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Abstract

A lower bound of the Hausdorff dimension of certain self-affine sets is given. Moreover,
this and other known bounds such as the box dimension are expressed in terms of solutions
of simple equations involving the singular values of the affinities.
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1 INTRODUCTION

A compact set K in Euclidean space IR? such as the middle third Cantor set may carry a rich
geometrical structure. In order to measure the complexity of its geometry, the box dimension
and the Hausdorff dimension have been introduced [4]:

log Ns(K)

dpox (K) :=lim ————~/
box(K) 510 —log é

where N3(K) is the minimal number of balls of radius ¢ needed to cover K, and
dap(K) :=inf{a >0 : m*(K) =0} =sup{a >0 : m*(K) = oo},

where m® denotes the a-dimensional Hausdorff measure

m®(E) :=sup inf { Y (diam(5;))* : E C |J S, diam(5;) < § VI € IN}.
6>0 =1 =1

After it was discovered that Hausdorff and box dimension of self-similar sets coincide [7],
great effort has been made to calculate the dimensions of self-affine sets [8, 6, 12, 1, 3, 5, 9].
Though in this case the two dimensions coincide at least ‘almost surely’ [3], the explicitly
solvable cases mostly turn out to be exceptional, yielding values which differ from the expected
answer [8, 6]. So, looking for ‘sure’ results, one is often forced to content oneself with bounds,
as in [5], and as shall be done here.



We will consider self-affine sets K which arise from an iterated function system in the
following way. Assume that the Euclidean space is split into two fixed orthogonal subspaces:
R = RY @ RY. (For a fractal surface take d’ = 2 and d” = 1.) Fix a natural number r and
consider r affine transformations w; of IR? which reduce to similarities in the subspaces IR®
and R?, i.e.

w; - RE=RY @ RY - R (2,9) — (MO, ;Z50) + (u, v;) (1)

where ©; and =; are orthogonal transformations, u; and v; are from R? and R? respectively,
and where the ratios A; and v; of the similarities satisfy

O<v:=min{A,..., A, .., 0 < Ai=max{A, ..., A, vy, ., < 1

We will call wy,...,w, a family of diagonal affine contractions.
It is well known [7] that there exists a unique nonempty compact set satisfying

K = Qlwi(K). 2)

It is the aim of this paper to provide a lower bound I'" of the Hausdorff dimension of K, which
holds under a certain open set condition. This condition as well as some geometrical lemmas are
given in section 2. The bound I is elaborated in section 3 using limit theorems from probability
theory. See theorem 4. In section 4, this bound is compared with the lower bound d_ given
in [5], with the ‘almost sure’ value of dyp(K) [3] and with the actual box dimension of K, for
which explicit formulas are provided.

2 GEOMETRICAL RESULTS

First, the geometrical situation we will deal with will be made precise and the formalism
of symbolic dynamics is introduced. Then, two geometrical lemmas are given, which provide
lower bounds of dyp(K).

First, assume the existence of a nonempty, bounded, connected, open set O satisfying the
so-called open set condition (OSC) [7]

w;(0)cO (i=1,...,r) and  w;(O)Nw;(0)=0 (i #7). (3)
Let

Var:=0  and Vj:=w;(0) :=w;, o...0w;, (0).
Thereby we introduced the empty word nil and the words of length [i| := n, (n € IN),
L:=1dy...0, € I, :={1,...,r}"

Moreover, we set [ :=

Uln, i % k :=14;...5,k and ilm := iy ..., for m < |i|. Since Vi =
wik(0) = wi(Vi) C wi(0)

=V;, the sequence K,

K,:=|JV, decreasesto K = [] K,. (4)

€ln n€IN
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While in the case of similarities the OSC is enough to calculate dyox(K) and dyp(K) [7], one
more regularity condition is needed here: Denote by R the smallest closed rectangle containing
O and with sides parallel to the axes. For the sake of simplicity assume R = [0, 1]?, which is
not really a restriction as far as dimensions are concerned. The additional hypothesis on O is:
Thereisa 0> 0, ¢ and j with 1 <i<d' <j<dand§, z, (, z from IR?, such that the points

(51)"')gi—l)ta§i+l)"';£d) ; (xla"')wi—lal_tawH-la"')'Td)) (5)
(Cla' . '7Cj—1:t7 Cj-i—la"'aCd) ; (zla' e azj—lal - t7 Zi41y .- -;Zd)

belong to O for all ¢ €]0, g[. Loosely speaking, it is possible to cross R corresponding to the
two invariant subspaces on two piecewise linear paths which are parallel to the axes and which
do not leave O. Any set O with the above properties is called round open set.

Definition 1 We will say that K is diagonal self-affine iff it is the nonempty, compact and
invariant (2) set of a family (w,. .., w,) of diagonal affine contractions with a round open set.
(The singular values of w; will be denoted by \; and v;).

In order to estimate the Hausdorff measure of K, a certain collection of sets (V;);cs, with
‘width’ approximately equal to ¢ is useful. For any finite word i = 4;...1, let

/\£=)\11AZ Vi =Vt Vg, (6)

mn

and
k(2) == min(A;, 1) > (i1 ... dp—1) - 6(In) = K(31) - - .. - K(1n).

Since k is only sub-multiplicative we prefer the slightly different notation and won’t write ;.
Trivially x(z) < A" — 0 (n — oo). For any § €]0, /[ set
J&Z{LZ’LlZnellﬁ(i)s5<ﬁ}('l/11n_1)} (7)

The length of any word of Js amounts at most mgs := [log§/log A]. On the other hand, for
any j from I, there is a unique n such that j;...jn, € Js, since x(j) < 6 and £(j1 ... jm) <
A&(J1 ... jm—1). Consequently, Js is secure [7], i.e.

Kc UV (8)

i€Js

and tight [7], i.e. for any different words i # j from Js there is & < min(||, |j|) with & # j,
hence, with (3),
w(0)NV; =1 (9)

Finally,
vé < k(i) <6 forallie Js. (10)

Next, a lemma is required, saying that a set of size ¢ is not intersected by too many sets V;
with ¢ € Js. It is only here, where the ‘roundness’ of O is actually needed.
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Lemma 2 Given diagonal affinities wq,...,w, and a round open set O, there is a number b
such, that #{i € Js : V,NW # 0} <b for all 6 > 0 and for all balls W of radius 6.

Proof For simplicity we give the proof for the case d' = d’ = 1. The general case can be
treated with the same argumentation.
Let 6 > 0 and let W be a ball of radius ¢ with centre (z,y). Set W' := [z — 26,z + 20|x[y —
26,y + 26]. We will only be concerned with words i s.t. A\; > v;, leading to a bound b*. By
symmetry, a bound b~ will be obtained for the words with A\; < v;, and b = b + b~ will be

enough.
Since O is connected and bounded, there is a path « within O joining Qo := (0,y;) with
@~ = (1,12), and which consists of finite many straight line segments, each one parallel to

one of the axes. Of course it is possible to choose N > 2. Enumerate the vertices of v by
@ (I = 0,...,N), and choose ¢ > 0 such that the balls U(¢',@Q;) are contained in O for
l=1,...,N—1. Consequently, the set w;(O) contains the ellipses w;(U(¢’, @;)) and hence the
balls U;; := U(o'vé, w;(@;)) due to (10). Take ¢ # j from Js. By (9), the balls U;; must be
disjoint with U; ,, whenever 1 <1,m < N — 1. This is one main point of the proof.
Now consider the words i from Js, for which V; meets W. Two types will be distinguished.
Words ¢ of the first type have a large part of a ball U;; (1 <1< N —1) lying in W'. Since U,
and W' are of nearly equal size, there can’t be too many words of this type. Words 7 of the
second type have all U;; (1 <1 < N —1) outside W’. Since V; meets W, the paths w;(v) must
intersect the boundary of W’'. Since they are ‘parallel’ they cannot come too close due to the
disjoint balls U;;, and their number is bounded too.
Type 1): Thereis [ # 0, N such that w;(Q;) lies in W’. Then W’ contains at least one quarter
of the ball U;;. Using disjointness and comparing volumes, the number of words of type 1) is
seen to be bounded by

64

m(o'v)*
Type 2): R; is a rectangle which meets W and with sides A; and v;. Since v; = k(i) < § and
since i is not of type 1), the path w;(7y) joining ‘left’ and rlght end of R; must contain a point
of the form S; = (z £ 26,y;). Denote by h; the horizontal part of w;(7), which contains S;.
Since  is not of type 1) and since N > 2, there is [ # 0, N such that w;(Q;) is an end point of
h This point lies outside W’ but in the interior of Vj. Take a word j of type 2) different from
i. Since the ball U;; is disjoint with Vj by (9), it cannot intersect h;. Vice versa, U; », cannot
meet h;. Consequently, S; and S; arefat least at distance vdo’ of each other. Comparing the
length of W' with these distances shows, that at the most

4
ov

words of type 2) are possible. Thus b™ := b; + by is enough. o
Since any set V; contains a ball of radius const - £(2), it is natural to estimate m?(K) from
below by certain 3" x(z)”. For any set of words J let

o(y,J):=> k@)= > w4+ Y N, (11)

ied ieJt i€J—

b1 =
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where

+Z={1'EJI>\L'>V£'} J_Z={L.€JZA1'SV1'}. (12)

Lemma 3 Let K be a diagonal self-affine set. Assume that N and~y are such that o(y, In) > 1.
Then dyp(K) > 7.

Proof i) Note that K is also invariant under the set of affinities (w;);)=n. Thus, performing
a natural change in the encoding of K, i.e. Iy = {1,...,7'} =: I} with 7' = 7" we may assume
without loss of generality that N = 1. Furthermore we may assume that v > 0.

ii) Take an arbitrary cover (S));emw of K. For S; # (0 let W; be an open ball of radius
6; := 2-diam(S;) centred in a point of S;. By compactness, K is covered by a finite subcollection
of the so defined W, say W1, ..., W,. Moreover, since U := W;U...UW, is open, a compactness
argument gives an integer ¢ such that U even covers K, (4) for all n > gq.

iii) Now consider H; := {i € J;, : V;NW,; # 0}. By lemma 2 there is a number b depending
neither on [ nor on the cover S; with #H; < b. Consequently, with (10),

Zdlam (S)7 > 2" 726ﬂ>2 72 > K( (276)7t - o (v, H),

=1 ZEHZ

where H denotes the union of the H;. The final two steps of the proof show that H is secure
and that o(y, L) > 1 for any finite, secure set L. Consequently, m?(K) > 1/(27b) > 0 and

iv) By making ¢ larger if necessary we may assume that every word of H is at most of
length ¢ (since #H < bp) and that A\? < §; for [ = 1,...,p. To prove that H is secure it is
enough to show: for any j € I, exists an integer n w1th ]|n € H. Take j from I,. Since U
covers K, there is [ with V; N I/Vl # 0. Since k(j) < A < §; there is by (7) a number n such
that ¢ := l|" € Js,. Finally, V_ D V; implies 2 € H; C H and the claim follows.

v) Let L be any finite, secure_ set. We show that o(,L) > 1. First, let L; := {¢ € L :
tlm & L Ym < |i|}. By definition, L; is tight. Since only extensions of other words contained
in L have been thrown away, L is secure. Obviously, o(v, L) > o(v, L1). Now, to prove the
claim consider the following inductive process which generates a ‘shrinking’ sequence of tight
and secure sets L,,: Take a word i = iy ..., € L,, with maximal length. Assume that n > 2.
Since Ly, is tight and secure, it must contain all the words iy ...i,—1k (k= 1,...,7). Replacing
these r words by their ‘predecessor’ 4, ...17,_; yields a new set L,,.; which is still secure and
tight. If L,, = I, then set L,,;1 = L,,. This defines the process. Consider the sequence L,,.
One has (v, L) > (7, Lim+1) since

kin(z Ry > z R (G)TR(R) = K()0(7, 1) > (j)". (13)

By induction o(~, L) > o(7, Ly,). Moreover, the number of words in L, decreases strictly in
m unless L,, = I;. Since L, is finite, this implies L,, = I; for m large enough. By assumption
o(7, 1) > 1 which completes the proof. For further use, note that o(~, Iy) > 1 since I} is secure
and finite. o
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Remark The argumentation above is of purely geometrical kind. In fact, it provides an
alternative proof of Moran’s theorem [7].

3 THE MAIN RESULT

Now, the lower bound of dyp(K) given by lemma 3 shall be optimized. We denote by =, the
unique (positive) numbers satisfying o(y,, I,) = 1. With (13) it is easy to see that o (v, Ign) >
1. Since (v, I,,) is strictly decreasing in y one finds v, < vk, and thus sup(y,) = lim sup y,.
On the other hand, lim, = I' as will be shown below. Hence, I' is the optimal lower bound of
dup(K) which can be extracted from lemma 3. Ex. 2 shows that there may be no better bound
on dyp(K) unless it involves the translations (u;,v;).

In order to give the value of T', let v+ resp. v~ be the unique numbers satisfying

2:1/;’)r =1 resp. » A =L (14)
=1 i=1
Provided there are i # j with
A < v and Aj > Vj, (15)

denote by (tg,70) the unique solution of

g VI (Aifvi)! = 1 (a)

, (16)
iglog(/\i/yi)V;/(Ai/Vi)t = 0 (b)

(The existence of (tg, 7o) will be shown below.) Otherwise, i.e. if (15) does not hold, set o = 0.
Finally, let

. { At 12;)1 log(A;/vs)vY >0, o { v oif éjl log(v; /AN >0,

Yo otherwise, Y otherwise.

Theorem 4 Let K be a diagonal self-affine set. Then

dHD(K) 2 I' := max (F+,F_).

The first steps of the proof explain the definition of I' and provide some notation.
Proof Remind that dyp(K) > sup+y, by lemma 3, where o(v,, ) = 1.
o) Assume first that \; > v; (i =1,...,7). Then one finds

T

o(v, 1) = (X s(i))"

=1

Thus, all 7, then coincide with v, and hence with T' by direct verification. The assertion
follows immediately, and a similar argument holds for the case v; > A; (i = 1,...,7). Thus
assume (15) for the remainder.
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i) Consider the probability space (I, B, P) where I, := {t = 1,...,7} is endowed with
the product topology, where B is the o-algebra of its Borel sets and where P is the product
measure on B induced by the measures

l/i’y

T
v
=1

{1} —

on the factors {1,...,7} of I,. Note that P depends on 7. The random variables
Xn . [oo — R (7:1,2'2)...) l—’lOg(Azn/l/ln)

are independent and identically distributed due to the property of the product measure. Set
Zn:i=X1+ ...+ X,. Then, for any fixed ,

r

()= v =(2v)" PlZ,> 0], (17)

et =1

Provided the expectation E[X,] is nonnegative, the Law of Large Numbers implies that
still rules the asymptotical behaviour of o, in a way made precise in step iv). Otherwise, the
moment generating function

M) = Bl = (3007) ™ /)

=1 =1

is involved: Provided P[X, > 0] > 0 and E[X,] < 0, one has

1
lim —log P[Z, > 0] = log inf M(t) (18)

n—oo 7,

by Chernoff’s theorem [2, p 147]. As will be shown, ¢, minimizes M (t) by (16 b), while (16
a) combines (17) and (18). Thus, the asymptotical behaviour of o is then ruled by 7g. This
explains the definition of I'.

ii) Next, the solvability of (16) has to be established. For convenience

x(7,t) =Y v (Ai/wm).

For fixed v, (16 b) has a unique solution ¢y = #5(vy) due to (15). Obviously, M'(¢y) = 0 and
to minimizes M. Moreover, t, depends continuously differentiable on ~ since x4 > 0. The
function of interest for (17) is

T

h(vy) =" v] - M(to(7)) = x(to(7),7),

=1

which is strictly decreasing by the following argument: x ;(¢o,y) vanishes by definition of ¢y
and thus

R(Y) =Xt o+ Xy =D logvi- v (Aifvs)™ <log A - h(7) < 0.

=1
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The mean value theorem implies h(y) — oo (7 — —o0). On the other hand, M(¢,) < M(0) =1
for all 4. As a first consequence, h(y) < Y v] — 0 (v — o0). This establishes the existence
and the uniqueness of 7o with A(vy) = 1, which is (16 a). As a second consequence, it implies
h(v") < x(0,77) =1 = h(70) and hence o < 7*.

iii) The asymptotical behaviour of o, is best described in the notation of ii). Fix 7. If
E[Xn] = X-t(OaV)/X(O”}/) > Oa Le. X.t(oa/Y) > 0, then P[Zn > 0] > P[(Zn - nE)/(n VaI‘) >
0] — 1/2 . If E[X,] < 0, then Chernoff’s theorem (18) can be applied due to (15). This leads
with (17) to

log x(0,7) if 3 log(hi/v)u” 2 0
i=1
logh(y)  otherwise.

n—oo n,

I*(7) = lim ~logoy (7) = {

iv) Finally, we show how I'" rules the asymptotics of o}
It(y)>0 if y<I* and IT(y) <0 if y>T*.

From M(0) = 1 follows x(0,7) > h(v) thus {T(y) > 0 for all v < 7, resp. IT(y) < 0 for
all v > ~T. It remains to consider v € [vy,7"]. Assume x;(0,v) = 0. Then #5(y) = 0 and
h(y) = x(0,7). But since h and x(0,-) are both strictly monotonous decreasing, and since
h(v) =1 = x(0,~77), this implies v* = o = . In this case there is nothing more to show. On
the other hand, if vy < 4+ there are only two possibilities:

1) x+(0,7%) > 0, hence I't = 4*. Then for all v € [y, 7| one has x4(0,7) > 0 and [T(y) =
log x(0,v) > 0.

2) x+(0,77) < 0, hence I'" = 74. Then for all v €]yy,7"] one has x0,7) < 0 and [*(y) =
log h(y) < 0.

v) In order to deal with the second term o, of o(y, I,,) just interchange A; and v;. Then,
~7 is replaced by v~ and the only thing to do is to recognize, that the same ~yq is obtained. For
this just note that interchanging A; and v; and replacing ¢ by v — ¢ keeps the equations of (16)
invariant. Thus

lim = log o, ()

n—oo 7,

>0 ify<TI7,

<0 ify>T".

vi) Finally, take v < T". Since o(v,I,) = o} + o, with both terms positive, iv) and
v) give o(v,I,) > 1 and hence v < =, for sufficiently large n. For v > T’ iv) and v) give
o(v,In) <1/2+1/2 and v > 7, for n large enough. Consequently, lim~, = I" and the theorem
follows. ©

4 APPLICATIONS

In this section theorem 4 is compared with results from [5], [3], [9] and [6].

Falconer [5] gave a lower bound for the Hausdorff dimension of self-affine sets, which does
not require a particular form of the ‘open set’ as in (5), but which does not apply to connected
invariant sets. In our context, his result reads as follows: Given a linear transformation .S on
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IR° with singular values a; > as > ... > aj, the singular value function ¢? is for positive 3

defined by
Q- Qy e Qg - @PFIT™ i B < s,

)ﬁ/s

(a1 ... s otherwise,

o) - {

where m = [3]. For a family w;(z,y) = Si(z,y)+ (u;, v;) (i = 1,...,r) of affine transformations
with the OSC (3) in the plane denote by d_(wy,...,w,) the unique g satisfying

lim (3 (6705 =1
Theorem 5 (Falconer) Let K be the invariant set of wy,...,w, as above. If the sets w;(K)
are mutually disjoint, then dup(K) > d_(wy,...,w,).
In the case of diagonal affinities (1), the bound d_(wy,...,w,) can be calculated using similar
methods as in the previous section. Let
N ip<d, v i<
#ilh) = { vl Th it d < B, and 6,(6) _{ vXTh it d" < B

Then
mw(B) =3 (#(57) =2 6:8)+ > ¢i(B), (19)

i€ln ielt i€l,

and, following the lines of section 3let T and 3~ denote the unique numbers satisfying
> 0;(67)=1 resp. > @i(B7)=1
=1 i=1

If (15) holds, denote the unique solution of

OB = 1
log(Ai/vi)0:(8)(Ni/vi)t = 0

vl

=1

by (o, B0). Otherwise set Gy = 0. Finally let

. { g+ it ; log(\/)6(55) > 0 { B if ; log(vi/Ai)ei(B~) > 0

By otherwise Bo otherwise

Proposition 6 For diagonal affine contractions, d_(ws, ..., w,) = B := max (B*, B7).

Proof Taking care to the special values 8 = d' and § = d”, where ¢ resp. # are not
differentiable in general, the proof of theorem 4 carries over posing no essential problems. <
A comparison of B and T is easy. Since d_ may not only involve the smaller of the two
singular values of w; but also the larger ones, one has 7,(v) > o(v, I,) by (11) and (19), and
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hence B > I'. On the other hand, if d’ < d, Z)\g" <1 and Zl/f" <1 as in Ex. 2, one has
B =T < d" due to 7,(y) = o(,I,,) (v <d"). Moreover, By = ¥ holds always, allowing further
situations with B = T" (see Ex. 3). Though I' can never exceed B, it is useful, since it applies
also to connected sets.

Falconer also provided an ‘almost sure’ value dp of dgp(K) of self-affine sets [3]. Using
similar methods as in section 3, [9] was able to give an explicit formula for dp. This reads as:

Let K be the compact set invariant under some family of diagonal affine contractions
wy, ..., w, of R%. Provided \ < 1/3

dHD(K) = dbox(K) = dF = max(ﬁ‘,ﬁﬂ

for almost every choice of (u1,v1,...,ur,v,) with respect to Lebesgue measure in RY.

Note, that the OSC is not required. Moreover, dyo(K) < dp for all (uy,vq,...,u,,v,). For
the actual value of dyo(K), which is well known to be an upper bound of dyp(K), we refer
again to [9], where the generalized dimensions D, and the multifractal spectrum of self-affine
measures (u = Y p; - w(w; '(+))) are calculated. It is worth noting, that the spectrum of these
measures show features, which can not be observed in the self-similar case: the function g — D,
may be not differentiable or once but not twice differentiable. However, of interest here is the
special value Dy which equals the box dimension of the support K of u.

Let K be a diagonal self-affine set. Assume that D) = dyo (K®)) exist for k =1, 2, where
KO and K@ are the projections of K onto the invariant subspaces R® and R respectively.
Then

dpox(K) = max(d*,d ™), (20)

where d* and d~ are defined through

T T
ZAZ_D(l)VZ_(d‘F_D(l)) -1 resp. ZVz‘D(Q) /\i(d’—D(2)) -1
i=1

=1

Remark Provided A\; > v; (1 = 1,...,r), one has ' = 4", B = 8%, dp = (= and
dpox(K) = dT. In the case of self-similar sets (\; = v;, i = 1,...,7), all values coincide.

Example 1 (Gatzouras, Lalley) In [6] certain special cases of diagonal self-affine sets K
with \; < v;, called ‘carpets’ [8], have been investigated. In particular, the Hausdorff dimension
of carpets is shown to satisfy a variational principle which involves the invariant measures
supported on K (see [10]). Moreover, dyp(K) = dpox(K) = § iff 0 < m®(K) < oo. Both results
are of great interest. However, explicit calculation of dyp(K) seems hopeless in general and
bounds such as I' =~ and B = ~ may be useful. O

Example 2 Consider the maps w;(z,y) = (z/4,y/8) + (u;,v;) (1 = 0,...,3) with the round
set ]0,1[%. Since A; > v; for all 4, one finds ' = B = 4" = 2/3, dp = 8~ = 1. Hence,
dup(K) = dpox(K) = 1 for almost all (u;,v;) with respect to Lebesgue measure in the IR®,
2/3 < dyp(K) for all (u;,v;) which imply the round OSC and dpox(K) < 1 for all choices of
(us,v;). Finally, dpox(K) = d*, which depends analytically on D).
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For u; = 0 and v; = i/4, K is a self-similar set lying on the y-axis with dyp(K) = dpox(K) =
log4/log8 =2/3 =T. For ag =as =0, a1 = a3 = 3/4, by = by =0 and by = b3 = 7/8, one
obtains the product of two self-similar sets with dup(K) = dpox(K) = 1/2+1/3 = 5/6 ([11],
[8] or [6]). Finally, for u; = ¢/4 and v; = 0 one finds dup(K) = dpox(K) = 1. O

Example 3 (Rosette) Consider the maps
wilny) = (@2- 129/ wlny) = (@/2u/2-1/2)
with the round open set O = {(z,y) : |z| + |y| < 1} (Fig. 1). Here, DY) = D® =1, and

1 17—1
T =10 =4/3 < dup(K) < dpox(K) = 3 — ‘)g(;ﬁ;?) ~1.357,

a satisfying bound. Also d_(w,...,w,) = By = 4/3, but the sets w;(K) are not disjoint. O

o

Figure 1: The construction of the rosette (see Ex. 3).

5 CONCLUSIONS

We presented a class of self-affine sets and measures which is wide enough to cover important
applications such as fractal interpolation surfaces and mountain surfaces. On the other hand,
the affine transformations used are simple enough to allow the explicit calculation of various
fractal characteristics such as bounds for the Hausdorff dimension, the box dimension and the
multifractal spectrum. As we stressed, with self-affine sets and measures one may not always
get the intuitive answer: The spectrum does not have to be smooth. Furthermore, although the
dimension of self-affine sets is ‘almost surely’ known, exceptions do occur. Our explicit bounds
give an idea, to what extent the effective value may differ from the expected one.
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