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The Projection onto the Finest Scale

One efficiently computes the DWT from the DST at scale Jg: W f(0, J¢, k). The DST
is seldom computed exactly since inner products are involved. Moreover typically
only the samples of f(t) are available. From the samples by using local polynomial
interpolation one can approximate f(t¢) and then compute the DST by numerical
quadrature. This procedure becomes the discrete convolution of the samples of f()
with the moments of ¥g(t) [33, 32]. Now the moments of 1)g(¢) can be computed from
the moments of the scaling vector. In fact if y;  and m; ; denote the the k" moments

of hi(n) and ;(t) respectively one can show that (see Section 5.3, Lemma 31 for

details)
1 [k

— > i, 100 o
MFts ;

=0 \J

Mg =

Hence m;j can be computed from p; ;. In general with local polynomial approxima-
tion one can compute a sequence e(k) so that W(0,J;, k) = e(k) * f(M~/7k).

In most applications one can take the samples of f(t¢) to be the DST. In fact if
the scaling function is K-regular with K > 2 one can show that (see Section 5.3)

F(M=1(k 4+ mg.)) gives a third order approximation to W f(0, J;, k).

Analysis

From the DST at scale j one can compute the DWT and DST coefficients at scale

J — 1 using a filter bank. Indeed from Eqn. 4.74 we get
WG, j—1,n) =Y hi(k)W (0, j, Mn + k).
k

This corresponds to an analysis filter bank with filters h;(—n).
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Synthesis

From the DST and DWT coefficients at scale j — 1 the DST coefficients at scale j

can be computed using a synthesis filter bank with filters given by ¢;(—n).

£(0,4,n ZZZ% Mk —n)Wf(i,j—1,k).

This follows from the fact that

M-1
ZZgi(Mk_n)¢i’j_l’k = ZZ‘% Mk—n Zh ¢0]Mk+l
=0 k
= ZZgsz—n Zh —MFE + D)o .
= > oy Zzgi(Mk—n)hi(—Mk+l)
{ =0

k

— Z 1/)07]‘715(1 — n) = 'QZ)O,]',TL'
l

5.3 Moments of the Scaling Function and Wavelets

The moments of the scaling function and wavelets can be computed exactly from the
moments of the scaling and wavelet vectors. For K-regular, multiplicity M WTFs the
moments of hq satisty a set of structural relationships that imply a set of relationships
between the moments of ¥g(¢). One such relationship is that mal = myg. This result
implies that uniform samples of of a smooth function give a third order approximation

to to the DST coeflicients.

5.3.1 The Moments of ¢;(¢) and h;(n)

For : € R(M) and n € N let

N-1
My = / dtt'(t), and pi. =Y K'hi(k). (5.12)
R k=0
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Lemma 31 The moments ¢;(t) and h;(n) are related as follows:

Mg, = el Z ) wimo - (5.13)

Proof: From Eqn. 4.18

mi, = \/Mzhi(k)/ﬁdtt%o(Mt—k)
= jé zk:ho(k)/ﬁdt (%)n%(t)dt

1 AT
_ Mn+%%:hi(k)4dtz | TR ()

7=0 \J

S () [ e
k

V22
=0 \J

I < [n
- E e
s ) FiiTomn—j

=0 \J
O

Eqn. 5.13 gives a recursive formula to compute m; . Since p; o = Z hi(n) =V Mé(z)

n
and mgg = 1,

1 1
—— ;0T = ——
VALt Tl
If we define the scaled discrete moments d; ,, = pi;n/V M, Eqn. 5.13 becomes

VM6(i) = 8(:).

m;o =

n

1
miyn = Mn Z . di,jmo,n—j7 (514)

with d; o = m;o = 6(7).

Lemma 32 Given () and an integer £ > 0 the following statements

are equivalent:

L. Forall n, 0 <n <k, mg, = (moa1)".
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2. Foralln,0<n <k, dy, = (don1)".

If either condition is satisfied dy,, = (do1)* = (M — 1)"(mgq)" for all

non-negative n.

Proof: dyy = moe. From Eqn. 5.14 Mmgy = doomos + do1moe and hence dy; =
(M — 1)mgs. For 0 < n < k, let dy,, = (doa)". By the induction hypothesis
Mo, = (mo1)" and do, = (M — 1)*(mg1)". Now invoking Eqn. 5.14 for [ = 0 and
n + 1, and using the fact that dy 41 = (do1)"t* we get

_— g |
M mon+1 = g ) dO,imO,n—}—l—i
=0 4
n+1
n+1 : )

_ +1- +1
= | (o) (moa)" ™ T + Mo s — mgy

=0 2

— +1 +1
= (doy +mo1)"" + mo g1 — m&l

= Mt (77”60,1)n+1 + Mo pt1 — (77”60,1)7H_1

and hence the result follows. The converse also follows similarly. In particular,
mo,z = mg if and only if doy = df ;. O
Under the conditions above the first & moments of 1/?0(t) = to(t + moa) are zero.

Indeed if g, is the n'* moment of J)o(t), then

ﬁlO,n = / dt tn¢0(t —|— m071) = / dt (t — m071)”¢0(t) = Z . (—1)im07imé71_i).
R

R =0 4
(5.15)

From the above equation we have the following result:

Lemma 33 For 1 <n <k, letdy, = d&l. Then mg, = 0.

Proof: From Lemma 32 for n < k, mg,, = mg 1. Now from Eqn. 5.15,

" [n o o . " (n :
mO,n:Z . (_1)27"6,17"8,1 ):mo,lz , (1) =0.

1=0 2 1=0 ¢
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5.3.2 The Fourier Transform and Discrete Moments

The moments of a sequence are related to the behavior of its Fourier transform in a
neighborhood of w = 0. For K-regular WTFs Hy(w) behaves like vM + O(|w|*™) for

small w. From this fact one can infer a set of relationships between pg,. Since
[Ho(w)|* =Y ho(k)ho(D)e' "%,
k,l

we get

K%)n |H0(w)|2] B a(n) =23 ho(k)ho(1)(k — 1)

k,l

For odd n from symmetry it is clear that the right hand side evaluates to zero.
Therefore all odd derivatives of |Hy(w)|* are zero. The even derivatives are related to

the the discrete moments of hg. Indeed for n = 2p

a(2p) = ") ho(k)ho(1) ) 2?’ k(=) ()i
k,l 7=0 i
= (-1} 2? (Zho(k)k”‘f> (Zho(l)(—l)j)
j:O .] k 1
= (1) 2? (—1) pto,20- 10,5 (5.16)
=0 \'J

Lemma 34 For a multiplicity M, K-regular WTF

|[Ho(w)* = M + O(|w|*") (5.17)

Proof: For K-regularity (from Eqn. 4.48)

Hy(w) = e M-DEw/2 <7SI$S(\£7£)2)> R(w) (5.18)
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—w —2 —1)w K . -
Since R(w) cannot have a factor <1+6 +"']\‘Ze ki) ) (otherwise hg would be K +1

regular), for some k € {1,...,M — 1} R (%F) # 0. But

o)l = (i) RF

and therefore

2K
sin(Mw/2) ork |
R -
(MSIH Mw-|—27rk)> ‘ (w—l_ M )

2M

ggg

n** (Mw/2) Z |Rw—|—27rk/M)|

2K 2]& Mw+2rk
M o )

For k € {1,..., M — 1}, sin(%) is not zero. There exists a compact neighborhood

Mw+2rk

17 ) is bounded away from zero. For sufficiently small ¢,

of w = 0 on which sin(

therefore, there exists a constant C' such that for all |w| < €

He <w—|-27rk>‘ _ <sin(Mw/2)>2K © 1 O(|)]

M
(w + 27rk>

Now from the transmultlplexer PR property (Eqn. 3.20) we get

M-1

k=1

or equivalently
M-

= O(|w ) (5.19)

|Ho(w))* = M — Ail Hy (M) 2 (5.20)
k=1 M
The result follows from Eqn. 5.19 and Eqn. 5.20. O
For K > 1 and p € {0,1,2,..., K — 1}
d\*
[(@) |Ho<w>|2] = a0y

This is a set of K equations relating the first 2K — 1 moments of hg. This information
is not sufficient to know all of the first 2K — 1 moments. For K > 2, the maximum
value of p is greater than or equal to 1. When p = 1, 2p¢ 21000 — 20,1001 = 0 and
hence pg2 = ual/\/ﬁ and dj , = dj ;.
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Theorem 37 For compactly supported, multiplicity M, K-regular, WTFs
with K > 2 (i.e., except for the Haar case), the moments of the scaling

function satisfy mg 2 = (mo1)?.

Tables 5.1-5.3 give the moments of the scaling functions and scaling vectors of K-

regular, minimal length, multiplicity M orthonormal wavelet bases.

Table 5.1: The Moments of ¢g(t) : M =2

M=2 and N = MK|

N k mo,k d07k

4] 0] 1.0000000e400 | 1.0000000e+00
—1| 6.3397460e-01 | 6.3397460e-01
—2 | 4.0192379e-01 | 4.0192379¢-01
3| 1.3109156e-01 | -6.1121593e-01
4| -3.0219333e-01 | -4.2846097e+00
5 | -1.0658728¢400 | -1.6572740e+01

6| 0] 1.0000000e400 | 1.0000000e+00
—1| 8.1740117e-01 | 8.1740117e-01
—2 | 6.6814467e-01 | 6.6814467¢-01
3| 4.4546004e-01 | -1.5863308e-01
4| 1.1722635e-01 | -1.8579194e+00
5| -4.6651091e-02 | 3.7516197e+00

8|1 0] 1.0000000e400 [ 1.0000000e+00
—1 | 1.0053932e+00 | 1.0053932e400
—2 | 1.0108155e+00 | 1.0108155¢4-00
3| 9.0736037e-01 | 2.5392023e-01
4| 5.8377181e-01 | -2.0440853e+00
5| 6.3077524e-02 | -2.4420547e+00

10| 0] 1.0000000e+00 | 1.0000000e+00
—1 | 1.1939080e+00 | 1.1939080e+00
—2 | 1.4254164e+00 | 1.4254164e+00
3| 1.5802598¢400 | 8.5092254e-01
4| 1.4513041e400 | -2.0317424e+00
5| 8.1371053e-01 | -5.9644946e+00
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Table 5.2: The Moments of ¢g(?) :
M=3 and N =MK|

M=3

N k mo,k d07k

1.0000000e+00 | 1.0000000e+00
— 1| 6.2084713e-01 | 1.2416943e+00
— 2| 3.8545116e-01 | 1.5418046e+00
3| 1.1024925e-01 | -1.4410320e4-00
4 | -3.3859274e-01 | -2.7622103e4-01

1.0000000e+00 | 1.0000000e+00
— 1| 7.8515128e-01 | 1.5703026e+00
— 2| 6.1646253e-01 | 2.4658501e+00
3| 3.8154196e-01 | 1.2077966e4-00
4| 5.8194455e-02 | -1.0654826e4-01

12 0 | 1.0000000e+00 | 1.0000000e-+00
— 1| 9.5286399e-01 | 1.9057280e+00
—2 | 9.0794979e-01 | 3.6317991e4-00
3| 7.5580853e-01 | 4.0782740e+00
41 4.0761249e-01 | -8.4815717e400

Table 5.3: The Moments of ¢g(?) :
M=5 and N=MK|

M=5

N k mo,k d07k
10 1.0000000e+00 | 1.0000000e+00
6.0961180e-01 | 2.4384472e+00
3.7162654e-01 | 5.9460247e+00
9.3544517e-02 | -1.9933553e+00
-3.6313857e-01 | -2.3590840e+02
15 1.0000000e+00 | 1.0000000e+00
7.5803488e-01 | 3.0321395e+400
5.7461687e-01 | 9.1938700e+00
3.3138863e-01 | 1.4957413e+01
1.4262918e-02 | -7.2169885e4-01
20 1.0000000e+00 | 1.0000000e+00
9.0920717e-01 | 3.6368287e+00
8.2665767e-01 | 1.3226523e+01
6.4125671e-01 | 3.4419647e4-01
2.8205206e-01 | -2.4109276e4-01
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5.3.3 Sample Approximation of W f(0, J;, k)

For a compactly supported WTF g ;1 (¢) is concentrated around M~7k. In a neigh-
borhood of this point a function f(¢) may be approximated by a Taylor series for the

computation of (g sk, f). Since g is supported in [0 Yo,k 1s supported in

il
P M—1
[M~7k, M~ (k+<; N1 37-1)]- Consider the Taylor series expansion of f(t) around the first

moment of g 7

_ k+mgq t— g, n (k4 moa
par ey = g (S ) (S ) o (B ) +

If ho(n) is K-regular, K > 2, then from Theorem 37 mg, = mal and hence

(Yo f) = /R 0t F (8 Mo (M7 — )

M—J/z{/ dtf( )%() }
et sowmn )

The last step is obtained by invoking the Taylor series expansion and using the rela-

tionships between the moments. Hence the samples f(M~7(k+mg,)) (appropriately
scaled) themselves give a third order approximation to the scaling expansion coeffi-
cients. Increasing the sampling rate by a factor of M reduces the error by a factor of
M3,

Consider an application in which one chooses W f(0, .J, k) = f(M~7k) (this is what
is usually done in practice). From this we can compute f Z FM~ kYo gk(t),

which is an approximation to f(¢). Fig. 5.10 shows an example function f(t) and
the corresponding reconstructed function f(t) In this example a multiplicity 2, 4-
regular, length N = 8 WTF is used and the approximation is done at scale J = 4.
One notices that f(¢) and f(t) are time-shifts of each other This time-shift is roughly
M~7mg ;. This phenomenon occurs because the samples f(M~7k) give a third order
approximation to the DST coefficients of the function f(¢ + M~7mg;) and hence
the reconstructed function f(t) is a very good approximation to f(t+ M~7mg;). An
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Figure 5.10: Reconstruction of f(¢) : W f(0,4,k) ~ f(27*k)

interesting question is whether R(w) in Eqn. 5.18 can be chosen so the third moment of
the scaling function is the third power of the first moment etc? If it can be done, then

the samples of a smooth function will give even higher (than 3) order approximation

of WF(0, s, k).

5.4 Optimal Wavelets and The Wavelet Sampling Theorem

This section addresses the following two problems:

1. Given a signal f(t), a dilation factor M, and a prescribed scale .J, what is the
optimal wavelet representation (among all compactly supported wavelets of a
fixed support) that represents f(t) at resolution J. The optimality is measured
with respect to minimization of frequency domain L? norm of the approximation

error. The approximation of resolution J depends only on the scaling function

Yo(t).
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2. Given an class of signals, what is the choice of wavelets that minimizes the
worst case approximation error among all the signals in the class? M, J and
the support size of the wavelets are fixed as in the previous problem. The class

of signals considered are the frequency domain L? class.

Problem 1 has been addressed by Tewfik, Sinha and Jorgensen ([81]) for the special
case M = 2 (i.e., for Daubechies’ orthonormal wavelet bases). The approach in [81]
is to obtain upper and lower bounds on the approximation error and to numerically
optimize this bound. This gives a sub-optimal solution to the approximation problem
that is relatively efficient to implement. Our approach to Problem 1 is based on
the following crucial assumption: the signals being analyzed are bandlimited. This
constraint is used to obtain a simple expression for the approximation error. Using
this expression we develop an efficient numerical scheme to solve Problem 1 and
illustrate it with examples. As for Problem 2, we show that the approximation error
can be considered as an operator acting on any L? class of signals. Then solving

Problem 2 is equivalent to minimizing the induced norm of this operator.

5.4.1 The Approximation Error

If a function f(t) is approximated at scale J

f(t)

%

D WE0, 7, k)orx(t)
k

= TS Wi B, (5.21)

i=1 k j=—o0
For fixed J the approximation depends only on () (and not on the wavelets). We
now derive convenient expressions for the Fourier transforms of P f(t) (the approx-
imation in Wy ) and Qf(t) (the approximation error). First define the following

Fourier transform pair a(?) and a(w):

alt) = [ ATOM Gl MIA = M0 = () bl =M )0, (5.2
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. e (W
a(w) = flw)g <W> :
The scaling expansion coefficients W f(0, J, k) are samples of a(t).

WF(0,J,k) = (f,%0.0k) = /Rd)\MJ/?;bo(M")\ —k)y=M"7aq(ME).  (5.23)

The Fourier transform of the sequence a(M~7k) is given by (periodization of &(w))

. . A ) L[ w+2nMIk )
M7 Ca(w+ 20 M7 k) = M7 f(w + 20 M7 k) (T) : (5.24)
keZ keZ
The approximation of f(t) is given by
=Y W0, k)osr(t) =Y a(M™ k)po(M?(t — M~k)).
keZ k
In the Fourier transform domain the above convolution becomes a product.
—~ A ) (WA 2r Mk 1 » /w
Plw) = [MJZf(w+27rMJk)¢O ( = )] [MJ% (MJ)]
k
oW A ) Jonow (w2 M7k )

If we denote by Q) f(t) the approximation error, then Pf L @) f and we have

QF(t) = f(t) =Y a(M~" k)M’ qpo(M7 (t — M~ k)),

k

or equivalently in the transform domain,

A w \ |2 A w o ) s wF 2r M7k

# (3) ) — o (577) 2 flwt 2mt by (T) |
k#0

(5.26)
Eqn. 5.26 gives the approximation error for an arbitrary signal f(¢) when approxi-

Qi) = fie (1 -

mated at scale J. The approximation error, @ f, depends only on () or equivalently
on hg. The Householder parameterization for hg (Eqn. 4.15) gives a finite-dimensional

parameterization of the error () f.
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5.4.2 Optimum and Robust Multiresolution Analysis

Having derived the approximation error, () f, we are now in a position to obtain
objective functions for the optimal design. We will in particular derive objective
functions for the L? optimization problem for arbitrary p. Additionally, for the design
of an optimal robust multiresolution analysis we derive the induced operator norms
for both LP to L? and LP to L'. All errors are measured in the frequency domain.
In many applications L? error norms in the time-domain are more meaningful. For
example the time domain L* error norm gives the maximum error in the time-
domain. Time-domain equivalents of results obtained in this section seem impossible
to obtain. However, for 2 < p < oo one can bound the time-domain L? errors using
the Hausdorff-Young inequality.

For g € L7, 1 < p < 2, the Hausdorff-Young inequality ([48, p. 333] or [79]) states

that that g € L9, where p and ¢ are Holder conjugates (i.e., ]lo + % = 1), and

A

. < Clll, (5.27)

‘ 1 ‘
where C' = (2#)1/‘“;1—/: ~ (2m)Y/4,
Now consider the Fourier transform pair (f, f) It f is in LP, then the Hausdorff-

Young inequality says that

i

=l <off . (5.28)

For example the time-domain L* error is bounded by the frequency-domain L' error.
This shows that if time-domain errors are crucial, then one can use the techniques
above to minimize error bounds rather than the error themselves. However, for fre-

quency domain error norms, the results derived are exact for bandlimited signals.
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Optimal Multiresolution Analysis - Transform Domain L? Error

Each Householder parameter v;, since its a unit vector, can be parameterized by

(M — 1) angle parameters 6; ;, 7 € {1,..., M — 1}.

i-1
{H sin(9i7l)} cos(0; ;) forje{0,1,....M —2}

(=0

(vi); = M-1
{H sin(@iJ)} for j =M — 1.

(=0

(5.29)

Let © be the (M — 1)(K — 1) length vector obtained by stacking 6; ;. Then Problem

1 for the L? error norm takes one of the following two (different) forms.

1.
i | [ a 571]" = min| 7 5.30
min |5 | do|QF = min|Q7 | . (5.30)
2, 1
L[| PH[| = max|| P (5.31)
m(SLX_Qﬂ' Rw | —méax p. J.

One minimizes the p* norm of the approximation error, while the other maximizes

the p'" norm of the approximant. When p = 2, and the basis is ON, Pf(t) L Qf(t),

|27 +||@r] = ||F] = e (5:32)

and the problems are equivalent. We consider only the minimization of the approxi-

mation error.
Qf
the basis in ON (not just a WTF) the expression for

. If f(t) is bandlimited and

22? can be simplified. One
splits the frequency axis into bins (say ; = {w | IM7 < |uf| <(l+ 1)MJ7r}, leZ)
Qf
bandlimited to Q & g, each part in the sum can be relatively simplified. A similar

Pf

Eqn. 5.26 yields a complicated expression for

and expresses the integral for

P
as a sum of parts one for each bin. If f(#) is
P

P
approach can be used to obtain an expression for also.
P
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Consider signals f(¢) bandlimited to 2. That is f(w) =0 for w € Q. Then

—~||P 1 ~ n w 2
orf) = = Rmuf“”<1—1%<xﬁ> )
P
~ w A . J e f W —|— QWMJ]C
—o (W) Z flw+ 2 M7 k) (T
k#0
1 n w 2
:giéﬂﬁwc—%ﬁﬂ)
A w A _ I AR 2r M7k 8
~o (377) 22 flo+ 2eM 005 (=
k#0
1 w12\ [
= Qiuf@0<1—l%(wﬁ) )
1 fef WO\ P s fw =2 MNP
*3x ), % [F@i (5p) [Z () ]
1#0
1 NN o
= 5 ; dw | f(w)| Sp(w (5.33)
where for convenience one defines
. w N\ (2]P s W O\|P s (w2 MIEN P
stor={ i G+ (o) S (22}
k#0
By a similar procedure one can also obtain the following expression for ]5? p.
P
P
= 1 - w . ) T w27 M7k
|77, —§;RW¢4Mﬂ[§VW+”M@%<—7ﬁ—0]

pz P

keZ

MJ

_ /Q do | f(w)do (175) o (“’7_ 2m M7k >

def ; P _
o[ o) Ty, (5.34)
Q
where one defines
A w P s fw =2 M7 EN |
Tp(w) = |t <W> Z Yo (T)
keZ
This gives the most general expressions for @” ’ and || P} ’ for bandlimited signals.
P P

The terms S,(w) and T,(w) depend only upon the choice of the scaling function
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and p. Thus the objective functions for both forms of Problem 1 can be obtained
by computing S,(w) or T,(w) and then implementing the integral in Eqn. 5.33 and
Eqn. 5.34.

When p = 2 and one has an ON basis (not a WTF), Sy(w) and Ty(w) take
particularly simple forms which can be interpreted easily. When one has an ON basis

from Eqn. 4.35 we have

- w \ 2| Y ETIENE: s (w42 M7k 2
Sale) = ‘1— b (3l | 1% (G) | X <T>‘
k#0
e w \ |2 A w \ |2 ~ (w2 M7k 2
= 12 (3) [+ [ () [ X2 i (2555
keZ
~ w 2
= 1 =0 <W) ) (5.35)
and
~ w 2
Ta(w) = [0 <W> (5.36)
|2
Therefore when p = 2, the general expressions for the p* norms, namely HQ fll and
12
HPf become
2
2 1 .2 . w2
_ _ W -
HQf g_zw/gd“‘f(“) <1 %(MJ) ) (5:37)
-~ 12 ~ 2 ~ w 2 )
|77, = /Qd‘”\f )| | (37) (5:38)

Also, when p = 2, from the orthogonality between P f(t) and Q) f(t), ) ]/D?
|
given a bandlimited signal f(), a scaling function (), a scale J and some p, we
— || P ——~
Pf Qf

and
P
optimization scheme to compute the optimal multiresolution analysis. Section 5.4.3

2
2

2 o~
2+Hc2f
2

. Indeed this is checked by examining Eqn. 5.38 and Eqn. 5.37. In summary,
2

P
have obtained explicit expressions for . This gives an unconstrained
P

gives the details of numerical schemes for Problem 1 and gives examples illustrating

that for smooth signals, K-regular multiresolution analysis is nearly optimal.
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Wavelet Sampling Theorem

Another important consequence of the analysis in the previous section is the fol-
lowing wavelet sampling theorem. Shannon’s sampling theorem states that signals
f(t) bandlimited to Q = {u) | |w| < MJ’/T} are uniquely determined by the samples
f(M~=7k). Under mild restrictions on the scaling function of an ON basis it turns out
that the scaling function expansion coefficients at Wy ;, namely {W f(0, J, k)}, act as
generalized samples of f(t) bandlimited to €.

That the scaling expansion coefficients act as generalized samples of signals has
already been reported in [35] where the arguments are based more on intuition than
precise mathematical reasoning. First notice that if we choose the sine wavelet basis
the scaling function corresponding to which is the sinc function, Shannon’s sam-
pling theorem may also be interpreted as follows: the scaling expansion coefficients
Wf(0,J,k) = M2 f(M~"k) completely determine f(¢) (since they they are the
Nyquist rate samples!).

The wavelet sampling theorem, besides giving an interpretation to W f(0,.J, k)
also justifies an assumption that is used in practical signal analysis: essentially
that W f(0,J,k) ~ M~7/2f(M~7k). Two other reasons for this assumption may
also be found in the literature - the first based on the idea that for sufficiently
large J, M7o(M?t) approaches the Dirac measure 6(¢) and therefore W (0, J, k) =
(fibour) ~ M~72f(M~7k), and the second based on the fact that the samples
F(M~7k) give a third order approximation (i.e., exact for quadratics) to W f(0, J, k)
[37].

It is an interesting fact that even though the scaling function is not bandlimited
(for example when it is compactly supported) Wy s for large J can still completely
represent bandlimited signals provided the hypotheses of the wavelet sampling theo-
rem are satisfied. All K-regular multiplicity M wavelet bases satisty the conditions

of the wavelet sampling theorem.
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Theorem 38 Let f(¢) be bandlimited to € (i.e., f(w) = 0 for w & Q).
Then f(t) is uniquely determined by its scaling expansion coefficients at
scale J (i.e., Wf(0,.J,k)) with respect to a multiplicity M ON wavelet
basis iff ';/;O(w) does not vanish on [—m, x| (or equivalently that Hy(w)
does not vanish on [—7/M,x/M]. Moreover, in this case, there exists a
function ¢y, (t) such that

Ft) =Y W0, k)ey(t — M~7k). (5.39)

Proof: First notice that

1[)0((4))‘ - 10_"0[ 5.40)

) <
Therefore, if 'Q/A)O(w) is non-zero on [—m, x|, in particular the first term Hy(57) is non-
zero on [—7,w]. Equivalently, Hy(w) is non-zero on [—x/M,x/M]. Conversely, if
Hy(w) is non-zero on [—77, 7], Ho(w/M?) is non-zero on [—=, 7| for all j > 1. Then
from Theorem 15.5 in [74] it follows that @Zzo(w) is non-zero on [—x, 7).

First we show that if ;Z;o(wo) = 0 for wy € [—7, 7|, then there exists bandlimited
functions that cannot be recovered. Take, for instance, a pure tone at M”7wy. Then
a(t) (in Eqn. 5.22) is zero and hence W f(0, ., k) is zero for all k. Therefore, one
cannot have any ¢y, (t) such that Eqn. 5.39 holds.

Now let 'gﬂo(w) be non-zero on [—x, w]. To prove that Eqn. 5.39 holds the following
idea is useful. The Fourier transform of W f(0, ., k) considered as an impulse train
is the periodization of the Fourier transform of a(t) (in Eqn. 5.22) (i.e periodization
of f(w)zf;g(%)) Therefore, in order to recover f(¢) we have to be able f from the
periodization. So we define,

Cyo () = M) tor o € (5.41)

0 otherwise.



229

This function is well-defined because ¥(w) does not vanish on [—x,7]. Now the

Fourier transform of Z W (0, J, k)ey(t — M~ k) (because of the bandlimitedness of

k
¢y, ) 1s only affected by the first period of the periodization and is given by
; Tk w Tk w -1 r
e fis (5)] [0 (3)] - = o)
O

The theorem states that for a bandlimited signal, knowing P f, which is not bandlim-
ited, is adequate. Notice that if ¥g(t) is real, then ¢y, () is also real.

Robust Multiresolution Analysis - L? to L?

When f(t) is bandlimited, and its Fourier transform is in L?, we obtain trivially from
Eqn. 5.33 that
’ sup Sp(w). (5.42)

P wes

s

Zg |7)

P
< 1, the worst case

!

L? approximation error is minimized if ¥o(¢) is such that sup_.q S,(w) is minimized.

Therefore, for the entire class of bandlimited signals with )

In other words, for this class of signals, the optimal robust multiresolution analysis is
determined by that ¢y(¢) that solves the problem

i fsup 5,0

© lweq
For orthonormal (), and for the L? norm, we now show that the optimal robust
Yo(t) approaches the sine function. This is not surprising since f(¢) is bandlimited.
Indeed, for p = 2 and the wavelet basis orthonormal, if we take ¢(t) to be the sinc
wavelet, we have from Eqn. 5.35 that Sz(w) = 0! Therefore, for sinc wavelet, the error
Q f is always zero.
Eqn. 5.42 also has the following important consequence. It says that bandlimited

signals are essentially scale-limited [68].
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Definition 15 A signal f(t) is essentially € scale-limited to scale .J, if
forall T € R

1QF(t =T)ll, < el f]l,-

For any given ty(t) if we define € = sup, cq S2(w), then we immediately see that
bandlimited signals are essentially e-scale-limited.

The above definition is meaningful only if € can be made to be arbitrarily small for
a given bandlimited signal and for an appropriate choice of scaling function and scale
J. Instead of considering f(¢) bandlimited to £ and increasing the scale at which the
signal is being expanded, we will assume that we are studying a function in Wy ; and
assume that it is bandlimited to a 7Q, where 0 < 7 < 1. Then, f(?) is essentially
¢,-scale-limited to J with

€; = sup Sy(w).
weT

For any scaling function 1[)0(0) = 1 and therefore S3(0) = 0. This shows that 71_1_{% € =
0 (independent of the wavelet basis).

Given a scaling function and arbitrary e, there always exists a scale such that at
most a fraction, €, of the energy of any bandlimited signal (and translates thereof) is
above scale J. The values of €, as a function of 7 for K-regular multiplicity 2 and

multiplicity 3 orthonormal wavelet bases are shown in Fig. 5.11. For a fixed 7 and

M choosing a more regular (i.e., increasing K') wavelet basis reduces ;.

Robust Multiresolution Analysis - L? to L'

Sometimes, in an approximation the maximum error or L* error in the time-domain
is important. This error is bounded by the L' error in the frequency domain. We
now show how optimal robust multiresolution analysis for L! error in the frequency
domain can be designed. The results are a direct consequence of Holder’s inequality

which states that for f € L?(IR), and ¢ € LY(IR), where p and ¢ are Holder conjugates,



