J = @ and from Eqn. 4.66

PZ’O(—l) PM_2_170(—1) 2 CcoS (@1) sin (@1)

Pia(=1) —Py_a_ia(—1) M| sin(0,) —cos ()

Also from Theorem 12 Py_1(z) = :tq/%zn for some n. Hence either Py_10(2) is

zero or Pyr_q11(z) is zero. The other evaluated at z = —1 is 1/%. Moreover

T « T « 1
oM N 1 9 ) - ‘ <— N 1 9 ) BNGE
cos (37 7)) = s\ ) =5

The term corresponding to (M —1) in Eqn. 4.65 is £,/ ﬁ Hence the MFB is a WTF
iff

VM = Hy(1)

2 T « T
= M L COS (m([ — 5)) Pl,O(_l) — sin (2—(1 — —)> P[l(—l)
J-1
2 T «a T 1
- (=S ' —) +4) =
Ml_osm<2M( p) O+ M
Equivalently
J-1
M+1 . T o T
=2 s (- et ).

Since J = %, there exists a solution only if Pys_1(z) is such that the left hand side

is @ This is always possible and once again ©; must satisfy Eqn. 4.67.

Type 2: M odd

ZTL

As before, Py_1(z) contributes 1/% to Ho(1). From Theorem 12 Pwp(z) =
for some n. Hence the MFB forms a WTF iff

J—-1
2 . T « T 1 1
VM = Ho(1) 72 D sin G- +o+3) =35\

1
VM
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The two terms 1/ are contributed by Py_1(2) and Pu—2(z). Therefore for a WTF

M
M+1+1 s o vis
T —in (-2 o)
2 Sm(zM( 7)) TOt
The maximum value of the right hand side is @ There exists a solution only if the

left hand side is # This is always possible and O; satisfies Eqn. 4.67.

Theorem 32 (Modulated Wavelet Tight Frames Theorem) For all M
there exist multiplicity M modulated WTFs. Every compactly supported
modulated WTF is associated with an FIR unitary MFB and is parame-
terized by J unitary lattices such that the sum of the angles in the lattices
satisfy (for [ € R(J)) Eqn. 4.67. If a canonical MFB has Jk parameters,

the corresponding WTF has J(k — 1) parameters.

Remark: Recall going from a unitary filter bank to a WTF requires the imposition
of Eqn. 4.13, i.e., one constraint. However, this one constraint, in the modulated
WTF case, becomes, J constraints (a constraint each on each of the lattices), and

some additional assumptions on the delays (the non-lattice p;(n)).

4.5.2 Some Examples of Modulated Wavelet Tight Frames

Example 12 (Type 1: M Even) For M = 2 the number of lattices J = % = 1. If
the length of the scaling vector is N =4 (and the MFB is canonical) this lattice has
one parameter 0y since N, = kg = 1. Therefore the WTF has no free parameters
(J(ko — 1) = 0). From Eqn. 4.67 ©g = 69 = £ + = = 2I. The prototype filter and

the scaling and wavelet vectors are given by

cos(g) cos(g)sin(g) ﬁ —\f\/_il
T 2z V241 _ 1
b — COS(BS) oy = CcOSs (8) _ 2\1/5 and hy = 21\/5
cos(%g) cos(g)sin(g) 3 NG
I cos(%) ] I —sinQ(g) ] I _\f/_il ] I —\fj; ]
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Figure 4.4: o(t) and ‘1[)0(@)‘ : Type 1, M =2, N = 4.
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The scaling function and wavelet associated with this WTF (along with their Fourier
transforms) is shown in Fig. 4.4-4.5. The autocorrelation of kg and hence the Lawton

matrix corresponding to this scaling vector are given by

S
0
34+2 1 32
rzé 8 and L= 1|0 % 1
3+V2 0 =2 9
0
_1_\/5_

The characteristic polynomial of L has a unique eigenvector of eigenvalue one:

det(\[ - L) = % (8)\3 — 122+ 34+ V2)A+ (1 - \@))

_ %(A—1)<8A2—4)\—1+\/2§>.

Hence the WTF is an orthonormal basis.

Example 13 (Type 1: M odd) If M = 3 and N = 6 (and the MFB is canonical)
J =1and N, = kg = 1. Once again the WTF has no free parameters ((kg — 1) = 0)

and ©g = by = % The prototype filter h(n) and kg are given by

[ cos(fy.9) ] [ Cos(007g)cos(%) ]

1 1

V2 2
2 | sin(fp,0) 2 | sin(fy,)cos(g)

h - = ho - =

3 sin(fy,9) 3 sin(fy,g) cos(§)

% 0
cos(fy.9) cos(f.0) cos(?ﬂ)

The scaling function and its Fourier transform is shown in Fig. 4.6 while the wavelets

and their Fourier transforms are given in Fig. 4.7.
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Figure 4.6: o(t) and tpo(w)‘ : Type 1, M =3, N = 6.
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Figure 4.7: ¢;(t) and ‘;/A)Z(w)‘ : Type 1, M =3, N = 6.
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Example 14 (Type 2: M even) In this example M =4 and N = 7. Since J =1

and kg = 1 N, = 2. The only parameter is y¢ =
h(3) = % Hence h(n) and ho(n) are given by

V2

1

V2

h=1/= 1

1

V2

The scaling function and wavelets are shown in Fig 4.8.

cos(fg.0)

Sin(907g)

Sin(907g)

cos(fy,0)

and hy =

—cos(fy,9) cos(

£

37
8

N =

H
+
B

O AE RI= s

—
|
¥

IS

. Moreover we have to choose

(1.68)

Example 15 (Type 2: M odd) Let M =5 and N =9. Here J = 2 and h and hg are

given by

Fig 4.9 and Fig 4.10 show the functions and their Fourier transforms.

and hg =

Example 16 (Type 1: M odd - Non-canonical Example) In this example M =5 and

N =19. There are two lattices the first with one parameter and the second with two
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Figure 4.8: ¥;(t) : Type 2, M =4, N = 1.
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Figure 4.9: o(t) and ‘ﬁo(w)‘ : Type I, M =5, N =09.
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Figure 4.10: ¢;(t) : Type 1, M =5, N = 19.
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Figure 4.11: ‘1[)2(@)‘ : Type 1, M =5, N = 19.
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(i.e., ko =1, ky =2, and N, = 3). Because Eqn. 4.67 has to be satisfied there is one

free parameter.

T T 97
SN 00 = % + 1 50
T T 37
CH 0,0t o1 01 20

The polyphase component pu—i(n) = h(Mn+2) is not determined by the lattice. The

numerical values of the prototype filter and the scaling vector with the arbitrary choice

of by = —?i—g (and hence 0, ; = 3%) are given in Table 4.2. The scaling function and

wavelets are given n Fig. 4.12 and 4.13 respectively. Notice the irregularity of the

scaling functions and wavelets. One verifies that the Lawton matrix for this example

has a unique eigenvector of eigenvalue one. Hence this WTF is an orthonormal basis!

Table 4.2: Prototype filter and Scaling Vector : Type 1, M =5, N = 19.

n h(n) ho(n) n h(n) ho(n)

0| 0.09893784281542 | 0.08004239622447 | 10 | 0.00000000000000 | 0.00000000000000
1] 0.33122992405823 | 0.31501837766753 | 11 | -0.23229208124280 | 0.22092289754973
2 | 0.00000000000000 | 0.00000000000000 | 12 | -0.44721359549996 | 0.44721359549996
3| 0.45589887899278 | 0.43358559963774 | 13 | 0.16877007594177 | -0.16050988048005
4| 0.62466895493456 | 0.50536780040049 | 14 | 0.00000000000000 | 0.00000000000000
5| 0.62466895493456 | 0.36717119927548 | 15 | 0.00000000000000 | 0.00000000000000
6 | 0.16877007594177 | 0.05215282160796 | 16 | 0.45589887899278 | -0.14088050132526
7 | -0.00000000000000 | -0.00000000000000 | 17 | 0.00000000000000 | 0.00000000000000
8 | -0.23229208124280 | 0.07178220076275 | 18 | 0.33122992405823 | 0.10235567557952
9 | 0.09893784281542 | -0.05815420490054

4.5.3 Explicit Formula for Canonical 1-regular MWTFs

For Type 1 canonical WTFs with N = 2M or canonical Type 2 MFBs with N =
2M — 1 (as in all the examples in Section. 4.5.2) there are no free parameters. It
is possible to find an explicit formula for the scaling and wavelet vectors in such

WTFs. These formulae have important consequences in transform coding applications
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Figure 4.12: o(t) and

1/;0(@)‘ : Type 1, M =5, N = 19.
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Figure 4.13: ¢;(t) : Type 1, M =5, N = 19.
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(especially image coding), where very long filters would exhibit ringing artifacts and
one has to keep N as small as possible while simultaneously having M large [62].

First consider the Type 1 case where N = 2M (and for simplicity M even). It is
easy to see that the prototype filter is of the form

o h0) ] [ cos(00) |
h(J —1) cos(©y_1)
h(J) sin(©y_1)
2
h(M—-1) | = i sin(©y) . (4.69)
h(M) sin(©y)
(M +J) sin(©,_1)
I h(2M —1) | I cos(Oo) |

Therefore, for n € {0,...,J—1}, h(n) = cos (% —(2n + 1)&). Also for n €
{0,1,...,J =1}, g(J+n) = sin(5—(2(J—1—n)+1)537) = cos (% —(2(J+n)+ 1))&)
This implies that for n € {0,..., M — 1}, h(n) = cos (% —(2n + 1)&). Similarly
it can be shown that for n € {0,...,.M — 1}, ¢(M 4+ n) = sin (% —(2n + 1)&).
Equivalently, ¢(M 4+ n) = cos (% —(2(M +n)+ l)ﬁ). Putting it all together we
have the following simple formula for the prototype filter:

s
h(n) = sin (-(2n + 1)
(n) = sin 4M( n+1)
One can similarly do an analysis for the case when M is odd and show that the
prototype filter has the same form. Therefore the scaling and wavelet vectors are

given by

hi(n) = h(n)ein = h(n)cos <ﬁ(2i +1)(n — MQ_ 1))
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= h(n)cos (ﬁ(zi +1)(n + %) — (2 + 1)5>

4
1 [Sm (w(i + 1])\51 )iy 1)9

_ sin (W — (2 + 1)%)] .

2M

(4.70)

In the Type 2 case also (just as above by analyzing the cases of odd and even M
independently) it can be shown that the prototype filter of length N = 2M — 1 is
given by

s
h(n) = si (— 1 )
(n) = sin 2M(n+ )

Therefore the scaling and wavelet vectors are given by

hi(n) = h(n)ci = h(n) cos <ﬁ(2i Ty - M 2)>

= H(mpcos (7204 n + 1) - i+ 1))
= ﬁ [sm (W(i—l_l]\);n—l_l) - (Zi—l_l)%)
—sin 7”(7;\;' - —(2i+ DZ)]

(4.71)

Theorem 33 Scaling/wavelet vectors in canonical modulated MFBs of
Type 1 and Type 2 with N =2M and N = 2M — 1 respectively are given

by Eqn. 4.70 and Eqn. 4.71 respectively.

4.5.4 K Regular Modulated WTFs

Wavelets in a modulated WTF need not be smooth (see Example 16) This section
discusses the construction of K regular modulated WTFs. The construction is based
on the parameterization of compactly supported modulated WTFs. The regularity

conditions on the scaling vector hg become a set of non-linear constraints on the
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parameters of the WTF. Therefore, if the WTF has a sufficient number of free pa-
rameters, by solving a set of non-linear equations, we can obtain regular modulated
WTFs. In some cases, one can analytically solve these equations, while in general K
regular modulated WTFs have to be designed numerically.

A multiplicity M, K-regular wavelet orthonormal basis satisfies (K — 1)(M — 1)
additional linear constraints (compared to a general WTF). Therefore to achieve K
regularity a modulated WTF should have (K —1)(M — 1) free parameters to impose
these constraints. In general, there seems to be no analytical procedure to obtain
K-regular minimal length modulated WTFs (for moderate M and K, however, this
is possible). In this section for the special case when M = 2 we obtain example K
regular modulated WTFs. Our examples show that for a given regularity there may
be more than one minimal length modulated WTF. The smoothness properties of the
different WTFs could be vastly different.

For design purposes it is convenient to use the fact that a scaling vector is K-

regular iff its partial moments up to order K — 1 are equal (Theorem 29). Indeed for

forle{l,.... M —1}and ke {l,..., K — 1}

def

Teo = Y (Mn)*ho(Mn) =3 (Mn + 1) ho(Mn +1) = i

n n

Example 17 Consider a Type 1 MFB, with M = 2 and N = 8. The associated WTF
has precisely one degree of freedom, since J = 1, and kg = 2. This degree of freedom

is exploited make the WTF 2-regular. From Eqn. 4.67, ©¢ = 6po + 0p1 = 37 For

8
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this example

cos(B.1) cos(05.0) cos(0g.1) cos(By ) cos(Z)
—cos(0.; ) sin(0s.0) — cos(fy,,)sin(f;.4) cos(Z)
sin(0y.1 ) cos(fs.4) sin(6y ;) cos(f.4) cos(25)
po | SOe)sino) | —sin(Bs) sinn) cos() )
sin(0y.; ) sin(f.4) —sin(0y,;) sin(6y,5) cos(Z)
sin(0y.1 ) cos(fs.4) —sin(f,;) cos(8y,) cos(Z)
—cos(0.; ) sin(0s.0) cos(0y.1 ) sin(6y,) cos(25)
| cos(f,1) cos(fs,0) | cos(0s,1) cos(0p,0) cos(35)

This scaling vector is 2 regular iff Z(—l)”kho(n) = 0. Therefore

241
il + 71— arcsin(\/_+

4

T \/5—{—1

1 + arcsin(

9071 = or )

1
) 2

1
2

where arcsin is assumed to return a value in [—7 /2, 7/2]. There are two choices of
h and hence there are two such 2-regular WTFs. For these two case h and hg are
given in Table 4.3. The scaling and wavelet functions and their Fourier transforms
the two choices of WTF's are given in Fig. 4.14 and Fig. 4.15. In Case 2 the scaling
function and wavelets are relatively smooth (compared to Case 1) even though both
generate 2-regular WTFs. Regularity of the scaling vector does no imply smoothness
of the corresponding WTF. The scaling function has a piecewise linear characteristic

which is tied to its being 2-regular.

Example 18 In this example M = 2 and N = 12. Therefore there are three angle
parameters, and hence the WTF has two degrees of freedom. We therefore construct
a WTF that is three regular. For it to be a WTF
3w
©¢ = 0o+ bo1+ b2 = R

For hg to be 3-regular Z(—l)”nkho(n) =0, for k € {1,2}. These nonlinear equations
in the angle parameters can be solved numerically (there are several solutions). Three



