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Abstract

We describe a Remez type exchange algorithm for the design of stable recursive filters for
which the Chebyshev norm of H(w) — F(w) is minimized, where H(w) and F(w) are the realized
and desired magnitude squared frequency responses. The number of poles and zeros can be chosen
arbitrarily and the zeros do not have to lie on the unit circle. The algorithm allows us to design
filters with non-conventional frequency responses with arbitrary weighting functions. It also gives
optimal minimum phase FIR filters and Elliptic recursive filters as special cases. We discuss three
main difficulties in the use of the Remez algorithm for recursive filter design and give ways to
overcome them.
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1 Introduction

In this paper we describe a Remez exchange algorithm for the design of stable recursive digital
filters in the frequency domain that does not require the phase of the desired frequency response.
The number of poles and zeros can be chosen arbitrarily and the zeros do not have to lie on the
unit circle. The design method constructs a filter whose magnitude squared frequency response is a
Chebyshev approximation to a desired nonnegative function. In this way, optimal minimum phase
FIR filters and Elliptic recursive filters can be designed as special cases.

The approximation algorithm we use minimizes the Chebyshev norm of H(w)— F(w) where
H(w) and F(w) are the realized and desired magnitude squared frequency responses respectively.
Our approach constrains the approximation H(w) to be nonnegative, for then it can be spectrally
factored to obtain a stable filter whose magnitude squared frequency response approximates F'(w).
To obtain these nonnegative Chebyshev approximations in the frequency domain we modify the
rational Remez exchange algorithm described by Powell [?] (also see [?]).

It appears that the rational Remez exchange algorithm is infrequently used for the design of
recursive digital filters. Among the possible reasons for this is the need to solve a set of nonlinear
equations at each iteration. These equations have multiple solutions and are generally solved with
Newton’s method which may give a useless solution. However, by turning the nonlinear equations
into a generalized eigenvalue problem one obtains every solution, only one of which (if any) is the
appropriate one to use. Moreover, the appropriate solution can be chosen without ambiguity as
explained below.

Another reason that the rational Remez exchange algorithm is not commonly used is the
necessity that the magnitude squared approximation be nonnegative. Only then can the approx-
imation be spectrally factored to obtain a stable filter. The relevant constrained approximation
problem can, however, be solved as easily as the unconstrained problem. In fact in [?] it was shown
how to incorporate upper and lower bound constraints in the Parks-McClellan FIR filter design
program. Here, we describe the necessary modifications to the rational Remez algorithm so that
best nonnegative rational approximations can be found.

Possibly the most important reason the rational Remez exchange algorithm has not been
more widely used is that it is not guaranteed to converge. It fails to converge when all the solutions
to the nonlinear equations associated with the interpolation step have denominators that are not
strictly positive. This break down of the algorithm can occur under two situations, (i) the best

approximation over the interval is degenerate (a pole-zero pair can be said to cancel), and (i)



high sensitivity to the initial reference set. We suggest a method for overcoming this situation by
perturbing the reference set appropriately. We have observed that it is sometimes necessary to
change the reference only slightly to make the rational Remez converge successfully.

Some papers on the design of recursive filters according to the Chebyshev norm require all
the zeros of the filter to lie on the unit circle [?, ?, ?, ?] or require a special form for the frequency
response [?]. While the best Chebyshev approximation may indeed have all its zeros on the unit
circle, they may not and the above referenced methods will then give sub-optimal solutions. For
example, an optimal wide band low pass filter with only 2 poles will possess zeros off the unit
circle. Deczky [?, ?] pose a general optimization procedure based on second order sections and
hence these algorithm may converge to a local optimum. In [?] an algorithm is given which relies
on the desired frequency response being bandpass so that the numerator and denominator can
be treated independently. The differential correction algorithm used in [?] is a robust algorithm
but is computationally intensive since it requires the solution to a sequence of linear programming
problems and does not take advantage of the alternation property (see below). An earlier paper

that also uses linear programming methods is [?].

2 The Rational Remez Exchange Algorithm

The Remez exchange algorithm for (unconstrained) Chebyshev approximation by rational func-
tions is based on the alternation property and an interpolation step, as is the polynomial Remez
algorithm. We use the notation,

ag + aq cos(w) + ... + a, cos(mw)

H =
() 14 by cos(w) + ... + by, cos(nw)

(1)

for the realized magnitude squared frequency response and denote the numerator and denominator
by A(w) and B(w) respectively. Note that the number of degrees of freedom among the cosine
coefficients is m + n + 1. We call the set of all such functions R,, ,,. We let Emm be the subset of
R, for which the denominator has no zeros in [0, 7].

Let S C [0, 7] be a union of intervals and let F(w) be the desired non-negative function. By
the best rational Chebyshev approximation from R, , to F(w) over S we mean the function H(w)
in Emm that minimizes

1) = F@)l| = max | H(w) = F()].

For any approximation H(w), we denote the error function H(w)— F(w) by E(w). Note that the

denominator of the rational function that best approximates F(w) in the Chebyshev norm must



have no zeros in S. If it did, H(w) would be infinite at these points and clearly it could not be the
best Chebyshev approximation. But when S is composed of different intervals, as is often the case
in the design of digital filters where S is made up of the frequency response bands, it is possible
that the best approximation by a rational function has a pole in a transition band. To prevent this,
we explicitly limit the set of rational function to those whose denominators are strictly positive
on [0, 7]. The inclusion of a weighting function for the error is straightforward and in example 3
below, a non-constant weighting function is used to illustrate this.

Alternation Property: Recall that best Chebyshev approximations by polynomials (n = 0)
are uniquely characterized by an alternation property. That is, there must be m + 2 points where
the absolute value of the error function attains its maximum value, and the sign of the error at

these points must alternate. However, in the rational case, this condition is only sufficient [?]:

Theorem 1 Let (w1, ...,wntm+2) be a sequence of points of S in ascending order (a reference set),

and let F(w) be a continuous function on S. If H(w) is in Ry, and if the equations
H(wi) + (=1)'6 = F(w;) (2)

fori=1,...,m+n+2 hold for |6| = ||H(w)— F(w)||, then H(w) is the best Chebyshev approximation

to F(w) from the set of rational functions Ry, .

Therefore, if we obtain a rational function with the alternation property over a sufficient number of
extremal frequencies, we are assured it is optimal. However, this alternation is not necessary; the
size of the reference set of the best approximation may be less than m + n + 2, and in this case, the
best approximation is called degenerate. Degeneracy occurs when the leading cosine coeflicients of
the best approximation, a,, and b,, are both zero. For more information, see the discussion of the
defect of the best rational approximation in [?] or [?].

The progression of the rational Remez algorithm relies on the following key fact. If (7) the
set S over which the approximation is performed consists of exactly n 4+ m 4 2 points and (i7) the
best approximation does indeed have m + n + 2 extremal frequencies, then the best approximation
over S can be found by solving equation (??). This is an interpolation problem and its solution is
explained below.

The rational Remez algorithm follows the same strategy as the polynomial Remez algorithm:

1. Initialization: Select a reference set of n + m + 2 points.

2. Interpolation: Calculate the best approximation to F(w) over this reference set. (Solve the

system (77)).



3. Update: Update the reference set exactly as in the polynomial Remez algorithm. Go back
to step 2.

Interpolation Step: Although the system in (??) is nonlinear in the coefficients of H(w) =

A(w)/B(w), it can be written as a generalized eigenvalue problem [?]: rewrite (??) as
A(wz) + (—1)i(5B(wi) = F(wz)B(wz)

where w; for ¢ = 1,...,m + n + 2 is the current reference set and the unknowns are é and the
coefficients of A(w) and B(w). |é] is called the levelled reference error.

In matrix notation, we have

Mia+ éD1Msb = DoMsb (3)
where

a = (ao, ,am)t (4)

b = (1,b1,...,b,) (5)

(Mya); = A(wi) (6)

(M2b); = B(w) (7)

(8)

(9)

Specifically, D7 and Dg are diagonal matrices and
1 cos(wy) -+ cos(muwr)
M; =
1 cos(wg) -+ cos(mwr)
(where L = m 4 n 4 2) and similarly for M. My is a matrix of size m + n 4+ 2 by m + 1 and has
full rank m + 1. Therefore, there is a matrix Q of size n+ 1 by m 4+ n + 2 with full rank n 4+ 1 such
that QM7 = 0. Applying Q to (??) we eliminate a and obtain the equation for 6 and b

§QD;Masb = QDsMsb. (10)

Once § and b are found, a is found by solving a linear system (see equation ??7). Equation (??)
is a generalized eigenvalue problem (it is of the form Ax = ABx). Notice that the vector b can

be freely scaled without affecting the equality. Therefore, we can scale it so that by = 1 assuming



by # 1. Since there are n 4 1 generalized eigenvalues ¢, we must choose an appropriate one. This is
straightforward because there will be at most one generalized eigenvalue for which the corresponding
denominator B(w) is positive over the current reference set [?, ?]. If there is no such value, then
the best approximation from R,,, to F(w) over the reference set is degenerate: it has fewer than
m + n + 2 extremal points. However, even if there is an generalized eigenvalue that gives rise to a
denominator positive over the reference set, it may become negative elsewhere on 5, the domain of
approximation. In either case, the Remez algorithm fails and one must use some corrective measure
or an alternative approximation method (see below).

The rational Remez algorithm may fail for two reasons, but in both cases, the failure shows
up in the same way: the reference set on some iteration gives rise to no positive denominator. The

two reasons the algorithm may fail are:

1. The best approximation from R, , to F(w) over S is degenerate. In this case, either the best
approximation from R,, , over some reference set in the course of the algorithm is degenerate,

or the algorithm yields a sequence of approximations that approach degeneracy.

2. Sensitivity to the initial reference set. In this case, the algorithm fails even though the best

approximation from R,, , is not degenerate.

Unfortunately, it is not possible (to our knowledge) to decide at the time of failure which of these
two reasons led to failure. If it is known that the best approximation is degenerate, then the order
of the approximation should be reduced.

It is interesting to note that degeneracy of the best approximation over the set S is very
rare: for a given function, all intervals on which it has degenerate best approximations form a
set of measure zero [?]. For this reason, we assume in this paper that the best approximation is
non-degenerate. Near degenerate best approximations are, however, not uncommon. Furthermore,
it is the nearly degenerate best approximations that are more computationally difficult to find, for
they are sensitive to the initial reference set and unless the usual reference set update procedure is
modified, failure of the the rational Remez algorithm for these cases is imminent.

If £}, ., denotes the Chebyshev error of the best approximation from Ry, and if the best
approximation from R,,, is nearly degenerate, then E;, _1,-1, the Chebyshev error of the best
approximation from R,,_1,-1, is usually only slightly higher than E7, - That is, by reducing
the number of poles and zeros both by one, a nearly equivalent approximation can be obtained.
Therefore, in the design of optimal recursive filters according to the Chebyshev norm, it is advanta-

geous to reduce the order in this way. For by doing so, the computation required for implementing



the filter is reduced while the increase in the Chebyshev error is small. (See example 2 below.)
Although a nearly degenerate best approximation may be discarded in preference for a lower order
best approximation, the ability to compute nearly degenerate best approximations is nevertheless
valuable for the purposes of comparison.

Updating the Reference Set Assuming the algorithm has not failed, the reference set is
updated in exactly the same way as in the polynomial Remez algorithm. That is, a new reference

set is found such that
1. The current error function on the new reference set alternates sign.

2. The absolute value of the current error function at each point of the new reference set is at

least as great as the current levelled reference error.

3. The absolute value of the current error function on at least one point of the new reference set

must be strictly greater than the current levelled reference error.

In a single point exchange algorithm, one point of the reference set is updated from one iteration
to the next. In a multiple point exchange algorithm (which usually converges faster) more than
one point is updated, usually the entire reference set. But as long as the three conditions above
are satisfied and there is a corresponding positive denominator, the levelled reference error will
increase.

Convergence: As in the polynomial Remez algorithm, it can be shown that the levelled
reference error || increases from one iteration to the next as long as the reference set at each
iteration gives rise to a positive denominator. Moreover, on each iteration, |§| gives a lower bound
for the Chebyshev error of the best approximation to F(w) over S, for it is itself the Chebyshev
error associated with the best approximation over a reference set, a subset of 5. That is, |§] < E*,
where F* is the Chebyshev error of the best approximation. On each iteration, an upper bound for
E* is given simply by the maximum of the absolute value of the error function, F(w). By inspecting
at each iteration the upper and lower bound for £*, it is possible to measure how close the current
approximation is to the best approximation. As in the polynomial Remez algorithm, this gives a

meaningful stopping criteria.

3 Overcoming Faulty Reference Sets

When no solution to the generalized eigenvalue problem of the interpolation step gives rise to a

positive denominator, we suggest perturbing the reference set in a systematic manner.



Suppose that the reference set on some iteration gives rise to a positive denominator (there
exists a generalized eigenvector solving ?? that are the coefficients of a positive cosine polynomial).
As noted above, it may be the case that the new reference set obtained by updating the current
reference set with a multiple (or single) point exchange scheme may fail to give rise to a positive
denominator. If this is the case, then the usual rational Remez algorithm that employs the multiple
or single point exchange scheme fails.

One way of overcoming this failure is given by the differential correction algorithm [?, 7,
?, ?]. The differential correction algorithm is a method for calculating best rational Chebyshev
approximations by solving a sequence of linear programming problems. It is possible to combine the
Remez and differential correction algorithm as is done in [?], but because the differential correction
algorithm is itself an iterative procedure, we prefer another method for overcoming failure explained
as follows.

The single point exchange scheme for updating the reference set is typically carried out by
first finding the point, call it wye,, at which |E(w)| attains its maximum value and second, by
replacing a point in the reference set by wye,. The appropriate point to replace, call it w,, is
uniquely determined by the conditions listed above for updating the reference set. After updating
the reference set by this single point exchange scheme, the reference set is the same as the old one
for the exception of one point.

If the reference set obtained by the single point exchange scheme fails to provide a positive
denominator, instead of replacing w, by wyey, our approach replaces w, by (w, +wpew )/2. If w, and
Wnew are located on opposite ends of [0, 7], as occasionally occurs, then (w, +wpey )/2 is greater than
7 and in this case, subtracting 7 is necessary. If the resulting reference set again fails to provide a
positive denominator or if | E((wy +wpew )/2)| < |6], then our approach replaces w, by %wr + %wmw.
For as long as the new reference fails to provide a positive denominator and an increase in ||, the
levelled reference error, our approach replaces w, by (1 — 2%)%, + Q%wmw. That is, our approach
employs successively smaller perturbations to the current reference set.

If no viable reference set is found, then, with respect to the grid density, the new reference
point (1 — %)wr + Q%wmw will eventually equal w,. In this case, our approach uses another value
for wyew. Namely, wye,, is taken to be the point at which |F(w)| attains its second greatest local
maximum. With this new value of wy.,,, our approach carries out the single point exchange again,
and subsequently replaces w, by (1 — %)wr + Z%wmw for £ = 1,2,3,... until a viable reference set
is found. Again, if none is found, wy.,, is taken to be the point at which |E(w)| attains its third

greatest local maximum, and so on.



By testing this sequence of candidate reference set updates, our approach usually finds one
that yields a positive denominator and an increase in |6]|. Continuing in this manner usually results
in successful convergence to the best approximation. Our observations indicate that when the best
approximation is nearly degenerate, then this systematic sequence of perturbations is essential for
convergence, for the standard multiple and single point exchange schemes nearly always lead to
failure when the best approximation is nearly degenerate.

Sometimes however, before the best approximation is obtained, no perturbation of the ref-
erence set by a grid point results in a viable reference set. When this is the case, either the best
approximation is actually degenerate, or more likely, more than a perturbation is needed to obtain
a reference set from which the Remez algorithm can be made to converge. In our experience, this
occurrence can be overcome by moving a reference point from one end of the interval [0, 7] and
inserting it between the two reference points on the other side of the interval.

These observations were collected primarily from experiences with the design of low pass
filters, but it is our expectation that the same phenomena are found in general and that the same
corrective measures will prove useful. The preceding discussion also assumes that a viable initial
reference set has been found. Usually it is not difficult to find an initial reference set giving rise to

a positive denominator, although we have not arrived at an entirely robust method for doing so.

4 Constrained Rational Remez Algorithm

In the design of recursive filters, we wish to find a nonnegative function approximating the desired
magnitude squared frequency response, for we must spectrally factor the approximating function
to obtain a stable recursive filter. This constrained approximation is addressed in [?] for FIR filter
design. Furthermore, the optimality property of the resulting approximations is maintained [?].
Here we make appropriate modifications to the rational Remez algorithm.

We impose a constraint on the maximum and minimum values of H(w). We call these
constraints u(w) and {(w) for ‘upper’ and ‘lower’. We modify the interpolation step by constructing
the rational function interpolating F(w;) + (=1)%6, u(w;), or l(w;) at w; depending on the error

function. The lower constraint is violated at w; if
F(w;) = [8|sgn(F(w;) — H(w;)) < l(w) (11)
while the upper constraint is violated at w; if

Plws) + 16l sgn(H (ws) - Flwr) > u(w). (12)



The resulting equations are as above, (?7), but

(D1)i { ?—1)2' iefls(e??) or (?77) at w; 3)
w(wi) if (77) at w;
(D2)i; = lF(f(“’z)) iﬁ(??) at w; (14)

As above there is a matrix Q such that QM = 0, and by applying Q to (??) we obtain again a
generalized eigenvalue problem. Except for the differences in Dy and Do, the interpolation step of
the (upper and lower bound) constrained and unconstrained Remez algorithms are the same.

Updating the reference set from one iteration to the next in the constrained Remez algorithm
requires some more care than it does in the unconstrained version. For the unconstrained version,
it is sufficient to use the value of the error function at its local maxima and minima to choose new
reference points. However, for the constrained version, it is necessary to check points of H(w) that
violate the constraints. While the unconstrained version uses |H (w;)| — |é] to select new reference
points (this value should be positive), the unconstrained version should use this value at points
where the constraint is not violated and one of the values, {(w;) — H(w;) or H(w;) — u(w;), where
the upper or lower bound constraint is violated.

In order to obtain non-negative approximations, we simply take /(w) to be 0 and we do not

use u(w). In order to design Elliptic filters, it is necessary to take u(w) to be 1.

5 Examples

Example 1 In this example the 13 minimum phase filters with a total number of poles and zeros
equal to 12 were designed for an ideal low pass filter with a pass band edge at 13417/2048 and a
stop band edge at 13907/2048 (so that the band edge is at 27/3). The total number of grid points
used was 2049 for the interval [0, 7] including the end points and the zero weighted transition band.
The pole-zeros plots, the magnitude squared frequency responses and the error functions are shown
in figures 7?7 through 77?.

The Chebyshev error as a function of the number of zeros is listed in table 1 and plotted in
figure 7?7. As can be seen from this data, the use of two poles significantly reduces the Chebyshev
error of the best approximation. It is also interesting to observe that the all pole filter gives a smaller
Chebyshev error than does the FIR filter. Of course, for practical purposes of implementation, this
does not suggest that the all pole filter is preferable to the FIR filter. This is because the phase

and the effects of finite precision arithmetic must be taken into account.
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Figure 1: The filters for example 1 having 0,1,2,and 3 zeros.
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Figure 2: The filters for example 1 having 4,5,6,and 7 zeros.
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filters for example 1 having 8,9,10,and 11 zeros.
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Table 1: The Chebyshev error of the low pass filters designed for example 1.
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Note that for this example, when the number of zeros is greater than 6, the optimal filter

possesses zeros lying off the unit circle. For these cases, the optimal filter can not be found with
the methods for filter design requiring the zeros to lie on the unit circle.
Example 2 In this example, we design a filter with 8 zeros and 3 poles whose magnitude squared
frequency response is nearly degenerate. The ideal frequency response is a low pass filter with a
pass band edge at 14267/2048 and a stop band edge at 14757/2048. The total number of grid
points used was 2049 for the interval [0, 7] including the end points and the zero weighed transition
band. This is an example in which updating the reference set from iteration to iteration requires
small perturbations, for the usual exchange methods lead to failure.

The Chebyshev error for the resulting filter was Eg 5 = 0.040120. The pole-zero plots, the
magnitude squared frequency response and the error function are shown in figure ??. As can be

seen, a pole and a zero almost cancel as is typical for nearly degenerate approximations. Here, the

zero is at z = —1 and the pole is just inside the unit circle on the real line.
Error Function Error Function
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Figure 5: The filters for example 2.

Since a pole and zero almost cancel, it makes sense for practical considerations to decrease

the number of poles and zeros by one each. The resulting lower order filter is no longer nearly
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degenerate and the Chebyshev error is only slightly greater at E7, = 0.040581. Notice that the
lower order filter has an ‘extra’ ripple. However, the frequency at which this extra ripple occurs is
not an extremal point, for |E(w)| does not attain its maximum there.

In general, as the best approximation for a fixed number of poles and zeros becomes more de-
generate, the size of the extra ripple in the best approximation of lower order rises to the Chebyshev
error. When the best approximation is in fact degenerate, then there is exact pole-zero cancellation
and the best approximation of lower order is identical.

If the degree of the approximating function is reduced by reducing only the number of poles
by one, then one obtains Eg, = 0.040483. If the number of zeros is reduced by one, then one
gets E7 5 = 0.040487. As expected, E3, and E7 5 lie between Eg; and E7 ,, suggesting that, since
E3 5 = E7,, the best trade-off between complexity and quality of approximation is given by the
filter with 7 zeros and 2 poles. That is, when an approximation is nearly degenerate, reducing both
the number of zeros and poles by one generally makes sense.

Example 3 This example illustrates the flexibility of the constrained rational Remez algorithm by
designing a filter with a non-conventional frequency response. We use more zeros than poles and a
weighting function that is not a constant.

The ideal magnitude frequency response was taken to be a low pass filter with a pass band
edge at 29287 /2048 and a stop band edge at 32177/2048 (so that the band edge is at .757). The
magnitude frequency response was taken to have a linear increase in the pass band: it was taken
to be 0.9 at w = 0 and 1.1 at the pass band edge, with a linear slope between w = 0 and the
pass band edge. The total number of grid points used was 2049 for the interval [0, 7] including the
end points and the zero weighted transition band. The weighting function W(w) was taken to be
1/T(w) where T'(w) (the tolerance function) is 1 at w = 0 and 0.2 at the pass band edge with a
linear slope between these two frequencies. 7'(w) was taken to be 0.1 in the stop band.

Figure ??7 shows the pole-zero plot, the (weighted) error function, the magnitude squared
frequency response, and the magnitude frequency response. Figure ?? shows the un-weighted error
function.

Note that the error function shown in figure ?? is as defined above: it is the difference
between the realized and desired squared magnitudes. For this reason, it is often useful to weight
the error more heavily in the stop band, or wherever the ideal response is small, for squaring the
magnitude frequency response decreases the error in these regions much more than it does in the
pass band. The dashed line in figure ?? is £* - T(w) where E* is the Chebyshev error of the best

approximation.
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Figure 6: The filter for example 3.
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Figure 7: The un-weighted error function for example 3.
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6 Summary

We have described a flexible, efficient Remez algorithm for the magnitude squared design of recursive
digital filters in the frequency domain. The number of poles and zeros can be chosen arbitrarily
and the zeros do not have to lie on the unit circle. This algorithm allows us to design filters with
non-conventional frequency responses with arbitrary weighting functions. Moreover, this Remez
algorithm can be used to design optimal minimum phase FIR filters and yields Elliptic filters as
special cases.

We have addressed three main difficulties in the use of the Remez algorithm for recursive
filter design: We use the generalized eigenvalue problem to solve the relevant nonlinear equations
of the interpolation step. We impose nonnegativity constraints so that spectral factorization can
be employed. Reference set degeneracy is overcome by adjusting the reference set using a sequence
of successively smaller perturbations.

Three examples were given illustrating the usefulness of the constrained rational Remez
algorithm for the design of recursive filters. The first example illustrated the way in which the
Chebyshev error of the optimal filter behaves as a function of the number of zeros when the
number of poles and zeros is kept constant. The second example examined a nearly degenerate
best approximation and aspects of near degeneracy were discussed. The third example showed the
flexibility of the algorithm by using a non-conventional frequency response with a non-constant

weighting function.
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