ABSTRACTS

Multifractal Processes
R. H. Riedi,
Technical Report, ECE Dept., Rice University, TR 99-06; to be submitted for publication.
8 page summary, lite version: (text only) Toward an Improved Understanding of Network Traffic Dynamics
R. H. Riedi and W. Willinger
in: Self-similar Network Traffic and Performance Evaluation to appear with Wiley, June 1999
Wavelet Analysis of Fractional Brownian Motion in Multifractal Time
P. Goncalves and R. H. Riedi
Proceedings of the 17th Colloquium GRETSI, Vannes, France, Sept 1999.
Simulation of Non-Gaussian Long-Range-Dependent Traffic using Wavelets
V. J. Ribeiro, R. H. Riedi, M. S. Crouse and R. G. Baraniuk
Proc. ACM SigMetrics'99 (May 1999), 1-12
A Multifractal Wavelet Model with Application to Network Traffic
R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk
IEEE Special Issue on Information Theory, 45. (April 1999), 992-1018.
Simple Statistical Analysis of Wavelet-based Multifractal Spectrum Estimation,
P. Goncalves, R. H. Riedi and R. G. Baraniuk
Proceedings of the 32nd Conference on `Signals, Systems and Computers', Asilomar, Nov 1998
Multifractal Properties of TCP Traffic: a Numerical Study,
R. H. Riedi and J. Lévy Véhel.
INRIA research report 3129, March 1997.
Fractional Brownian motion and data traffic modeling: The other end of the spectrum,
J. Lévy Véhel and R. H. Riedi
in: Fractals in Engineering 97, Springer 1997.
Exceptions to the Multifractal Formalism for Discontinuous Measures,
R. H. Riedi and B. B Mandelbrot,
Math. Proc. Cambr. Phil. Soc. 123 (1998), 133--157.
Inversion formula for Continuous Multifractals,
R. H. Riedi and B. B Mandelbrot,
Adv. Appl. Math. 19 (1997), 332--354.
Inverse Measures, the Inversion formula and Discontinuous Multifractals,
B. B. Mandelbrot and R. H. Riedi,
Adv. Appl. Math. 18 (1997), 50--58.
Multifractals and Wavelets: A potential tool in Geophysics
R. H. Riedi,
SEG, New Orleans 1998
Conditional and Relative Multifractal Spectra.
R. H. Riedi and I. Scheuring,
Fractals. An Interdisciplinary Journal. 5 (1997), 153--168.
Numerical Estimates of Generalized Dimensions D_q for Negative q
R. Pastor-Satorras and R. H. Riedi,
J. Phys. A 29 (1996) L391-L398.
Multifractal Formalism for Infinite Multinomial Measures
R. H. Riedi and B. B Mandelbrot, Adv. Appl. Math. 189 (1995) 462-490.
An Improved Multifractal Formalism and Self-Similar Measures
R. H. Riedi,
J. Math. Anal. Appl. 16 (1995) 132--150.
Explicit Lower Bounds of the Hausdorff Dimension of Certain Self-Affine Sets
R. H. Riedi,
Fractals in the Natural and Applied Sciences pp 313--324,
IFIP Transactions, M. Novak ed., North-Holland, Amsterdam 1994.
An Improved Multifractal Formalism and Self-affine Measures
R. H. Riedi,
Summary of Ph.D. thesis ETH Zurich, Switzerland, 1993
An introduction to multifractals
R. H. Riedi,
Rice University, 1997 (Version May 1, 1998)