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Figure 5.11: (a) Multiplicity 2 - ¢, for K regular Wavelet Bases (b) Multiplicity 3 -
¢, for K regular Wavelet Bases
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i.e.,%—l—%zl, and 1 < p,q < oo,

/R af(t)g(t) < |1 llgll, (5.43)

Notice that for p = 2, Hélder’s inequality is Cauchy-Schwartz inequality. From
Eqn. 5.26, for bandlimited f(t) (f(w) = 0 for w ¢ Q), the L' norm of the error
is given by
or], = [ wl@re)
= [ ao]i)|s

HfH IS,]l,  From Equ. 5.43. (5.44)
P

IN

Therefore, the design of the optimal robust multiresolution analysis for L? classes of
p}q

This section describes the details of the design of the optimal multiresolution analysis

signals, with the L! error norm is equivalent to the problem
2|? sof WO\ |P ~ (ot 2 Mk
do(25)| | +158 ()| 2 zb(i)
k#0

M
5.4.3 Numerical Design of Optimal Wavelets

mmHS Hq = mm{‘l —

for the specific case of p = 2 because of its importance. For p = 2, by Parseval’s
theorem, the frequency domain design technique actually minimizes the energy of the

approximation error. From Eqn. 5.38, the design objective is

1 2 . w
max oo /Qd” %o (577)

Since f(t) is bandlimited to €, it is given by

2

flw) (5.45)

sm (2r (M7t — k))
Zf 2r(M7t — k)

It is also true that for any L > 1,

Z (M ~(+1) s1n(27r(MJ+Lt —k))
2r(M7+Lt — k)
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Because of the flatness of @Zg(w) close to the origin, for large enough L,

~ w

Therefore, from Eqn. 4.78, we have

12)\0 (%) ~ ‘\;MHO (Mcjﬂ)‘ .."\/LA_JHO (#)‘2 for w € Q

and Eqn. 5.45 can be approximated by

1
max—/dw
(C] 27T Q

or equivalently,
1 T
max—/ dw
e 27 J_.

a(n) = f(M_(J+L)n) * f(—M_(J"'L)n),

2 2

2

flw)

1 I w 1 I w
M 0<MJ+1> M 0<MJ+L>

F ()| 1O ).

If we define

and let r(n) be the sequence whose (discrete time) Fourier transform is
1 4|2
| Ho(M ™' w)[" -+ | Ho(w)[*,
then the optimal design problem reduces to
max Z a(n)r(n).

Since a(n) and r(n) (being related to autocorrelation of sequences) are symmetric

this is equivalent to
1 o0
max {§a(0)r(0) + nz:; a(n)r(n)} )

Furthermore, since hg(n) is a finite length sequence r(n) is finite, and therefore the
above sum is also finite. Thus, the objective function is a simple (discrete) inner prod-
uct between the autocorrelation of the samples of the function and the autocorrelation

of the samples of the scaling function.
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We now give two examples of the design of the optimal scaling function for a few
bandlimited signals. The first example designs the optimal multiplicity M = 2, length
N = 8 (i.e., K = 4 regular), scaling function that represents a smooth sinusoidal
signal. The second example illustrates the optimal design of the scaling function, )y,

for M = 3, N = 8 for two segments of speech (voiced and unvoiced).

Example 19 The desired signal given by

0 100 200 300 400 500

Figure 5.12: Optimal Design: (a) f(¢) and (b) ¥o(t) with M = 2, N = 8 (where
the solid line shows the optimal design and the dashed line shows the 4-regular,
multiplicity 2 scaling function).

and the corresponding optimal scaling function t(¢) are shown in Fig. 5.12. For

comparison the 4-regular, multiplicity 2 scaling function is also shown. The Fourier
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magnitude of both functions in Fig. 5.12b is approximately identical. In fact, the
optimal solution found is only a different spectral factor compared to the 4-regular
multiplicity 2 scaling function. With different values of initial guesses in the numerical
optimization scheme and different choices of J(> 0), a number of optimal solutions
were obtained (among which one is identical to the 4 regular multiplicity 2 scaling
function shown in Fig. 5.12b). The scaling vector corresponding to the particular

optimal design shown in Fig. 5.12 is given in Table 5.4.

Table 5.4: Optimal Scaling Vector for M =2 and N =38
ho
0.03834055240569
-0.01386799694174
-0.09651950788871
0.30597938054698
0.79675871228695
0.50200805529179
-0.03147297561738
-0.08701265771049

Example 20 Fig 5.13 shows a speech signal (16000 samples at 8kH z), and two seg-
ments of data taken from the speech signal (512 samples each representing voiced and
unvoiced speech respectively). Using multiplicity M = 3 we have designed an optimal
scaling function for representing each of the speech segments (voiced/unvoiced). The
optimal scaling functions are shown in Fig. 5.14 for different fixed .J. Once again the
optimal scaling function is similar to a 3 regular multiplicity 3 wavelet as can be seen

from Fig. 5.15.

5.5 Correlation Structure of ); in ON Wavelet Bases

This section investigates the correlation structure of ¥;(t) in compactly supported
orthonormal wavelet bases. This structure plays an important role in wavelet-based

interpolation [38, 68].
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Figure 5.13: Speech signal (a) “Cats and dogs each hate the other” sampled at 8k H z.
(b) 512 samples of voiced speech and (c) 512 samples of unvoiced speech.
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@ (d)
0.2 0.2
0 0
0 1 2 3 0 1 2 3
(b) ©
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Figure 5.14: (a), (b) and (c¢) Optimal scaling functions for voiced speech and (d),
(e) and (f) optimal scaling function for unvoiced speech. (a) and (d) corresponds to
analysis at scale J =0, (b) and (e) at scale J =1 and, (c) and (f) at scale J = 2.



238

Figure 5.15: A comparison between the optimal design (solid line) at scale J = 3 and
the 3-regular multiplicity 3 scaling function (dashed line).

The auto-correlation and cross-correlation functions are defined by

\I/Z'J'(t) = /RdT le(T)@Z)](t + T). (546)

For compactly supported WTFs (in general) there is no explicit (analytical) formula
for the values of the scaling function. One usually obtains (samples of) the scaling
function from the scaling vector by one of the methods in Section 5.2. Despite this fact
it turns out that the correlation functions can be computed exactly. Assuming that
samples of ¥;(t) at the M-adic rationals are given, corresponding samples of U, ;(¢) can
be obtained by approximating the integral in Eqn. 5.46. This approximation process
working on the approzimate samples of 1;(t) obtained by the infinite product method
gives the exact samples of the correlation functions! The two approximation processes
- that of obtaining the samples of #; and that of computing the step approximation
cancel each other to give the samples of the correlation functions exactly.

In the infinite product method (from Eqn. 5.11)

Z(i(M~n))(2) ~ M0, (ZM“) ﬁﬂo (ZM‘) .
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If we define H; ;(z) = H;(2)H;(z7'), then the Z-transforms of the approximate sam-

ples of the correlation function are given by

20, (M~n))(2) ~ Hy, (ZM> ﬁHO (ZM) .

For ON wavelet bases we show that the correlations computed above are in fact ezact.
It is interesting to note that in the infinite product method the the approximation
of the samples is good only for large enough J, while for all J the samples of the

correlation functions are exact. Recall that for an ON wavelet basis (from Eqn. 4.35)

~ 2
J(w+27k)| = 1. (5.47)

k

Now consider the Fourier transtorm of W, ;:

- [ G (I [ ()} 5 ()

By sampling ¥; ;(¢) at the points M ~7/n this Fourier transform gets periodized ([95])

J
o Z s = Lt (3) {30 (52) } 5

Eqn. 5.47 now implies that

Z U, (M~ n)e sl =H,; (%) ﬁHo,O (AC;J :
n i=2

2

U, j(w) = | 95(w)?

5 (28

and therefore

25 (M7 m) = i (7)) T 7 ().
1=0

5.6 Wavelet-Galerkin Approximation of Analog Filters

Many applications in signal processing and in numerical analysis involve estimating
Af or A7'f where f : R — R and A : L*(R) — L*(R) is a linear-translation-
invariant (LTT) operator. Computational considerations require accurate approxima-

tion of f and A by discretized versions f; and Ay. Analytical properties of K-regular,
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multiplicity M wavelets provide accurate discrete approximations of functions by

truncated wavelet expansions of the form

f(t) = me,k\/ iﬁ)o <é — k) .
k

The corresponding Galerkin projection of the operator Axy = Pas APa¢, where Pa; de-
notes orthogonal projection onto the space Va; = Span {\/g@bo(ﬁ —k) | ke Z},
provides a discrete approximation to A and admits a representation by convolution
of the sequence of expansion coefficients fa,; with a suitable kernel sequence ta, .
This section derives three results for the approximation of LTI operators in wavelet
bases. The Wavelet-Galerkin discretization of LTI operators have good numerical
properties, arising from the vanishing moments property of wavelets. If the WTF is
K-regular, then the first A moments of the wavelets vanish.

When an operator is approximated by Galerkin projections, the action of the
operator on an appropriate subspace of L*(IR) is studied. The closer the subspace
is to L*(IR), the better the approximation. Hence, if there is a chain of successive
approximation spaces to L*(IR), then the corresponding Galerkin projections give
successively better discretizations of the operator. Wavelet multiresolution analysis
gives one such chain, {Wy; | t € R}, where Wy s = Span {1po(M*t — k)}, where (1)
is the scaling function associated with a multiplicity M WTF (or orthonormal basis).

In this section this multiresolution chain of spaces will be labeled as follows:
Vat = Wology, (a)-

As At—0, Va; approaches L*(IR) and as At—oo, Va; approaches {0}.

5.6.1 Approximation Characterization

If g = Af, standard discretization methods for computing ¢ include (when A is a dif-
ferential operator) the finite-difference (FD) and the method of Galerkin projections.
In both methods the function f is represented by an approximation defined by a finite
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set of parameters. If f; denotes this vector of parameters and A; and ¢4 denote dis-
cretizations of A and g respectively, then f; satisfies the algebraic equation g5 = Ayf;.
For FD methods, f; and ¢4 are samples of f and ¢ and Ay is a finite-difference oper-
ator matrix. Here we discuss the discretization using Galerkin projections onto Vj;
corresponding to a K-regular, multiplicity M orthonormal wavelet basis (or WTF).

We will assume that the LTT operator A is represented by a convolution kernel a(?).
It is well known that in the FD discretization A, is acts as a discrete convolution on the
samples of f and can be represented by a sequence aas . With the WG discretization,
we show that, under mild assumptions, Ay acts as a discrete convolution on the
samples of f. The approximation properties of the kernel aa;y, corresponding to a
grid-spacing of At (either in FD or in WQ) are related to the smoothness of f and
the moments of the kernels a(?) and aaty as follows: Let

(Af)(t) = / dha(\f(t—\) =ax*f (5.48)

R

(Aaf)(t) = antnf(t —nAz) = an* f (5.49)

n

m(a(t), k) = / dt a(t)t* (5.50)

R
plaat, k) = Zam’nnk (5.51)

n

Expanding f as a Taylor series around ¢,

pm(a(l), k)

(An = (-1 8 g (5.52)
(AP = [Z(—U’“Wékw] 0

and similarly

(Aafa)(t) = Y (—1) 80 BE gy (5.53)
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If A= di—i, then a(t) = 6®)(t), where 6§ is the p* derivative of the Dirac delta

/ AP N F(t — ) = fP(1). (5.54)

Therefore
' k=
ma(t),ky=4 " "

0 otherwise

and with At =1

pt k=p
plans, k) =
0 k>p
with
aptn = a1,/ (AL)F. (5.55)

We now have the following theorem:

Theorem 39 Let 7' = 2. Let f € C?(IR) and let | f(9)(z)| be bounded

for some ¢ > p and let ¢ > p be the smallest positive integer such that

m(taz,q) # 0. (5.56)

Then, if either ¢ is finite or infinite, and ¢ > ¢
(Az)r»
q!

[ Aafa(z) = (Af)(2)] < |p(ar, q)] |f@]. (5.57)

Proof: Follows from Eqn. 5.55, Eqn. 5.52 and Eqn. 5.49. O

Note that theorem is valid for any discretization method, FD, WG or otherwise.

5.6.2 The Virtual Expansion Theorem

We have seen that when Af is discretized suitably, the approximation error is char-
acterized by the moments of a(¢) and a1 5. Now we consider the WG discretization

with a grid-spacing of At, or projections onto Va;. Then Ay = Pa; APas.

Paif = Z Jatktoatk (5.58)
P
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and hence

ga = Aafa = Z ’L/Jo,m,l/ dt o,aei(t) far kAo ark(t) (5.59)
1.k R

or in terms of expansion coefficients

gatk = (9, Yo,atk) = Z antk—ifaes = fack * ans, (5.60)
;

where
aatk = (Yo,a1,0, Ao At k) (5.61)

Thus Ay acts as a discrete convolution just as in the FD case, only that it acts on
the expansion coefficients of f, rather than the samples of f. In order to apply the
approximation result of the previous section we show that under realistic assumptions
the discrete sequence ap, , can be thought to act on the samples of f. In the WG
method, we have to compute the projection coefficients fa; ) for some fixed grid-
spacing At from f. Typically f is specified by its samples at the grid-spacing of At.
Hence f has to be interpolated or approximated from the samples before the inner
products fasr are computed. If, for fixed k, a Taylor series approximation for f is
used around the point kAt, then it is seen fa; are related to f(kAt) by a convolution
[58].

Theorem 40 Let f be approximated locally (around kAt) by p, (1),
the polynomial obtained by truncating the Taylor series expansion of f

around kAt to n terms. Let

Fark = (Pak(t), Yoaek(t)) . (5.62)

Then there exists a sequence e(k), k =0,1,...,n — 1 such that

fark =Y fIAL)e(k — 1) = f(IAL) * e(1). (5.63)

Proof: The polynomial p,x(t) is the Lagrange interpolant through the N points
fUAt) for le {k,k+1,....k+ N —1}. O
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If the Fourier Transform of e does not vanish, then by deconvolution of fazx, f(kAt)

can be obtained. From Eqn. 5.62 and Eqn. 5.60 we have
gark = fUAL) * e(l) * ansy = g(IAL) * e(I)

and hence

g(IAL) = f(IAL) * aney

Therefore, we have proved the following Virtual Expansion Theorem.

Theorem 41 Let aasr be the convolution operator corresponding to
WG discretization. Then, under the assumption of local polynomial ap-
proximation, in terms of the samples of f, A acts as a convolution with

the same convolution kernel aa;y that acts on the expansion coeflicients.

Notice that this result makes sense even if e is not invertible.

5.6.3 Wavelet Approximation

Ifthe WTF is K-regular, then the fact that the first K moments of the wavelets vanish

can be used to show that differential operators are well-approximated in orthonormal

wavelet bases [39]. Let the first K moments of wavelets vanish. Consider the WG

discretization of the operator Cﬁc—i. Then,

Af = f(p) — f*(g(p)

1 ~ z .
v = {n(0). 6t = 1) = 5= [ [u(o)] oy
or equivalently,
a5 = B " dw o” Z(w + 27k)? 12 (w+ 27k) ’ ek
Lk 2r Jq p 0

Hence the Fourier Transform of t; 4, namely 7'(w) is given by

Aw) = Y (@ + 20k)7 [fofw + 2mk)|

k

(5.64)

(5.65)

(5.66)

(5.67)
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When g is K-regular, for small w

A(w) = PwP + O(W*P) (5.68)
and hence
. d .
p(t g, n) = (z@)”/l(wﬂwzo =plé(p—n),n < 2K — p. (5.69)

Therefore we have proved the following Theorem.

Theorem 42 Let t)y(t) generate a multiplicity M, K-regular WTF. If

A =L where p < 2K — p, then, for the WG discretization, for even p,

= dw
p(ti,q) = plé(p — q) for ¢ < 2K — p, (5.70)
and for odd p,

p(t,q) = plé(p —q) for ¢ <2K + 1 —p. (5.71)

When p is odd, the sequence ?; ; is odd symmetric and when p is even ¢y ; is even
symmetric. Hence in the odd case u(t1 4, 2K — p) is also zero.

Table 5.5 shows the error bound coefficients in the WG approximation of differ-
ential operators in the multiplicity M = 2 case for different values of K and different
orders of derivatives p. For comparison the error bound coefficient for finite-difference

approximation is also given.

Table 5.5: Wavelet-Galerkin Method: Error Bound Coeflicients for (%)p
FD K=3 K =1 K=5
1667 A? | .0078 A® | .0017 A% | .0005A!°
0833 A? | .1460 A* | .2042 A® | .0050 A3
2900 A? 0210 A® | .0059 A®
1667 A? 7735 AS

B~ W N —|Rs
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5.7 Wavelet-Based Lowpass/Bandpass Interpolation

Lowpass and bandpass interpolation schemes based on orthonormal wavelet bases
is presented with a precise description of the interpolation classes (i.e., signals for
which the interpolation is exact). If the wavelet basis is K-regular then the inter-
polation class includes polynomials of degree 2K — 1. The interpolation classes are
best described in the wavelet transform domain. In the time domain the interpola-
tion schemes may be interpreted as the Wavelet-Galerkin approximation of the shift
operator on L?(IR) restricted to W;. This interpretation gives an efficient recursive
M-adic interpolation scheme. The Fourier Transform of the lowpass interpolating
function is also (a positive) interpolating function. The nature of the corresponding

interpolating class is not well understood.

5.7.1 Wavelet-Based Interpolation

Given a sequence x(n), we want to construct a continuous time signal z(¢) such that
its integral samples agree with z(n). In general - since sampling is a irreversible
process - there are infinitely many interpolants x(t). However, by restricting the
interpolating class, by invoking additional assumptions like bandlimitedness etc., one
can even ensure the uniqueness of z(t). Let F be an interpolating class with such a
uniqueness property. Then every x(t) € F is of the form

z(t) = x(n)ga(t), (5.72)

n

where {g,}, the interpolating set, satisfies ¢,,(k) = 6(k — n). The choice of the family
{gn(t)} completely determines F and hence the interpolation technique and its an-
alytic properties. A desirable property (which we call translation invariance) of the
interpolation technique would be that the sequence x(n — k), for fixed k, interpolates

to x(t — k). This constrains the interpolating set to arise from a single function ¢(¢).

That is
gn(t) = g(t —n) and g(n) = 6(n). (5.73)
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Given g(t) satisfying Eqn. 5.73, one has translation-invariant interpolation technique.

A general way to construct such a function ¢(t) is to start with an orthonormal
family {p(t — n)}, determined by integral translates of a function p(t). Let r(¢) be
the autocorrelation of p(t). Then,

/Rdtp(t)p(t +n)=46(n)=r(n) (5.74)

making r(t) a candidate function for interpolation. Such a function p(t) can be con-
structed relatively easily in the Fourier domain where the orthonormality of {p(t — n)}

is equivalent to a positive partition of unity. That is,
D plw +27k))* =) Fw + 27k) = 1, (5.75)
k k

where p(w) is the Fourier Transform of p(¢). An interesting fact to be noted is that
if for some wy, 7(wg) = 1, then 7 in itself forms a positive interpolating function with
g(t) = r(2x(t — wp)).

Clearly the autocorrelations of the scaling function and wavelets of a K-regular
multiplicity M orthonormal wavelet basis satisty Eqn. 5.74, and therefore give rise to
interpolation schemes. In fact for : € R(M), the M interpolation schemes are given
by

vo(t) =Y a(n)Wi(t —n). (5.76)

n

Let Fy, denote the i** interpolating class.

5.7.2 The Wavelet-Galerkin Interpretation

Since the scaling function () is a lowpass function, Wo(¢) gives rise to a lowpass
interpolation scheme. Since the wavelets {1;(¢)} are bandpass functions, each of W,(¢)
gives rise to a bandpass interpolation scheme. To get a better understanding of the
interpolation scheme, we study it in the context of the Wavelet-Galerkin approxima-

tion restricted to the space W; ¢ of the shift operator T, acting on L*(IR). By means
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of the Virtual Expansion Theorem (Theorem 5.63) it follows that
(Trz)(n) = x(n+7) =Y _ T(k)z(n — k), (5.77)
k
where
T.(k) = / i)t + k + 1) dt = Wi(k + 7). (5.78)
Notice that Eqn. 5.77 and qujl. 5.76 are the same with the identification t = n + 7.

Thus the interpolation scheme with W;(t) is precisely the Wavelet-Galerkin approxi-
mation of the shift operator ([39]) on L*(IR) restricted to Span {1;(t —n)}.

Figure 5.16: Wq(t) and W(t): M =2, N = 10 Daubechies wavelet

5.7.3 Efficient M-adic Interpolation

The Wavelet-Galerkin interpretation, besides giving insight into the interpolation
scheme, also gives an efficient numerical algorithm. First, consider the direct method
to obtain x(¢) from x(n) where one has to know W,(¢) for all ¢ € R. One can

recursively compute W,(¢) recursively at the M-adic rationals. In fact

Y (M n) = [1:[ Ho(zMi)] Hi(zM) (5.79)

and therefore

ST UM )z = Holz) |30 %(M—“—”n)z-m] ,

n
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where Hy(z) = Ho(z)Ho(27'). The above recursion computes W;(¢) at the M-adic
rationals immediately gives an M-adic recursive scheme to compute zy,(f) at the

M-adic rationals. From Eqn. 5.76,

)~ ()

n

and therefore if X(z) is the Z-transform of z(n),

Za:q;i(M_Jn)z_” = X(ZMJ) Z\Ili(M_Jn)z_”]

= X(M) ﬁ Hi(ZZi)] Ho(M'T. (5.80)
Li=0
If Xy, s(2) is the Z-transform of xy,(5}7) as a sequence in n, then,
Xy, 1(2) = Xy, y-1(2), (5.81)
with the initialization
Xy, 1(2) = X(ZMYH (2). (5.82)

Therefore H;(z) is an M-adic interpolation filter. Fig. 5.7.2 shows Wy(t) and Wq(¢)
for the case M =2 and K = 5, and N = 10. Notice that Wy(¢) and W;(¢) resemble
the sinc(t) function and sinc(2t) — sinc(t) respectively, which are the ideal lowpass

and bandpass interpolants.

5.7.4 Interpolating Classes Fy,

The WG framework gives the theoretical basis that makes the interpolation schemes
lowpass and bandpass respectively as the case may be. Moreover, if a K-regular
orthonormal wavelet basis is used, then the lowpass interpolation is exact for polyno-
mials of degree 2K — 1. We now characterize signal classes F; for which the interpo-
lation is exact. Clearly from the above observation, the class Fy includes polynomials

of arbitrary large degree by suitable choice of the scaling vector. The interpolating
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Figure 5.17: Lowpass Interpolation Filter : Ho(z), M =2, N =10

Figure 5.18: Bandpass Interpolation Filter : Hy(z), M =2, N =10
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classes are precisely described in the wavelet transform domain. Recall that a function

f(t) € Wi iff, there is a sequence z(n) such that

1) =3 e(m)u(t - n). (5.83)

n

Now we define the Discrete-Scale Wavelet Transform (DSWT) similar to the DWT,

only that the time parameter is allowed to be continuous. That is,
Wf(i,j,7) = / dt f(t) M p (M7t — 7) (5.84)
R

Then, the DSWT of a function f(t) € W; at scale j = 0 is given by

Wi, 0,7) = Zx(n)/dt;&i(t—n)(@/)i(t—fr)

R

n

= Z z(n)V,(1 —n). (5.85)

n

In other words, the the class F; is precisely described by

Fo, = {z(t)|x(t) = Wf(:,0,7) for some f € W;o}. (5.86)

2

Notice also that the Fourier Transform of the scaling function {I\lo(W) satisfies
{I\IO(O) = 1, and therefore from Eqn. 5.75, ¢g(t) = \/I/\O(Qﬂ't) is also an interpolating
function. Fig. 5.19 shows the M-adic, K-regular, lowpass interpolation filter for
M =4, and K = 4. The length of the scaling vector in this case is N = 16. hg. The

corresponding function Wo(?) is shown in Fig. 5.20
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Figure 5.19: M-adic Lowpass Interpolation Filter : N =4, M =4

Figure 5.20: Woo(t): N =16, M =4
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Chapter 6

Conclusion

Multidimensional multirate systems can be analyzed using the Aryabhatta/Bezout
identity over integer matrices as a fundamental tool. This identity gives rise to the
Representatives” Mapping Theorem - a new result in the theory of integer matrices
- which allows one to swap upsamplers and downsamplers in a multirate system.
In conjunction with the generalized polyphase representation, this result is used to
reduce the multidimensional rational sampling rate filter bank problem into a mul-
tidimensional uniform sampling rate filter bank problem (which does not yet have a
clean solution [54, 93, 11]).

Perfect reconstruction (PR) filter banks and transmultiplexers are two important
multirate systems. PR filter bank theory (in one dimension) has a rich algebraic
structure that allows one to design design various classes of filter banks with desired
properties - unitary filter banks, modulated filter banks, unitary FIR filter banks
with symmetry, etc. A theory of modulated filter banks (MFBs) with arbitrary
length filters is described. Every M-channel PR MFB decomposes into a set of
approximately M /2 two channel PR filter banks. If the MFB is unitary, so are the
constituent two channel filter banks. This result is used to parameterize all FIR
unitary MFBs. FEfficient algorithms for design and implementation of MFBs are
described. PR filter banks also provide a natural change of bases in separable Hilbert
spaces. Under mild conditions PR filter banks give rise to wavelet frames for L*(IR).
If the PR filter bank is unitary then the the wavelet frame is also a tight frame. By
appropriate choice of the unitary filter bank one can also ensure that the wavelet

basis is orthonormal. Regular multiplicity M orthonormal wavelet bases can also be
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constructed by using state-space techniques. Because of this relationship between
filter banks and wavelets, the rich algebraic structure of filter banks can be used to
construct corresponding classes of wavelet bases - like modulated wavelet bases.
Efficient algorithms exist for computations in filter banks and WTFs. In wavelet
analysis, the samples of a signal themselves give a third order approximation to the
scaling function expansion coefficients if the wavelet basis is K regular with K > 2.
Wavelets can be used for lowpass/bandpass interpolation and for the approximation of
linear-translation invariant operators using Galerkin projections. The optimal wavelet
for representing a given signal or classes of signals can be designed easily if the signal
classes are assumed to be bandlimited. When most orthonormal wavelet bases are
used to analyze bandlimited signals, the scaling function expansion coefficients at all
scales above a certain scale can be considered to be generalized samples of the signal
(wavelet sampling theorem). The signal in this case can be recovered from the scaling

expansion coefficients.
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