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Table 4.3: 2 Regular Modulated Scaling Vector : Type 1, M =2, N =8

Case 1

Case 2

ho(n)

h(n)

ho(n)

-1 O O W N~ oS

0.33569552586546
0.67514166633581
0.29245823397072
-0.58818400664583
-0.58818400664583
0.29245823397072
0.67514166633581
0.33569552586546

0.31014222550271
0.62374956707322
0.11191892079935
0.22508827452548
0.54341116509056
-0.27019617647995
-0.25836553020608
0.12846511606780

0.03057338229891
-0.06148835084290
-0.44417178320799
-0.89330615021238
-0.89330615021238
-0.44417178320799
-0.06148835084290

0.03057338229891

0.02824612214561
-0.05680782883163
-0.16997718255776

0.34185346371612

0.82530726844767

0.41036121942490

0.02353057315103

0.01169992687716
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Figure 4.14: o(t) and
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solutions are given in Table 4.4 and the corresponding prototype filters are given in

Table 4.5. The scaling functions in the three cases are given in Fig. 4.16. Only Case

2 corresponds to a smooth WTF and its Fourier transform is given in Fig. 4.17.

Since all our examples have been obtained by numerical techniques, there is no

guarantee that for a given M and K, there exists a multiplicity M modulated WTF.

However, we believe that this is so.

Conjecture 1 For all M and K, there exist multiplicity M K-regular,

modulated WTFs (of Types 1 and 2).

Table 4.4: Angle Parameters :

Typel, M =2, N=12, K =2

o0
0.1
to,2

-1.03346571960832
0.55717636703648
1.65438659766802

3.76296745429585
-1.51698381446403
-1.06788639473564

4.27075141557234
-0.75894250622404
-2.33371166425213




Table 4.5: 3 Regular Prototype Filter : Type 1, M =2, N =12, K =3

Case 1

Case 2

Case 3

3

h(n)

h(n)

h(n)

— O O 00~ Uk W —O

—_

-0.03627175678668
0.06087838025582
0.43291206114071
0.72659797622866
0.30764278707689

-0.43008909111475

-0.43008909111475
0.30764278707689
0.72659797622866
0.43291206114071
0.06087838025582

-0.03627175678668

-0.02107816639314
-0.01509168336228

0.03831788415099
-0.02743508917869
-0.43119668793692
-0.90065333172258
-0.90065333172258
-0.43119668793692
-0.02743508917869

0.03831788415099
-0.01509168336228
-0.02107816639314

0.21430340959772
0.45328110558723
0.22416303569681
-0.47413556715302
-0.64251558992040
-0.24643539122724
-0.24643539122724
-0.64251558992040
-0.47413556715302
0.22416303569681
0.45328110558723
0.21430340959772

Figure 4.16: vo(t): Case 1 and Case 3

Figure 4.17: to(t) and ¥4 (t): Case 2
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In most numerical analysis applications only low order of K is required. For M €
{2,...,8}, 2 regular prototype filters for canonical Type 1 MWTFs are given in

Table 4.6. Since the prototype filters are even symmetric, h(n) is only given for

ne{0,1,...,N/2—1}.

Table 4.6: Prototype filters for K-regular WTFs

M=23 N =18

M =05, N =30

M=6, N=36

M=7, N =42

M =28, N =48

-0.00388862514471
0.00000000000000
-0.01478482519704
-0.02767653677256
0.00000000000000
0.10522813154117
0.31266437180164
0.57735026918963
0.74621377262522

M =4, N = 24

0.00877038984401
-0.01075359886307
0.05457943758320
0.01059371915934
-0.01813390625490
-0.01403215531070
-0.07121961258650
0.02190387354986
0.16862395303534
0.31087426774399
0.62848508348218
0.68597973556552

-0.00301097038898
-0.00201208359560
0.00000000000000
-0.00448172450143
-0.01512586189495
-0.02162484892812
-0.01722782422909
0.00000000000000
0.03837333703375
0.10863423950739
0.20456111193383
0.32349005648916
0.44721359549996
0.54181245657050
0.58791824411149

-0.00054944468846
-0.01910742365573
-0.00577566692183
0.02844407733543
0.01910967329910
-0.00265043105253
-0.01338305956067
-0.00910367899718
-0.00579716969829
-0.02854997448027
-0.00910475083353
0.06455768411718
0.13936757164327
0.19273020820114
0.31714293350835
0.48068967221677
0.54340809109609
0.55637746698764

-0.00246739083642
-0.00237194122154
-0.00107950489740
0.00000000000000
-0.00191595817083
-0.00743504813986
-0.01402758013820
-0.01803575190864
-0.01735610151889
-0.01164038179004
0.00000000000000
0.02065991979828
0.05440415181523
0.10253663567074
0.15991677470121
0.22857379514531
0.30396352191435
0.37796447300923
0.43903678212524
0.47973571249855
0.49909818659237

-0.00123930643393
-0.00779774978931
-0.01487487447880
-0.01932102524122
0.08973245101789
0.06138828332885
0.03296682908719
0.00750441807299
-0.01402667671272
-0.02960269106783
-0.03627575519340
-0.03352506774898
-0.15570014852204
-0.14970925240107
-0.12515236873747
-0.08493625413770
-0.03716699040685
0.01219222010045
0.07111424153313
0.14217546831856
0.44271260995028
0.46607316030963
0.48183430588546
0.49107010469637

M=2 N=12

M =3, N=30

-0.01047051524186
-0.04042851803229
-0.03544505570212
0.13685965212863
0.50907256925186
0.84800595877688

-0.00002420872650
0.00000000000000
-0.00023932006300
0.00016871556489
0.00000000000000
-0.00166787045212
0.00090672612149
0.00000000000000

-0.01708533214152
-0.02916098647507
0.00000000000000
0.10673613707477
0.32065980778007
0.57735026918963
0.74249942047633

4.5.5 Orthonormality of Modulated Wavelet Tight Frames

Do modulated wavelet tight frames always form orthonormal basis? All the examples
considered so far have been verified to be orthonormal wavelet bases. The classical
Daubechies example of non-orthonormal tight frame corresponding to a scaling vector

of ho = [1,0,0,1]7 is not a modulated WTF. We make the following conjecture

Conjecture 2 Every multiplicity M, modulated WTF is necessarily an

orthonormal wavelet basis.
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Since (non-orthonormal) wavelet tight frames are far fewer than orthonormal wavelet
bases numerical examples with random scaling vectors will not give any conclusive

alswer.

4.6 Linear Phase and Related WTFs

In this section WTFs associated with unitary FIR filter banks with symmetry (see
Section 3.6) are parameterized. First consider the case of PS symmetry in which case

H,(z) is parameterized in Eqn. 3.71. We have a WTF iff

first row of Hy(2)|,_, = | 1/vVM ... 1//M |. (4.73)

In Eqn. 3.71 since P permutes the columns, the first row is unaffected. Hence
Eqn. 4.73 is equivalent to the first rows of both W/(z) and W{(z) when z = 1 is

given by

VM ... 2
This is precisely the condition to be satisfied by a WTF of multiplicity M /2. Therefore

both Wj(z) and W/(z) give rise to multiplicity M/2 compactly supported WTFs.

If the McMillan degree of Wj(z) and W{(z) are Ly and L; respectively, then they
M2 —1 M2 —1

are parameterized respectively by + (M/2 — 1)Ly and +
2 2
(M/2 — 1)L, parameters. In summary, a WTF with PS symmetry can be explicitly
' M2 —1
parameterized by 2 + (M/2 —1)(Lo + L,) parameters. Both Ly and L,
2

are greater than or equal to K.

PS symmetry does not reflect itself as any simple property of the scaling function
Po(t) and wavelets ¢;(t), ¢ € {1,..., M — 1} of the WTF. However, from design and
implementation points of view PS symmetry is useful (because of the reduction in

the number of parameters).
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Next consider PCS symmetry. From Eqn. 3.72 one sees that Eqn. 4.73 is equivalent
to the first rows of the matrices A and B defined by

A B IE[ A; B
-B A =k | —Bi A,
are of the form I/vVM ... 1/VM } . Here we only have an implicit parameter-

ization of WTFs, unlike the case of PS symmetry. As in the case of PS symmetry
there is no simple symmetry relationships between the wavelets.
Now consider the case of linear-phase. In this case it can be seen [76] that the

wavelets are also linear-phase. If we define

A B IE[ A; B
B A -x | Bi A; 7

then it can be verified that one of the rows of the matrix A + B has to be of the form
[ \/W L \/W } . This is an implicit parameterization of the WTF.

Finally consider the case of linear-phase with PCS symmetry. In this case also
the wavelets are linear-phase. From Eqn. 3.74 it can be verified that we have a WTF
VI ... 2] .
Equivalently, W{(z) gives rise to a multiplicity M/2 WTF. In this case the WTF is

M/2 -1
parameterized by precisely / + (M/2 — 1)L parameters where L > K is

iff the first row of Wy(z) for z = 1, evaluates to the vector

the McMillan degree of W{(z).

4.7 Wavelet Frames

The theory of unitary filter banks gives rise to the theory of WTFs. The crucial
property of unitary filter banks used in the construction is the PR property. In this
section we show that PR filter banks in general give rise to wavelet frames for L?(IR).
The results obtained are an extension of the multiplicity 2 results of Cohen [19] and

Vetterli et.al [90]. The relationship between PR filter bank theory and wavelet theory
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in its most general form is depicted in Table 4.7. For unitary filter banks the dual
scaling functions and wavelets (in Table 4.7) are the same as the scaling functions and
wavelets because of the fact that the synthesis filters are time-reverses of the analysis
filters. The theory of wavelet frames is not as complete as the theory of wavelet tight
frames because of the fact that H,(z) for an arbitrary FIR filter bank does not have

as clean a characterization as H,(z) for a unitary filter bank.

Theorem 34 (Wavelet Frames Theorem) Let h;, and g; be the analysis
and synthesis filters in an FIR FB such that Hy(0) = Go(0) = VM and
fori=1,2,...,M — 1 H;(0) = G;(0) = 0. Define the functions

dolw) = [ Ho (%) and  Jo(w) = [ Go <E>

J>1 7>1

Assume further that (the distributions) tg(¢) and I/N)o(t) are in L*(IR) (no-
tice that this implies restrictions on the k; and g¢;). Now define

\/_Zh YoMt — k), i u(t) = M 2py(MIt — k),

\/_Z gZ ¢0 Mt + k) and @Zi7j7k(t) = Mj/Q.@Z)Z'(th - k)

Then {t; ;x} and {J)uk} form dual frames for L*(IR):

M-1

<’l;zyj,k(t > uk_zz Foti (1)) i ke

=1 jk =1 gk

Table 4.7: Relationship between Filter Bank Theory and Wavelet Theory
‘ Filter Bank Theory ‘ Wavelet Theory ‘

Lowpass Analysis filter hg Scaling Vector/Function (hqg, %)
Bandpass Analysis filter A, Scaling Vector/Function (h;, ¢)
Lowpass Synthesis filter go | Dual Scaling Vector/Function (go, %)
Bandpass Synthesis filter ¢; | Dual Scaling Vector/Function (g, ¢)
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)= 32 (oo, £) toos®) + 3033 (Busalt), £) visult)
= 3 U sl foos®) + 30 S0 S0 U hsal0) el

Proof: The first part of the proof of this theorem parallels the wavelets tight frames
theorem. The functions ©;(t) and l/N)Z(t) are all compactly supported in an interval of

length % as in the tight frames case. Define two families of operators

= ijp><tije and L= ik >< ik
k k

These operators makes sense for all i for an arbitrary f € L*(IR). In fact it suffices

to show that for f given
2 2 5 2 _ A 2
S F S CUAP and 3 |(fda)| < Gl
k k

for suitable non-negative constants C;. This follows from Bessel’s inequality by noting
that the functions {zpi,j,(N_l)erk/ HQZJZH} for fixed ¢, 7 and k, with k =0,1,..., N — 2

form an orthonormal family (since they don’t overlap) and hence
DI diia) P < (N = D) il A1
k
Similarly for the case of ¥; ;. Notice that for all j
Vi j—1,( Z hi(Doarn and  igoik(t) =Y giD)do -t (4.74)
l

For any fixed j from the fact that h;(—n) and ¢;(—n) form a PR filter bank we can

invoke Theorem 24 to get

M-1 M-1
= Z ]2'7]'_1 and ]07]' = Z ]2'7]'_1. (475)
=0 =0



189

The filter bank PR property (Eqn. 3.8) is crucial to obtain this result. By repeatedly
substituting for Iy ;_y1, Iy ;_2 etc., for fixed J

M-1 J-1

Ly=Y_ Y Iy

i=1 j=—o0
Notice that v; ; x(t) approaches the zero function for all ¢ and k as, j — oo and hence
the infinite sum over j makes sense. We need to show that lirglo Iy;f = fforall fin
L*(IR). Since tg0,0(t) and 1;07070@) may not form a partitim]l of unity, we cannot use
the approach taken in the tight frames case.
As in [19] we first show that there is weak convergence and then strengthen it to

strong convergence in L*(IR). For weak convergence we must have for any f, ¢ in

L*(R)

o0

Z Z 97 ij = hm <97]0]f> <gvf>'

1=1 j=—o00
Since both g ; and 1/)07]-7;c approach the Dirac measure at 277k for large j (recall that
Hy(0) = Go(0) = VM and hence 1/;0(0) = I/NJO(O) = 1) this is expected and can be
proved rigorously by noticing that

(9, Lo [) (4.76)
= Y (g %0) <%50,j,k7 f >
= MY (g, (Mt —k)) <¢N’0(th - k,f>

= M‘JZ[;W/ (w )%( )erkdw] [%/f ) ﬁ)e—%m]
_ %/g(wwo (7)) |70 (57) 271'1]\4f Xk:ei‘”ﬁ%l deo

= o [t (o) f*(Awo(ﬁ)Zé( )dA] e

_ o (2 (o 2000 (24 4
_ Zzﬂ/ M f(w—i-Z?rM Z)¢0<Mj+27rl>dw (4.77)
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and all terms in the right hand side are small for [ # 0 and large 7 and the [ = 0
term approaches the desired inner product. To strengthen this weak convergence to

strong convergence we need the following result:
>l < CUAP
ik

for some C > 0. Since the sum over 7 is finite it suffices to show that
S UFtiml® < CIfP
.k

for some C; > 0. This can be proved by elementary means using epsilon-delta argu-
ments. Two important facts are required for the proof: firstly that for ¢ # 0, 1;2(0) =0
and secondly that @Z(w) decays faster than |w|_% for large w. The first fact follows
trivially from the hypothesis that H;(0) = G;(0) = 0, and the second from the fact
that ¥;(¢) is in L*(IR). These two facts can be used to show that for j and k tending
to oo, the numbers |(f, ;. 1)|* decay rapidly enough for the double sum to converge.

Now we have strong convergence because

F= ) Y Lf

liI<L, k<L i
= sup <g,f>— Z Z<g7]i,jf>
llgll=1 |7|<L,|k|<L i
M-1
< sup Z Z Z Z<ga]i,jf>
WlI=1 20 s LK |>L | [j|> L kIS L i
- : N '
< sup [ZZH%%;‘M] [Z ‘<¢kavf>‘]
loll=t | 5=1 ik F>Lk>L
M-1 ~ 2
< ¥ % [fhns)

=1 j>Lk>L
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Wavelet frames also have an associated multiresolution analysis the structure of
which is relatively more complex (compared to the tight frames case). Define the

Spaces
VVZ'J = Spcm {¢i,j,k(t)} and VT/Z'J = Spcm {@Zi7j7k(t)} .

For f € L*(R) I, ;f € W; ;. From Eqn. 4.75

M-1 . M-1 .
Logf =Y ILijaf and Io;f=> lijaf
=0 =0

and hence

Wo,; =Woc1 ©Wijo1... @ Wi
Wo,j = Wo,j—1 © Wl,j—l ... D WM—Lj—l-

Also lim Wy; = L*(R) = lim Wy, and lim Wy; = {0} = lim Wy;. We have a
j—o0 j—o0 j——o00 j——o00

double multiresolution analysis of L*(IR) with a chain of closed subspaces:
{0} C...Wo_1 C Wy C Wy...C L*(R)

and

{0} C ... Wo_y C Woo C Wos...C L*(R)

What is the relationship between, the spaces W, ; and VT/M? In general there is no
relationship. However if the frame is a Riesz basis for all j and 7 # [, W, ; L VT/ZJ
Necessary and sufficient conditions so that the frames become Riesz basis can be
derived exactly as in the multiplicity 2 case in [19]. Most wavelet frames will be
Riesz bases. Regularity conditions can also be imposed on the wavelets and scaling
functions. I/NJO(t) is called the dual scaling function and the functions ;Z:Z(t) are called
dual wavelets. Multiplicity 2 biorthogonal wavelet bases have been constructed by
Vetterli [90], Chui [14] and Cohen [19]. But for Chui, the others have used filter bank
theory as the starting point. Chui starts from a multiresolution analysis with spline
functions and constructs spline wavelets. Since spline functions are as smooth as we

require these are smooth wavelet bases.



192
4.8 Oversampling Invariance of Wavelet Frames

Frames and tight frames being redundant systems are robust in the presence of coeffi-
cient quantization (and other uncertainties) [23]. Given the importance of redundancy
in these representations, it is natural to enquire into whether oversampling a wavelet
frame gives another wavelet frame. Recently Chui and Shi [16] showed that under cer-
tain conditions on the oversampling factor a wavelet frame continues to be a wavelet
frame. In this section, we strengthen their results by showing that in general if the
conditions in their paper are not met then oversampling does not preserve the frame
property. We also show that when the frame property is preserved the dual frame is
obtained by oversampling the original frame. Our proof is elementary (compared to
the one in [16]). Since the theory of filter banks is used in our proof our result is only
valid for wavelet frames that are derived from filter banks (i.e., the frames considered
in this thesis).

Section 4.3 gives a general technique to construct wavelet frames (with compact
support) from FIR filter banks. Such FB wavelet frames have a scaling function,
Yo(t), associated with them. We show that if ¢, ; x(¢) forms a multiplicity M wavelet
frame then v; ; /v forms a wavelet frame with dual frame 'l;m’k/N iff the N is relatively

prime to M. The result follows from a sequence of lemmas.

Lemma 28 Given FIR h(n) let
blw) = [T H(e=™) (4.78)
7=1

exist as the Fourier transform of a function ¢(¢) € L*(IR). For any positive

integer N if H'(z) = H(z") we have

Pw) E T H(e“™) = p(Nw)

i=1

and therefore ¥'(t) = %1/;(%)
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Proof: Follows directly by substituting H'(e™) = H(e'N¥). O
The result says that if a function is generated from a sequence by the infinite product
in Eqn. 4.78, interpolating the sequence by a factor of N is equivalent to stretching
the function by a factor of N and (and scaling by 1/N). A direct consequence of the

above Lemma is the following result for filter banks and frames generated from them.

Lemma 29 Let the filters H;(z) and G;(z) generate a multiplicity M
wavelet frame (with functions ¢;(¢) and g/N)Z(t)) If the filters are upsampled
by a factor of N, the associated functions ;(¢) and J)z(t) are given by
%1/}2 (%) and %J)Z (%) respectively. Conversely, given an FB frame if the
scaling function and wavelets are all stretched by a factor of NV they can

be obtained by upsampling each analysis and synthesis filter by V.

Proof: Apply Lemma 28 for all the functions involved. O

Lemma30 Let H;(z) and G;(z) be the filters in a perfect reconstruction
filter bank. Then the filter bank obtained by interpolating each of the
analysis and synthesis filters by a factor of N is perfect reconstruction iff

(generically) (N, M) = 1.
Proof: Since Gg(z)Hp(z) = Hp(Z)Gg(Z) = [ we have in particular
D Hip(2)Gixl(z) = 8(i — j) (4.79)
k

Let hl(n) and g/(n) denote the new filters. Define o(l) = Z hi(k)g; (Ml — k). Then

k
from Eqn. 3.1 and Eqn. 3.2,
Z(a(l)) = [l M]H(2)G}(=)

M-1M-1

— [l M] Z Z_NkHZ"k(ZNM)ZNZG]‘J(ZNM)
k=0 [=
M-1M-1

= [l M] N H, (NG (M)
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Now let (N, M) = 1. As [ and k range from 0 through (M — 1) the only value of
N(k — 1) that is a multiple of M is zero. Hence from Eqn. 4.79

Z(a(l) = 3 Hip(N)G(=Y) = 8(i — )

k=0

Or equivalently in terms of sequences
Y Ri(R)g (M= k) = 8(i — )5(1)
k

Therefore the new filters form a perfect reconstruction filter bank. If (N, M) # 1 the
above relationships do not hold and hence (generically) with the new filters we do not

have a PR filter bank. O

Theorem 35 Let {t;;x} and {;/N)”k} form a frame, dual frame pair.
Also let
1 t . 1~ [t
/t = =%\ x> Z/t = =%\ 7]
=g () o= 75 (5)
Vi = MMt — k), and J’Z/',j,k = MY/ (Mt — k).

Then {;bl’]k} forms a frame with dual frame {@;]k} iff (N, M) = 1.

Proof: Let H;(z) and G;(z) denote the analysis and synthesis filters of the filter
bank associated with the FB wavelet frame. Then from Lemma 29, the functions
Yi(t) and t/N)Z'(t) are generated by replacing the filters H;(z) by H'(z) = H;(2") and
G:(z) by G'(z) = G;(2") respectively. Now these functions generate a frame iff the
corresponding filters form a perfect reconstruction filter bank. From Lemma 30, this

occurs iff (N, M) = 1. Hence the result follows. O

Theorem 36 Let {t; ;} form an FB wavelet frame for L*(IR) with dual
frame {1/);”} Then {\/l—ﬁg/)”%} and {\/I—NI/N)”%} form dual frames for
L*(R) iff (N, M) = 1.
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Proof: Notice that

1 _ L [y ( j_ﬁ)]
N%,j,%(t) = \/N[M vi | M7t N
_ L e (M v i
)
= M/ (MI (Nt — M~k))
= My (MINt — k)

= . (NY) (4.80)

1,5,k

Therefore {\/Lﬁd)”%} forms a frame for L*(IR) with dual frame {\;—N@”%}, iff
{1/)2’]k(Nt)} and {@/N)Z’]k(Nt)} form dual frames for L*(IR) and from Theorem 35 the

result follows. O

In summary, all wavelet frames, that have filter banks associated with them,
exhibit the following property: oversampling by a factor or N preserves the frame
property with the same dual frame (oversampled by N) iff (N, M) = 1. In particular,
tight frames are preserved by oversampling by N, with (N, M) = 1.
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Chapter 5

Computational Aspects and Applications

5.1 Implementation of FIR Filter Banks

Most results in filter bank and wavelet theory have been developed in a general setting.
However, this section discusses the implementation of FIR filter banks only. There do
exist classes of IIR filter banks (based on allpass structures) with low computational
cost [84]. The question we address is how to most efficiently implement the analysis
and synthesis banks in a filter bank or transmultiplexer. Section 5.2 relates the
computations in FIR filter banks to computations in compactly supported wavelet
frames. Throughout this section, by the polyphase representation we refer to the
first orthant polyphase representation. Moreover, in the final implementation we will
always assume that H,(z) and G, (z) will be multiplied by appropriate delays to make

them causal.

5.1.1 General FIR Filter Banks

The polyphase representation is the most efficient way to implement both the analysis
and synthesis banks in the general FIR case [70]. The essential idea is that only one
out of M outputs of a filter in any branch of the analysis bank must be computed.
Similarly in the synthesis bank, the inputs to the filter along each branch has M — 1
interlaced zeros which can be exploited by the polyphase representation.

Consider the analysis bank. From Eqn. 3.5
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The above equation is represented in Fig. 5.1. One readily checks that there is a
factor of M savings in computation over direct implementation. If each filter h;(n) is
of length M K, a direct implementation requires M3 K multiplications and M?*(M K —
1) additions per output vector d,(-). The polyphase implementation requires M?
convolutions with filters of length K, and therefore requires M?*K multiplications
and M?(K — 1) additions. Further savings are possible by implementing each of the
M? convolutions in Eqn. 5.1 using fast-convolution algorithms or the FFT [6, 7].

z(n) I M do(n)

| M di(n)

| M dr-1(n)

Figure 5.1: Polyphase Structure for the Analysis Bank

As for the synthesis bank, from Eqn. 3.6
Y,(2) = GT(2)Dy (). (52)

This is represented in Fig. 5.2. Clearly, the savings from going from the direct to
the polyphase representation is a factor of M as in the case of the analysis bank.

Notice the non-causal delays in Fig. 5.2 exhibiting the structural finite non-causality
of M — 1 of the filter bank.
General Unitary Filter Banks

If H,(z) is unitary the Householder parameterization described earlier provides the

most efficient technique for implementing general unitary filter banks. Recall that



198

do(n) TM y(n)
dy(n) TM
T z
G, (2)
dM_l(n\ TM

Figure 5.2: Polyphase Structure for the Synthesis Bank

in Section 3.4, Householder type factorization of H,(z) was discussed for general M.
For M = 2, a Givens’ rotation type factorization was also discussed, (which played
an important role in the theory of unitary modulated filter banks). The Givens’ type
factorization is most efficient for M = 2, and the Householder type factorization is
most efficient otherwise.

Let H,(z) be unitary of degree K — 1. Then the filters are of length M K. Now
from Theorem 9 (Eqn. 3.22) H,(z) can be parameterized by K — 1 unitary vectors

vi,2=1,2,..., K — 1 and a unitary matrix V5.
H,(z)=1[I - vK_lv}F{_l + Z_vi_l'v}F{_l] = 'vlvip + 2_1'011)?]‘/0. (5.3)

Therefore, the analysis FB can be implemented as shown in Fig. 5.3. The structure is

-1 -1

4
zp(n) — , -1 1 Ivl |_‘_,_ PPN i S| SN I’UK_1|_“_>. d,(n)

g

> >
> >

Figure 5.3: Implementation of Unitary FBs : Analysis Bank

regular and easily coded. The thick lines in Fig. 5.3 correspond to vector data, and the
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thin lines to scalar data. The the number of storage elements required to implement
the entire filter bank is K — 1, the McMillan degree of H,(z). Since each of the filters
is of length M K, the usual polyphase implementation requires M?K multiplications
and M?*(K — 1) additions. As for the cascade implementation above, there are K — 1
blocks, followed by a unitary matrix multiplication. Since each block requires 2M
multiplies and M adds, the entire cascade requires [( K — 1)2M + M?] multiplies and
(K — 1)M + (M — 1)M] additions. These counts could be moderately improved
by taking advantage of the fact that the unitary matrix multiplication can be done
more efficiently than a general matrix multiplication. As for storage requirementsin a
direct form implementation of H,(z), the obvious convolution implementation requires
(MK —1)M scalar storages (delays), the polyphase implementation (K —1)M delays,
and the cascade implementation requires just K —1 delays (the minimal possible since

the McMillan degree of H,(z) is K —1).

The polyphase synthesis bank matrix is given by
GZ(Z) = Hg(z_l) = VI —viof + zvgol] . [ — vk _1vke_y + zvg_qvk_,]. (5.4)

The corresponding structure for the synthesis bank is shown in Fig. 5.4 The computa-

dp(n) — ’U};_l z EIW_' e __.@ P @ > VOT [, yp(n)
Y - Y .

> >

Figure 5.4: Implementation of Unitary FBs : Synthesis Bank

tional complexity of this structure is identical to that of the analysis bank. However
because z-blocks are involved the implementation is non-causal. A causal reorgani-

zation of the computation is given in Fig. 5.5. The storage complexity of this bank

is (M — 1)(K — 1) (which in turn is the McMillan degree of 251 H,(z71)).
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yp(n — M + 1)
>~ -]
d,(n
1 YK-1 = I U V1 17T 0
\ | ‘ ) 4 o - >
L Z 1 L L Z 1 L

Figure 5.5: Cascade Implementation of the Synthesis Filter Bank - Causal

Two Channel Unitary Filter Banks

For two-channel unitary filter banks, the denormalized orthogonal lattice (based on
Givens’ rotations) is the most efficient [86]. Recall that a degree (K — 1) unitary

matrix H,(z) is parameterized by (K — 1) angle parameters 6;. Define v; = tan §; and

K-1
B = H cos ;. Then (from Eqn. 3.23)
=0
1 -1
1 27y I v
Hy(z) =3 H . (5.5)
i=K-1 | —Vi & - 1

and since each factor in the product above requires two multiplies (as opposed to four
for a planar rotation matrix), the multiplication cost of the above implementation is
one half of a rotation-based implementation. Furthermore, H,(z) above is structurally

unitary: independent of the quantization of ~;, H,(z) is unitary [86].

5.1.2 Modulated Filter Banks

A unitary PR MFB reduces to a set of J two channel PR filter banks. This section
shows that the implementation of an MFB is equivalent to the implementation of J
two channel PR filter banks, a DCT and an inverse DCT. The type of DCT depends
on the parity of the modulation phase a. It a a Type III DCT is required and if «
is odd a Type IV DCT is required. Recall that the four types of DCT are defined as
follows [72]:



Type I DCT: For k € {0, 1,..

* 7

\/TZ ) cos lm>

Type II DCT: For k€ {1,..., M — 1}

- \/%Ag 2(n) cos (%k(n + %))

and

Type III DCT: For k € {0,1,.... M — 1}

\/>Z ncos< k—}—l))—l-\/%x(O).

Type IV DCT: For k € {0,1,..., M — 1}

\/71522;1 cos< k+;)(n+%)>.

201

(5.6)

DCT I and DCT IV are involutary (i.e., the inverse transform is the forward

transform) while the inverse of DCT III is DCT II and vice versa [72].

MFB Analysis Bank

Modulation Phase « is even: This covers Type 1 MFBs with M odd and Type 2

MFBs with M even. In this case J = 5 (from Eqn. 3.42) and we have

di(n) = Y a(Mn—k)hi(k)

k

= Z x(Mn — k)h(k) cos <2M(2L + 1)(k - %)>

k

= S e(Mn — k= J)h(k+ J) cos <2M(26 + 1)k>
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Since ¢; grom = (=1)'ein, cix = i1, and ¢; pr = 0 (where ¢; , is defined in Eqn. 3.33),

di(n) = > (=1)'a(Mn —2M1— J)h(2M1+ J)e;o
+ ~ {Z(-M(Mn —2M1 —k — J)h(2M1 + k + J)} Ci

—|-]\§ {Z(—l)lx(Mn—ZMl—l—k— J)h(2M1 — k—|—J)}Ci,k

k
If 2x(n) = a(Mn — k), pro(n) = h(2Mn + k) and pr1(n) = h(2Mn + M + k), then

Di(z) = Xy(2)Pro(—2*)cio + - [ X71x(2)Pryro(—2%) + Xy—k(2) Propo(—2%)] cig
Define

\/MXJ(Z)PJ@(—ZQ) for k=0
no-{ 2 2

VA (X54k(2) Priko(=2) + Xyi(2)) Progo(=27)  for k € R(M)\ {0},
Then

Di(z) = \/> [Z Ty(z) cos (— (i + %) k) .

which shows that the output at the instant n is the Type III DCT of the sequence

tk(n).
Let the MFB be Type 1 (M is odd). Notice that Xarn4x(2) = 27" Xk(2) and that

Portntro(—7%) (—1)22" Py o(—2?)
Portntra(—2%) B (—1)"2*" Py1(—2%)
Pariro(—22) N Pp1(—2%)

I Prryra(—22%) | I —22Ppo(—2?) |

Hence for k € {0,1,...,J — 1}
M
Trp+n(z) = 4 > (Xnr45(2) Prrgio(—2%) + Xoargm—1-6(2) Poprgm—1-k0(—2%))
= M(z—lx Poi(—2%) —2'X 2P — 2
= 5 K(2)Pea(=2%) — 2" Xago1-k(2)2 2 Prci—p i (—27))
= M(z—lx Poi(—24) — 271X P -2
= 5 W(2)Pra(—2%) — 27 Xno1—k(2) Pr—1—ki (—27))
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Fig 5.6 shows the implementation of the analysis filter bank. Notice that (as expected)
P;1(2*) does not enter the computation and could be arbitrary. If the MFB is Type

z(n)
lM Poyo(—ZQ) :_
-1 L py(—22
? b1(=7") | |\ do(n)
: . di(n)
> lM PJ,O(_Z2)
| Pl DCT III
-1
i L dua(n)
_T —>dM—J(n)
— lM L PM_lyo(—ZQ)
PM_171(—Z2) —»|

Figure 5.6: MFB Analysis Bank Implementation: Type 1, odd M

2 and M even then

Trn(z) = /5 (Xna(2)Pumro(—2) + Xorana () Posrerioro( =)

B % (X1 (2)Prroao(=2%) = 27 Xaa (2) Puoaa(—27))

For k€ {0,1,...,J =1}

M .
Trvan(z) = 4 > (Xnt45(2) Prrgio(—2°) + Xonmrgm—2-k(2) Poprgm—2-k0(—2%))

= % <Z_1Xk(Z)Pk,1(—22) _ Z_IXM—Q_k(Z)PM_g_kJ(—22)) ‘

The implementation of this analysis bank is shown in Fig 5.7.

Modulation Phase « is odd: This covers Type 1 MFBs with M even and Type 2
MFBs with M odd. In this case J = 2t and

2

di(n) = ZT:(MTL — k)h(k) cos (L(Zl +1)(k - %)>

2M
k
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lM Poyo(—ZQ) :_
21 L Poi(—2?) |
! > do(n)
.' > d1(n)
—> lM Pl,O(_Z2)
1 Pa(=#) _¢ DCT III
-1
i 1 | dua(n)
_>dM_J(n)
' > |M 22)

Pyr_q,0(—
L Pyr_qa(-

22)

Figure 5.7: MFB Analysis Bank Implementation: Type 2, even M

-

k=0 {

M-1

X

0
Ml{
k=0

M-1

_|_

k=0
Equivalently

M-

k=

For k € R(M) let

{z

~M

{z

1

XJ+k

o

e(Mn —k — J)h(k+ J) cos <2M(2t + 1)(k+ %))

ST

n—2M1+k+1—J)h(QMl—k—1+J)}ci7_k_1+%
Mn —2MI — k—])h(ZMl—l—k—l—J)}cLH;_

n—2M1+k+1—J)h(2Ml—k+J—1)}ci’k%.

(2)Prero(=2*) + Xyo1ok(2) Proazko(=27)] €yt

Ti(z) € \/g(XJM(Z)PJ-I—k,O(_Zz) + Xso1-k(2)Proaoro(—=2%)) .
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Then D;(z) is the Type IV DCT of Ty(z).

Di(z) = \/%Ag Ty(2) cos (%(i + %)(k + %)) .

If the MFB is of Type 1 (M is even) for k € {0,1,...,J — 1}

M
Trvu(z) = 4 o) (Xnr46(2) Pargro(—2°) + Xoamram—1-5(2) P-srsm—1-k0(—2%))

= % (27" Xk (2) Pep(—2%) — 27" Xara—w(2) Pruci—p (—27))

The implementation of this analysis bank is shown in Fig 5.8. If the MFB is of Type

z(n)
lM PO’O(—ZQ) :_
21 L Poyl(—zz)
1 > do(n)
_>d1(n)
> lM Plyo(—ZQ)
L, .2
Pra(=2") DCT 1V
Z—J
_>dM_2(n)
=1 > da—1(n)

Prr—1,0(=2%)
M—2 | |]
Pyr_1a(—7%) {27! M-1

Figure 5.8: MFB Analysis Bank Implementation: Type 1, even M

2 (M is odd). In this case

Ty(z) = \/g (Xnr-1(2)Par—10(=2%) + Xomreni—1(2) Ponrgmi—1,0(—27))

- % <XM_1(Z)PM—170(_22) - Z_lXM—l(Z)PM—1,1(—22)) )

For k€ {0,1,...,J — 1}

M

Trrisi(z) = 5 (Xn146(2) Pragro(—2°) + Xomgm—2-k(2) Pomtgm—2-ko(—2%))
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\/g (Z_le(Z)Pk71(—Z2) — Z_lXM_g_k(Z)PM_g_kJ(—22)) .

The implementation of this analysis bank is shown in Fig 5.9.

M

—» dM_2 (n)
—» dM_1 (n)

Poo(=2%) u
Po1(—2%)
Ji
Pio(=2%)
P _ .2
11 (=27) _ ¢ DCT IV
=1
2
Parr—1,0(=2%)
M-3 L1
M-=2 I
—1 M-—1 -

Prro11(=2%)

MFB Synthesis Bank

Figure 5.9: MFB Analysis Bank Implementation: Type 2, odd M

Modulation Phase « is even: This covers Type 1 MFBs with M odd and Type 2
MFBs with M even. In this case J = 5 (from Eqn. 3.42) and

Gi(z)

{

M-1

J—k
+E z27 Tk
k=1

M-1
J+k
+ E 2/t Ci k
k=1

S 0" = Faln— P

ZJCLO Z Z_QMZ(—I)lg(IZMZ - J)

D M=) g@MI+ k — J)
l

> M (1) g2MI—k — J)
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= ZJCi,OGJ,O(_ZQM) + [ZJ+kGJ+k,0(—22M) + ZJ_kCi,kGJ—k,o(—ZQM)] Cik
k=1

Y(z) = Y Di(z")Gi(z) = ) 2Wi(M)

Therefore the polyphase components of Y(z) are given as follows.
Yi(z) = \/MZJGJ@(—ZZM)SO(ZM).

When M is odd, for k € {0,1,...,J — 1}

Yi(2) = \/g [Gro(=2")Ss-k(2) + 2Gra(=2")Srs141(2)]
Yaioik(z) = \/gz [Gr—1—ko(—2%)Ss_k(2) — 2Grz1—pa (—2°) Sapar(2)]

and when M is even
_ M 2 2
Ye(z) = A/ 5 [Gro(=2)80(2) + 2Gra(=2")Sryara(2)]
M
Yrvoo-k(z) = \V 37 [GM—Q—k,O(_ZQ)SJ—k(Z) — ZGM—2—k,1(_22)SJ+2+k(Z)] .

Additionally when M is even

M

Vi (2) = 4/ 5 (Gurro(=2) = 2Guaa(=2) S (=),

Modulation Phase a is even: This covers Type 2 MFBs with M even and Type
1 MFBs with M odd. In this case J = CYT‘H and

Gi(z) = Zg(n)ci,n+J—152_n = Zg(n - J)Cm_%z_m"]
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M-1
= > 7 e [Z (1) g(2MI+ k41— J>]
k=0 {
M-1
+ Z 2 TEe, pg L ZZ_QMZ(—l)lg(ZZMZ — k- J)]
k=0 {
M-1
= [ZJ+kGJ+k o(=2*M) + 277Gy o2 )] Ciktl
k=0

Y(z) = DIDEMG) Y A

For k € {0,1,...,J — 1} we have when M is even
M 2 2
Ye(z) = (/5 [Gro(=2")801k(2) + 2Gia(=2") 81 (2)]
_ M 2 2
Yrvoi-k(z) = 5 % [GM—l—k,O(_Z )Sy—1-k(2) — 2Gp—1-p1(—2 )SJ-}-k(Z)]
and when M is odd
M 2 2
Ye(z) = /5 [Gro(=2")8m1-4(2) 4+ 2Gra(=2") Supasn(2)]

Yi—ook(z) = \/gz [Gr—a-ko(—2)S1o1-k(2) — 2Gp—2—k (—2%) Syp14k(2)] -

Additionally when M is even

Via(2) =\ 5 (Gurro(==) = 2Gar1a(==)) Sy (2).

5.1.3 Modulated FIR Unitary Filter Banks

If an MFB is unitary FIR each of the pairs P, o(—2*) and P, ;(—z?) can be implemented

using the denormalized two-channel orthogonal lattice. Indeed

Pro(—2?) B ! cos(Op k) —z*sin(0;) cos(f;0)
Pri(—2?) ] k_lk_lll{ [ sin(f;,) 2% cos(0,x) ] } [ sin(6;) ]
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1 -2
I =27 vk 1
= ﬂl H ’
k=k —1 Yk 1 Y.0)

0

where 3, = H cos(0; k), and 7, = tan(f; ). Similarly the synthesis bank also can
k=k;—1

be implemented using the two-channel orthogonal lattice. Also notice that the PR

pairs can be implemented simultaneously.

5.2 Computations in FB Wavelet Frames

Given h;(n) and g;(n) of a compactly supported multiplicity M wavelet frame, how
does one compute the samples of ¢;(¢) and J)Z»(t)? Furthermore, given the samples of

a signal how does one (efficiently) compute its Discrete Wavelet Transform (DWT)?

5.2.1 Samples of the Scaling Functions and Wavelets

Since between samples a function could behave badly, some form of a “continuity”
assumption is implicit in the sampled representation of functions. To compute the
samples of (1) and l;Z(t) there are two possible approaches: the interpolation method
and the infinite product method. The latter is relatively more efficient while the former
is relatively more accurate.

In the interpolation method {tg(n)} is first obtained by solving the linear equa-

tions

Po(n) = \/Mz_: ho(Mn — k)io(k).

Samples at the M-adic rationals are then computed recursively.

o () =V hotirin ("5

Similarly the samples of the wavelets at M-adics rationals are computed.
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This method gives computes the exact values of ¢;(¢) at the M-adic rationals.

The infinite product method is based on the following formula:

~ 1 w — 1 w
)= |t ()| TT | 0 (55) |
o= [t G Iy G
If the infinite product above is truncated to J terms the resulting function is periodic

with fundamental period [—77, 377]- This can be interpreted as the (discrete-time)

Fourier transform of the samples ¥, (%)

Z(i(M~n))(2) ~ M0, (ZM) ﬁﬂo (ZM) . (5.11)

The above equation can be implemented as a recursive algorithm.

5.2.2 Analysis/Synthesis in Wavelet Bases

The DWT of a signal f(t) is given by <f, I/N)”k> Assuming only the samples of f(¢)
are available the DWT can only be computed approximately. The inverse DWT is
given by

f(t) = z_: D (Fo k(1)) diga(t),

i=1 jk

Let Wf(e,7,k) = (f,vik), ¢t € {1,2,...,M — 1}, denote the DWT (with respect
to this frame). From computational considerations one defines the Discrete Scaling
Transform (DST) at scale j by Wf(0,5,k) = (f,%0,k). The DST contains all the
information in scale j. From a practical viewpoint the indices 7 and k& run only over
a finite set.

Any signal f(¢) can be approximated to any desired accuracy in W, ; for sufficiently
large j. Let 5 = J; denote the finest scale of interest. Similarly a coarsest scale of
interest J. can also be determined (if necessary). Information in coarser scales can

be retained in the DST at that scale.

M-1 Jf

F@) = WFO, Je k) oos(®) + D> Y W FE, 5, k)i e

=1 j=J. k



