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Abstract

Multifractal theory up to date has been concerned mostly with random and deter-
ministic singular measures, with the notable exception of fractional Brownian motion
and Lévy motion. Real world problems involved with the estimation of the singularity
structure of both, measures and processes, has revealed the need to broaden the known
‘multifractal formalism’ to include more sophisticated tools such as wavelets. More-
over, the pool of models available at present shows a gap between ‘classical’ multifrac-
tal measures, i.e. cascades in all variations with rich scaling properties, and stochastic
processes with appealing statistical properties such as stationary increments, Gaussian
marginals, and long-range dependence but with degenerate scaling characteristics.

This paper has two objectives, then. First, it develops the multifractal formalism
in a context suitable for functions and processes emphasizing an intuitive approach.
Binomial cascades and self-similar processes are treated extensively with a special eye
on the use of wavelets. Second, it introduces truly multifractal processes, building a
bridge between multifractal cascades and self-similar processes. Statistical properties
of estimators as well as modeling issues are addressed but will appear elsewhere.
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1 Introduction and Summary

Fractal processes have a been successfully applied in various fields such as the theory of fully
developed turbulence [6,30,48], stock market modeling 22, 51,52], and more recently in
the study of network data traffic [47,58]. In networking, models using fractional Brownian
motion (fBm) have helped advance the field through their ability of capturing fractal
features such as statistical self-similarity and long-range dependence (LRD). It has been
recognized, however, that multifractal features need to be accounted for towards a better
understanding of network traffic, but also of stock exchange [28,51,66,67,72]. In short,
there is a call for more versatile models which can, e.g., incorporate LRD and multifractal
properties independently of each other.

Roughly speaking, a fractal entity is characterized by the inherent, ubiquitous oc-
currence of irregularities which governs its shape and complexity. The most prominent
example is certainly fBm By (t) [53]. Its paths are almost surely continuous but not dif-
ferentiable. Indeed, the oscillation of fBm in any interval of size ¢ is of the order 6% where
H € (0,1) is the self-similarity parameter:

By(at) 2 o By (). 1)

One reason for the success of fBm is that is uniquely defined through (1) and the fact
that it is a Gaussian process. While (1) allows often for simple analysis, the fact of being
Gaussian bears further advantages. The scaling property (1) implies also, according to [4],
that fBm has a uniform oscillatory behavior. Unfortunately, this comes as a disadvantage
in various situations. Real world signals, as a matter of fact, often possess an erratically
changing oscillation exponent, limiting the appropriateness of fBm as a model. Due to the
various exponents being present in such signals, they have been termed multifractals.

This paper has two objects. First, we present the framework for describing and detect-
ing such a multifractal scaling structure. Doing so we survey local and global multifractal
analysis and relate them via the multifractal formalism in a stochastic setting. Thereby,
the importance of higher order statistics will become evident. It might be especially
appealing to the reader to see wavelets put to novel use. We focus mainly on the an-
alytical computation of the so-called multifractal spectra, and on their mutual relations,
dwelling extensively on variations of binomial cascades. Statistical properties of estimators
of multifractal quantities as well as modeling issues are addressed elsewhere (see [2,32,33]
and (51,65, 66]).

Second, we extend fBm to a process which is indeed multifractal: Brownian motion in
multifractal time. This process has been suggested as a model for stock market exchange
[51,52] where oscillations are thought of as occurring in multifractal ‘trading time’. The
process seems also to appear naturally in Burgers equation with Brownian initial conditions
[74,82]. The reader interested in these multifractal processes may wish, at least at first
reading, to content himself with the notation introduced on the following few pages, skip
the sections which deal more carefully with the tools of multifractal analysis, and proceed
directly to the last two sections. The remainder of this introduction provides a summary
of the contents of the paper, following roughly its structure.
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1.1 Singularity Exponents

In this work, we are mainly interested in the geometry or local scaling properties of the
paths of a process Y (t). Therefore, all notions and results concerning paths will apply
to functions as well. For simplicity of the presentation we take ¢ € [0,1]. Extensions to
the real line IR as well as to higher dimensions, being straightforward in most cases, are
indicated.

A typical feature of a fractal process Y (¢) is that it has a non-integer degree of differ-
entiability, giving rise to an interesting analysis of its local Hélder ezponent H(t). This
H(t) is the largest h such that |V (#) — P(#')| < C|#' — t|* for ¢' sufficiently close to ¢ and
for some polynomial P — the Taylor polynomial of Y at ¢.

Provided the polynomial is constant, H (t) can be obtained using so-called coarse Hilder
ezponents, more precisely, H(t) = h(t) where

1
h(t) = liminf by (¢ here h(t) = —1I Y(t)-Y(t
) = lminthe(t)  where h(0) = clog sup [V(E) =Y (D)

: 2

Vice versa, if h(t) ¢ IN then H(t) = h(t) and the polynomial is indeed constant.

However, as the example 2 + {7 shows, the use of h(t) is ineffective in the presence
of polynomial trends. Then, h(t) will reflect the lowest non-constant term of the Taylor
polynomial of Y at ¢. For this reason, and also to avoid complications introduced through
the computation of the supremum in (2), one may choose to employ wavelet decompositions
or other tools of time frequency analysis. Properly chosen wavelets are blind to polynomials
and due to their scaling properties they contain information on the Holder regularity of
Y [17,40]. Their application in multifractal estimation has been pioneered by [6, 41].
Furthermore, wavelets provide unconditional basis for several regularity spaces such as
Besov spaces (see (44) and (113)) whence their use bears further advantages.

Yet, the ‘classical’ choice of a singularity exponent is

Of = g8 (M(h+ 1)27) = M2 ), 3

It is attractive due to its simplicity and becomes actually quite powerful when study-
ing monotonously increasing processes M(t), in particular the distribution functions of
singular measures, such as cascades.

In the paper we will elaborate on the relation between these different singularity expo-
nents.

1.2 Multifractal Spectra
As indicated we are mainly interested in the geometry or local regularity of the paths of
Y (¢). Let us fix such a realization for the time-being,

1.2.1 Local analysis

Ideally, one would like to quantify in geometrical as well as statistical sense which values
h(t) appear on a given path of the process Y, and how often one will encounter them.

1 Introduction and Summary 3

Towards the first description one studies the sets
Eo={t: h(t) =a} 4)

The sets E, form a decomposition of the support of Y according to its singularity
exponents. We say that Y has a rich multifractal structure if these sets E, are highly
interwoven, each lying dense on the line. If so, only one of the E, can have full Lebesgue
measure, while the others form dusts, more precisely sets with non-integer Hausdorff di-
mension dim(E,) [25]. Consequently, a multifractal spectrum can be defined as

d(

= dim(E,). (5)

In the ‘classical’ literature, d(a) has been studied extensively as a compact representation
of the complex singularity structure of Y.

To develop some intuition we note that the d(a)-spectrum of a differentiable path®
reduces to the point (1,1). On the other hand, if A(t) is continuous and not constant on
intervals then each E, is finite and dim(E,) = 0 for all @ in the range of h(t). A spectrum
d(a) with non-degenerate form is, thus, indeed indication for rich singularity behavior. By
this we mean that h(t) changes erratically with ¢ and takes each value a on a rather large
set Eq.

1.2.2 Global analysis

A simpler notion of a spectrum is obtained when adapting the concept of box-dimension
to the multifractal context. As the name indicates, one aims at an estimate of dim(E,) by
counting the intervals — or boxes — over which Y increases roughly with the ‘right’ Holder
exponent. Therefore, we define the grain (multifractal) spectrum as 35,36, 55, 68]

- log N™(a, €)
fla) = limlimsup = oo~

; (6)
where N™(a,e) = #{k : |h} —a| < €} counts the relevant grain exponents
R} = —(1/n)logasup{|Y(s) =Y ()| : (k—1)27" <s<t<(k+2)27"}. (7)

This multifractal spectrum can be interpreted (at least) in three ways. First, as men-
tioned already it is related to the notion of dimensions. Indeed, a simple argument shows
that dim(E,) < f(a) [70]. The essential ingredient for a proof is the fact that the cal-
culation of dim(E,) involves finding an optimal covering of £, while f(a) considers only
uniform covers.

Second, (6) suggests that the re-normalized histograms (1/n)logy N"(a,€) should col-
lapse at small scales 27". For an ergodic process, one would at first glance hope to see
the marginal distribution. However, the re-normalization implemented in f(a) is aimed
at detecting scaling properties which may cause most of the details of the marginal to be
wiped out. Such is the case with {Bm (1) where only the scaling parameter H contributes

3To avoid trivialities let us assume that this path and its derivative have no zeros.
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to f(a), not the Gaussian density (see (139)). Consequently, {Bm is ‘mono-fractal’ as men-
tioned above. To the contrary with multiplicative processes such as cascades, for which
almost all details of the marginals may be reflected in f (see (108)).

The third natural context for the coarse spectrum f is that of Large Deviation Princi-
ples (LDP). Indeed, N™(a,)/2" defines a probability distribution® on {A : k=0,...,2"—
1}. Alluding to the Law of Large Numbers (LLN) we may expect this distribution to
be concentrated more and more around the ‘most typical’ or ‘expected’ value as n in-
creases. The spectrum f(a) measures how fast the chance decreases to observe a ‘deviant’
value [23,68], i.e. N"(a,¢)/2" =~ 2701,

1.3 Multifractal Formalism

The close connection to LDP leads one to study the scaling of ‘sample moments’ through
the so-called partition function [30,35,36,68]

.I_.. mﬁom.wnsv r rmﬁ .| m=\H mwzgm m
§€.l min ﬂomm where  Sj(q) := W : :

Similarly, replacing h} by of, one defines 7,(g) and S (g) which takes on the well-known
form of a partition sum

m_1
Shlg) =27 = 3 |V ((k+1)27") Y (k2™ (9)
k=0

If the choice A} or j does not matter we simply drop the index.

1.3.1 A Large Deviation Principle

The theory of LDP suggests f(a) and 7(q) are strongly related since 275" (g) is the mo-
ment generating function of the random variable A, (k) := —nhj In(2) (recall footnote 4).
For a motivativion of a formula consider the heuristics

Ui@v — MU MU 9—nahi ~ MMEASM\EE — Mm\:@:\\?z ~ m\i:mn@n\)n:.

@ hi~a
Making this argument rigorous we prove in this paper that
7(g) = f*(a) := inf(ga — f(a)). (10)

Here (-)* denotes the Legendre transform which is omnipresent in the theory of LDP.
Indeed, by applying a theorem due to Gértner and Ellis [21] and imposing some regularity
on 7(q) theorem 5 shows that the family of probability densities defined by N"(a,¢)/2"
satisfies the full LDP [20] with rate function f meaning that f is actually a double-limit
and f(a) = 7*(a). Corollary 18 establishes that always

fla)=7*(a)=qa—7(q)  at points a =7'(q). (11)

“Recall that we fixed a path of Y. Randomness is here understood in choosing k.
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Going through some of the explicitly calculated examples in Section 5.4 will help de-mystify
the Legendre transform.

From (10) follows, that f(a) < f**(a) = 7*(a) and also that 7(q) is a concave function,
hence continuous and almost everywhere differentiable.

1.3.2 Deterministic envelop

So far, all that has been said applies to any given function or path of a process. In the
random case, one would often like to use an analytical approach in order to gain intuition
or an estimate of f for a typical path of Y.

To this end we formulate a LDP for the sequence of distributions of {h}} where ran-
domness enters now through choosing k € {0,...,2" — 1} as well as through the random-
ness of the process itself, i.e. through Y(w) where w lies in the probability space (€, Pq).
The moment generating function of Ay, (k,w) = —nhj}(w)In(2) with k£ and w random is
27"IEq[S"(¢)]. This leads to defining the ‘deterministic envelop’:

Lol n
T(g) = liminf — log, EnS"() (12)
and the corresponding ‘rate function’ F' (see (67)). As with the pathwise f(a) and 7(q) we
have here again T(q) = F*(q). More importantly, it is easy to show that 7(q,w) > T(q)
almost surely (see lemma 8). Thus:

Corollary 1 With probability one the multifractal spectra are ordered as follows: for all a
dim(E,) < £(a) < 7*(a) < T*(a). (13)

Great effort has been spent on investigating under which assumptions equality holds be-
tween some of the spectra, say between dim(E;) as defined in terms of h(t) and 7*(a) a

obtained from a wavelet transform of Y. It has become the accepted term in the literature
to say that the multifractal formalism holds if any such relation exists. Not indicating
the nature of the parts of such an equality we find this terminology sometimes confusing
and prefer to call (13) the multifractal formalism: this formula ‘holds’ for any choice of a
singularity exponent as is shown in the paper.

1.4 Self-similarity and LRD

The statistical self-similarity as expressed in (1) makes fBm, or rather its increment process
a paradigm of long range dependence (LRD). To be more explicit let § denote some fixed
lag and define fractional Gaussian noise (fGn) as

G(k) := Bu((k +1)5) — By (ko). (14)

Having the LRD property means that the auto-correlation rg(k) := Eq[G(n + k)G(n)]
decays so slowly that Y rg(k) = co. The presence of such strong dependence bears an
important consequence on the aggregated processes

(k+1)m-1
a(i). (15)

i=km
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They have a much higher variance, and variability, than would be the case for a short range
dependent process. Indeed, if X (k) are iid., then X(™ (k) has variance (1/m?)var(Xq +
oot Xmo1) = (1/m)var(X). For G we find, due to (1) and By (0) =0,

var(G™(0)) = var A%E?é - sﬂmmm@ —m? 2ar(By(8).  (16)

For H > 1/2 this expression decays indeed much slower than 1/m. As is shown in [14]
var(X(M) ~ m2#-2 is equivalent to rx(k) ~ k2" 2 and so, G(k) is indeed LRD for
H > 1/2 (this follows also directly from (132)).

Let us demonstrate with {Gn how to relate LRD with multifractal analysis using only
that it is a zero-mean processes, not (1). To this end let § = 27" denote the finest
resolution we will consider, and let 1 be the largest. For m = 2 (0 < i < n) the process
mG™ (k) becomes simply By ((k + 1)md) — By (kmd) = By((k + 1)2 ") — By (k2 ™).
But the second moment of this expression —which is also the variance— is exactly what
determines T, (2) (compare (9)). More precisely, using stationarity of G and substituting
m =2, we get

[ImGo™ (k)] = 2"-i2%var (62) . (17)

This should be compared with the definition of the LRD-parameter H via
var(GM) e m22 o var(G®)) = 222, (18)

At this point a conceptual difficulty arises. Multifractal analysis is formulated in the limit
of small scales (i = —oc) while LRD is a property at large scales (i — oc). Thus, the two
exponents H and T,(2) can in theory only related when assuming that the scaling they
represent is actually exact at all scales, and not only asymptotically.

In any real world application, however, one will determine both, H and T,(2), by
finding a scaling region i < i <1 in which (17) and (18) hold up to satisfactory precision.
Comparing the two scaling laws in 7 yields T,(2) +1—-2=2H — 2, or

H= E (19)

2

This formula expresses most pointedly, how multifractal analysis goes beyond second order
statistics: in (28) we compute with T'(q) the scaling of all moments. The relation (19), here
derived for zero-mean processes, can be put on more solid grounds using wavelet estimators
of the LRD parameter [3] which are more robust than the ones through variance. The same
formula (19) reappears also for multifractals (see (29) and (153)), suggesting that it has
some ‘universal truth’ to it.

1.5 Multifractal Processes

The most prominent examples where one finds coinciding, strictly concave multifractal
spectra are the distribution functions of cascade measures [5,11,26,38,43,48,59,63,68,71]
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for which dim(E,) and T%(a) are equal and have the form of a N. These cascades are
constructed through some multiplicative iteration scheme such as the Binomial cascade,
which is presented in detail in the paper with special emphasis on its wavelet decom-
position. Having positive increments, this class of processes is, however, sometimes too
restrictive. fBm, as noted, has the disadvantage of a poor multifractal structure and does
not contribute to a larger pool of stochastic processes with multifractal characteristics.

It is also notable that the first ‘natural’, truly multifractal stochastic process to be
identified was Lévy motion [42]. This example is particularly appealing since scaling is
not injected into the model by an iterative construction (this is what we mean by the
term natural). However, its spectrum is, though it shows a non-trivial range of scaling
exponents h(t), degenerated in the sense that it is linear.

1.5.1 Construction and Simulation

With the formalism presented here, the stage is set for constructing and studying new
classes of truly multifractional processes. The idea, to speak in Mandelbrot’s own words,
is inevitable after the fact. The ingredients are simple: a multifractal ‘time warp’, i.e. an
increasing function or process M(t) for which the multifractal formalism is known to hold,
and a function or process V with strong mono-fractal scaling properties such as fractional
Brownian motion (fBm), a Weierstrass process or self-similar martingales such as Lévy
motion. One then forms the compound process

V(t) = VIM(D) (20)

To build an intuition let us recall the method of midpoint displacement which can be
used to define simple Brownian motion By, which we will also call Wiener motion (WM)
for a clear distinction from fBm. This method constructs B, iteratively at dyadic points.
Having constructed By o(k2™") and By 5((k + 1)27") one defines Byj5((2k +1)27"7) as
(Bija(k27™) + Byja((k +1)27"))/2 + Xg . The off-sets Xy, are independent zero mean
Gaussian variables with variance such as to satisfy (1) with H = 1/2. Thus the name of
the method. One way to obtain Wiener motion in multifractal time WM(MF) is then to
keep the off-set variables X}, as they are but to apply them at the time instances
defined by f, = M~ (K277), i.e. M(ty) = k27

Byja(toni1n1) = |m§9§u Mu%?iri + X (21)
This amounts to a randomly located random displacement, the location being determined
by M. Indeed, (20) is nothing but a time warp.

An alternative construction of ‘warped Wiener motion’ WM(MF) which yields an
equally spaced sampling as opposed to the samples By j5(tx ) provided by (21) is desirable.
To this end, note first that the increments of WM(MF) become independent Gaussians
once the path of M(t) is realized. To be more precise, fix n and let

G(k) == B((k+1)2") = B(k2 ") = By p(M(k +1)2")) = By p(M(k2 ™). (22)

For a sample path of G one starts by producing first the random variables M (k2"). Once
this is done, the G(k) simply are independent zero-mean Gaussian variables with variance

M(k+1)27") - M(k27™)
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1.5.2 Global analysis

For the right hand side (RHS) of the multifractal formalism (13), we need only to know
that V' is an H-sssi process, i.e. that the increment V(¢ +u) — V (t) is equal in distribution
to ufV (1) (compare (1)). Assuming independence between V and M a simple calculation
reads as

2n-1
Eo Y, V((k+1)27") = V(k2 ™)

k=0
o1

= Y EE[V(M((k+1)27) = V(M@E2 )| | M2, M((k + 1)27)]
k=0

= Y E[IM((k+ 1277 — M2 E ] BV, (23)
k=0

With little more effort the increments [V((k + 1)27") — V(k2™™)| can be replaced by
suprema, ie. by 27"k or even certain wavelet coefficients under appropriate assump-
tions (see theorem 38). It follows that

Tu(gH) i B [|supggyer VO] < o0

Warped H-sssi: ~ Ty(q) =
—00 else.

(24)

Simple H-sssi process: When choosing the deterministic warp time M(t) = ¢ we
have Ty (q) = q— 1 since S%(q) = 2"-27" for all n. Also,V = V. We obtain Ty (¢H) =
¢H — 1 which has to be inserted into (24) to obtain

qH -1 ifEq T SUPo<y<t E&E <o

—00 else.

Simple H-sssi: Ty (q) = (25)

1.5.3 Local analysis of warped fBm

Let us now turn to the special case where V' is fBm. Then, we use the term FB(MF) to
abbreviate fractional Brownian motion in multifractal time: B(t) = By(M(t)). First, to
obtain an intuition on what to expect from the spectra of B let us note that the moments
appearing in (24) are finite for all ¢ due to lemma 34. Applying the Legendre transform
yields easily that

T3la) = inf(ga ~ TunlgH)) = Tig(o/H), (26)

Second, towards the local analysis we recall the uniform and strict Holder continuity
of the paths of fBm® which reads roughly as
sup |B(t +u) = B(t)| = sup [By(M(t +u)) — By(M())] = sup |M(t +u) - M(D)|".
[u|<d u|<d u <0
This is the key to conclude that By simply squeezes the Holder regularity exponents
by a factor H. Thus,
hg(t) =H-hy(t),  Eify=E;,

¥See theorem 33 for precise statement due to Adler [4].
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and, consequently, analogous to (26),

In conclusion:

Corollary 2 (Fractional Brownian Motion in Multifractal Time)
Let By denote fBm of Hurst parameter H. Let M(t) be of almost surely continuous paths
and independent of By. Then, the multifractal warp formalism

|dim(EE) = fulo) = 73(a) = T3(a) = Tiy(a/H) (27)

holds for B(t) = By(M(t)) for any a for which &EAHM,\\MV =T} (a/H).

This means that the local, or fine, multifractal structure of B captured in dim(EZ) on the
left can be estimated through grain based, simpler and numerically more robust spectra
on the right side, such as 73(a).

The ‘warp formula’ (27) is appealing since it allows to separate the LRD parameter of
fBm and the multifractal spectrum of the time change M given Tj. Indeed, provided that
M is almost surely increasing one has Tx(1) = 0 since S™(0) = M(1) for all n. Thus,
Tg(1/H) = 0 exposes the value of H. Alternatively, the tangent at T} through the origin
has slope 1/H. Once H is known T} follows easily from T3.

Simple fBm: When choosing the deterministic warp time M(t) = ¢ we have B = By
and T (g) = q — 1 since S}(q) =2" - 27" for all n. We conclude that

Tpy(q) =qH -1 (28)

for all g. This confirms (19) for fGn. With (27) it shows that all spectra of {Bm consist of
the one point (H,1) only, making the mono-fractal character of this process most explicit.

1.5.4 LRD and estimation of warped fBm

Let G(k) := B((k +1)27™") — B(k2™") be fGn in multifractal time (see (22) for the case
H =1/2). Calculating auto-correlations explicitly, lemma 41 shows that G is second order
stationary under mild conditions with

_ Ty(2H) +1

H,
¢ 2

(29)

Let us discuss some special cases. For a continuous, increasing warp time M, e.g., we
have always Ty (0) = —1 and T)(1) = 0. Exploiting the concave shape of T4 we find that
H < Hg<1/2for 0< H<1/2,and 1/2 < Hg < H for 1/2 < H < 1. Thus, multifractal
warping can not create LRD and it seems to weaken the dependence as measured through
second order statistics.

Especially in the case of H = 1/2 (‘white noise in multifractal time’) G(k) becomes
uncorrelated. This follows from (173). Notably, this is a stronger statement than the
observation that the G(k) are independent conditioned on M (compare Section 1.5.1). As
a particular consequence, wavelet coefficients will decorrelate fast for the entire process G,
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not only when conditioning on M. This is favorable for estimation purposes as it reduces
the error variance.

Of larger importance, however, is the warning that the vanishing correlations should
not make one conclude on independence of G(k). After all, G becomes Gaussian only
when conditioning on knowing M. A strong, higher order dependence in G is hidden in
the dependence of the increments of M which determine the variance of G(k) as in (22).
Indeed, simulations of B show clear phases of monotony indicating positive dependence in
its increments G, despite vanishing correlations. Mandelbrot calls this the ‘blind spot of
spectral analysis’.

1.5.5 Multifractals in multifractal time

Despite of its simplicity the presented scheme for constructing multifractal processes allows
for various play-forms some of which are little explored. First of all, for simulation purposes
one might subject the randomized Weierstrass-Mandelbrot function to time change rather
than fBm itself.

Next, we may choose to replace fBm with a more general self-similar process (130)
such as stable motion. Difficulties arise here since Levy motion is itself a multifractal
with varying Holder regularity and the challenge lies in studying which exponents of the
‘multifractal time’ and the motion are most likely to meet. A solution for the spectrum
f(a) is given in corollary 43 which actually applies to arbitrary processes Y with stationary
increments (compare theorem 44) replacing fBm. In its most compact form our result gives
the multifractal spectrum of ) := Y'(M) through fy(a) = T3(a) where

| 50 = 1w (1) +1) |

In the special case when Y is almost surely increasing, i.e. a multifractal in the clas-
sical sense, a close connection to the so-called ‘relative multifractal analysis’ [71] can be
established using the concept of inverse multifractals [70]: understanding the multifractal
structure of Y is equivalent to knowning the multifractal spectra of ¥ with respect to
M1 the inverse function of M. We will show how this can be resolved in the simple case
of Binomial cascades.



