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Abstract

In this paper, we develop a simple and powerful multiscale model
for the synthesis of nonGaussian, long-range dependent (LRD) net-
work traffic. Although wavelets effectively decorrelate LRD data,
wavelet-based models have generally been restricted by a Gaus-
sianity assumption that can be unrealistic for traffic. Using a mul-
tiplicative superstructure on top of the Haar wavelet transform,
we exploit the decorrelating properties of wavelets while simulta-
neously capturing the positivity and “spikiness” of nonGaussian
traffic. This leads to a swift O(NN) algorithm for fitting and syn-
thesizing N-point data sets. The resulting model belongs to the
class of multifractal cascades, a set of processes with rich statistical
properties. We elucidate our model’s ability to capture the covari-
ance structure of real data and then fit it to real traffic traces.
Queueing experiments demonstrate the accuracy of the model for
matching real data. Our results indicate that the nonGaussian
nature of traffic has a significant effect on queuing.

1 Introduction

Traffic models play a significant role in the analysis and charac-
terization of network traffic and network performance. Accurate
models enhance our understanding of these complex signals and
systems by allowing us to study the effect of various model param-
eters on network performance through simulation.

The presence of long-range dependence (LRD) in modern net-
work traffic was demonstrated convincingly in the landmark paper
by Leland et. al. [1]. There, measurements of traffic load on an
Ethernet were attributed to fractal behavior or self-similarity, i.e.,
to the fact that the data “looked statistically similar” (“bursty”)
on all time-scales. These features are inadequately described by
classical traffic models, such as Markov or Poisson models. In par-
ticular, the LRD of data traffic can lead to higher packet losses
than that predicted by classical queuing analysis [1,2].

These findings were immediately followed by the development of
new fractal traffic models [3-5]. The fractional Brownian motion
(fBm), the most broadly applied fractal model, is the unique Gaus-
sian process with stationary increments and the following scaling
property for all a > 0

B(at) Z o B(t), (1)
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with equality in (finite-dimensional) distribution. The increment
process G(k) = B(k + 1) — B(k), called fractional Gaussian noise
(fGn), has an autocorrelation of the form

2
o

ra[k] = 5 (b + 17 = 2|k + [k — 1]1). (2)

The parameter H, 0 < H < 1, is known as the Hurst parameter.

It simultaneously rules the large-scale behavior and the degree of

local “spikiness.” In particular, for all ¢

B(t+s) — B(t) ~ s (3)

(more precisely, B(t+ s) — B(t) is a zero-mean Gaussian process of
variance s?#1), meaning that fBm has “infinite slope” everywhere.
Processes approximating fBm/fGn can be synthesized almost ef-
fortlessly in the wavelet domain due to the amazing decorrelating
effect of the wavelet transform [6].

A strong argument for the fBm/fGn models in networks is that
in many cases traffic can be viewed as the superposition of a large
number of independent individual ON/OFF sources, with the ON
durations heavy-tailed [7,8]. In this case, subtracting the mean
arrival rate and normalizing properly, the aggregated ON/OFF
sources (cumulative arrivals) converge to Gaussian fBm by the cen-
tral limit theorem (CLT) [1,3]. A “self-similar” traffic arrival model
(of the increments process) is, thus, simply an “fGn+mean” model
with given variance and H. The fBm/fGn models have found wide
use in networking, since their Gaussianity and strong scaling (1)
allows analysts to perform analytical studies of queueing behav-
ior [9-13].

Unfortunately, the fBm/fGn models have severe limitations for
network traffic applications. First, real-world traffic traces do not
exhibit the strict self-similarity of (1) or (2) and are at best merely
asymptotically self-similar. In other words, the single parameter
H is not sufficient to capture the complicated correlation structure
of real network processes. Indeed, convincing evidence has been
produced establishing the importance of short-term correlations
for buffering [16-18] and so-called relevant time scales have been
discovered [19]. The wavelet-domain independent Gaussian (WIG)
model generalizes fBm /fGn by allowing a more flexible scaling rela-
tion than (1). By matching both long and short-term correlations,
the WIG model more completely matches the correlation structure
of a target data set [15].

Second, the Gaussianity of fBm/fGn/WIG models can be un-
realistic for certain types of traffic, for instance when the stan-
dard deviation of the data exceeds the mean. In this case, the
fBm/fGn/WIG output signals take on a considerable number of
negative values (see Figure 1).
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Figure 1: Bytes-per-time arrival process at different aggregation levels for (a) wide-area TCP traffic at the Lawrence Berkeley Laboratory (trace
LBL-TCP-3) [14], (b) one realization of the state-of-the-art wavelet-domain independent Gaussian (WIG) model [15], and (c) one realization of
the multifractal wavelet model (MWM) synthesis. The top, middle and bottom plots correspond to bytes arriving in intervals of 6 ms, 12 ms
and 24 ms respectively. The top and middle plots correspond to the second half of the middle and bottom plots, respectively, as indicated by the
vertical dotted lines. The MWM traces closely resemble the real data closely, while the WIG traces (with their large number of negative values)

do not.

Third, in many networking applications, we are nowhere near
the Gaussian limit, in particular on small time scales. Indeed,
various authors have observed marginals that differ substantially
from Gaussian. Usually these distributions have been observed to
be heavy tailed [20, p. 364], [21]. Consequently, methods aimed at
fitting marginals have been developed [22,23]. Also, more versatile
models such as fractional ARIMA [24] have been applied towards
better matching the short-range and long-range correlation struc-
ture present in real traces.

In this paper, we propose a new non-linear model for network
traffic data. The multifractal wavelet model (MWM) is based on a
multiplicative cascade in the wavelet domain that by design guar-
antees a positive output. Since each sample of the MWM process
is obtained as a product of several positive independent random
variables, the MWM’s marginal density is approximately lognor-
mal, a heavier-tailed distribution than the Gaussian. The MWM
is thus a more natural fit for positive arrival processes, especially
those with a standard deviation much larger than the mean (as
observed in the traces we have studied).

In its simplest form, the MWM is closely related to the wavelet-
based construction of fBm/fGn, having as few parameters (mean,
variance, H). However, the MWM framework boasts the flexibility
to additionally match the short-term correlations like the WIG
model.

The MWM has a bursty demeanor that matches that of real

traffic much more closely than fBm/fGn. The TCP traffic we have
studied here exhibits local scaling similar to (3), but with an ex-
ponent H; that depends on ¢. This has been termed multifractal
behavior and was reported for the first time in [25] and subsequently
in [26-29]. Amazingly, the statistical properties of H; as a random
variable in ¢ can be described compactly through a function 7'(q)
that controls the scaling behavior of the sample moments of or-
der q. This powerful relation, called the multifractal formalism,
ties burstiness, higher-order dependence structure, and moments
of marginals together in one unified theory.

Fitting the MWM to real traffic traces results in an excel-
lent match, far better than the WIG model, visually (see Fig-
ure 1) and, as we will see, in the multifractal partition function
T(q), the burstiness as measured by the multifractal spectrum,
the marginals, and the queueing behavior. Since these properties
all depend on the small time-scale behavior, it appears that the
multiplicative MWM approach is more appropriate than an addi-
tive Gaussian one.

In this paper, we summarize the impact of LRD on networking in
Section 2. After introducing the wavelet transform and describing
the WIG model in Section 3, we derive the MWM in Section 4.
Section 5 reports on the results of simulation experiments with
real data traces. We give an intuitive introduction to multifractal
cascades in Section 6 and close with conclusions in Section 7.
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2 Long-range Dependence in Network
Traffic

The discovery of LRD in data traffic [1,14] has incited a revo-
lution in network design, control and modeling. Intuitively, the
strong correlations present in a LRD process are responsible for its
“bursty” nature. Thus, LRD traffic arrives in bursts that, upon
entering a queue, cause excessive buffer overflows that are not pre-
dicted by traditional non-LRD traffic models such as Poisson and
Markov models [2].

2.1 Long-range dependence (LRD)

Consider a discrete-time, wide-sense stationary random process
{X:, t € Z} with auto-covariance function rx [k] = cov(X, Xiy k).
A change in time scale can be represented by forming the aggre-
gate process Xt(m), which is obtained by averaging X; over non-
overlapping blocks of length m replacing each block by its mean

Xim—mt1 + -+ Xim

xm =
m

(4)

Denote the auto-covariance of X\™ by r7")[k]. The process X is
said to exhibit LRD if its auto-covariance decays slowly enough to
render >~ rx[k] infinite [30]. Equivalently, the power spec-

trum Sx(f) is singular near f = 0 and m r{V[0] — oo as
m — oo.

An important class of LRD processes are the asymptotically
second-order self-similar processes, which may be defined by the
property rx[k] ~ k?2~2 for some H € (1/2,1), or equivalently
by [30]

var(X (™) = rg(m) [0] = m2H 2

()

as m — oo. In words, these processes “look similar” on all scales,
at least from point of view of second-order statistics. The fGn, is
such a process where the Hurst parameter H is the same as in (1).

To estimate H by the variance-time plot method, we fit a straight
line through the plot of an estimate of logvar(X(™) against
log(m). More reliable estimators have also been devised [24], in
particular an unbiased one based on wavelets [31].

)

2.2 Impact of LRD on networking

The pre-eminent LRD model at present is the fGn. Its popularity
stems from the fact that it is a second-order self-similar Gaussian
process (2), and thus is analytically tractable. In addition, it is
completely described by just two parameters — variance and H.
When fGn is input to an infinite-length queue with constant ser-
vice rate, the tail queue distributions decay asymptotically with a
Weibullian law

P[Q > ] ~ exp(—dz>~2H), (6)
with § a positive constant that depends on the service rate at the
queue [10,11]. The decay of the tail queue distribution for f{Gn
with H > 1/2 is much slower than the exponential decay predicted
by short-range dependent (SRD) classical models [2]. This corre-
sponds to the case H = 1/2.

Even though (6) shows that LRD processes have higher tail
queue probabilities than SRD processes, there is still an ongoing
discussion on the effect of LRD on queuing, with researchers argu-
ing both for and against its importance [17-19, 32-34].

3 Wavelets and LRD Processes

3.1 Wavelet transform

The discrete wavelet transform provides a multiscale signal repre-
sentation of a one-dimensional signal ¢(t) in terms of shifted and
dilated versions of a prototype bandpass wavelet function () and
shifted versions of a lowpass scaling function ¢(t) [35]. For special
choices of the wavelet and scaling functions, the atoms

Yk (t)
Gk (t) (7)

form an orthonormal basis, and we have the signal representation
[35]

2112 (27t — k),
21/% (27t — k),

ke

oo

D> wikvik(t),

j=Jo k

o) = 3 uspu duilt) + ®)
k

withw;r = [e(t) ¢, (t)dt,and uyr, = [e(t) @5, 4 (t) dt. With-
out loss of generality, we will assume Jy = 0.

In this representation, k indexes the spatial location of analysis
and j indexes the scale or resolution of analysis — larger j cor-
responds to higher resolution with 7 = 0 indicating the coarsest
scale or lowest resolution of analysis. In practice, we work with
a sampled or finite-resolution representation of ¢(t), replacing the
semi-infinite sum in (8) with a sum over a finite number of scales
0<j<n-1, neZ. Using filter bank techniques, the wavelet
transform and inverse wavelet transform can be computed in O(N)
operations for a length-N signal. For more information on wavelet
systems and their construction, see [35].

In the Haar wavelet transform (see Figure 2), the prototype
scaling and wavelet functions are given by

1, 0<t<1/2
o(t) = 1, 0=t<l and ¥(t)=<¢ -1, 1/2<t<1
0, else
0, else.

The Haar scaling and wavelet coefficients can be recursively com-
puted via [35]

2712 (uj ok + uj 2k41),
2712 (uj ok — uj 2k 41).

Uj—1,k =
Wi—1,k =

9)

3.2 Modeling LRD data

Wayvelets serve as an approximate Karhunen-Loeve or decorrelat-
ing transform for fBm [6], f{Gn, and more general LRD signals [36].
Hence, modeling and processing of these signals in the wavelet do-
main is often more efficient and powerful than in the time domain.

The variance of the wavelet coefficients of continuous-time fBm
decays with scale according to a power law in H [6]. For fGn, an
exact power-law in H also holds for decay of the Haar wavelet coef-
ficient variances [36]. This power-law decay, along with the decor-
relation property of wavelets, has led to fast, robust algorithms for
estimation [36, 37].

Gaussian LRD processes can be approximately synthesized by
generating wavelet coefficients as independent zero-mean Gaussian
random variables, identically distributed within scale according to
Wik ~ N(0,0%)," with o7 the wavelet-coefficient variance at scale

J [15]:

1We use capital letters when we consider the underlying variables to be
random.
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Figure 2: (a) The Haar scaling and wavelet functions ¢; 1 (t) and v; (). (b) Binary tree of scaling coefficients from coarse to fine scales. (c)
Recursive scheme for calculating the Haar scaling coefficients Ujy1,2r and Ujyi1,2k+1 at scale j + 1 as sums and differences of the scaling and
wavelet coefficients U, and W, at scale j (normalized by 1/+/2). For the WIG model, the W, ’s are mutually independent and identically

distributed within scale according to Wjx ~ N(0,07).

A power-law decay for the o?’s leads to approximate wavelet
synthesis of fBm or fGn [6]. However, while network traffic may
exhibit LRD consistent with fBm or fGn, it may have short-term
correlations that vary considerably from pure fBm or fGn scal-
ing. Such LRD processes can be modeled by setting 0]2- to match
the measured or theoretical variances of the wavelet coefficients of
the desired process [15]. We call the resulting model the wavelet-
domain independent Gaussian (WIG) model [15] (see Figure 2(c)).
For a length-N signal, the WIG is characterized by approximately
log, N parameters.

The WIG model assumes Gaussianity even though network traf-
fic signals (such as loads and interarrival times) can be highly non-
Gaussian. Not only are these signals strictly non-negative, but they
can exhibit “spiky” behavior corresponding to a marginal distri-
bution whose right-side tail decays much more slowly than that of
a Gaussian. We seek a more accurate marginal characterization
for these spiky, non-negative LRD processes, yet wish to retain the
decorrelating properties of wavelets and the simplicity of the WIG
model.

3.3 Modeling non-negative data with the Haar
wavelet

In order to model non-negative signals using the wavelet transform,
we must develop conditions on the scaling and wavelet coefficient
values for ¢(t) in (8) to be non-negative. While cumbersome for a
general wavelet system,? these conditions are simple for the Haar
system (see Figure 2), on which we focus for the balance of this
paper.

Since the scaling coefficients u; 1 represent the local mean of the
signal at different scales and shifts, they are non-negative if and
only if the signal itself is non-negative; that is, ¢(t) > 0 & u;r >
0, V 7,k. This condition leads us directly to constraints on the
Haar wavelet coefficients. Solving (9) for u; or and u; k41, we find

_ —-1/2
Uik = 27Y%(uj_ik +wi—ik),

10
= 272 (w1 k — wjo1k), (10)

Uj 2k+1
which corresponds to moving down the tree in Figure 2(b) one scale
level at a time.

Now, combining (10) with the constraint u;, > 0, we obtain the
condition
(11)

2The conditions are straightforward also for certain biorthogonal wavelet
systems.

ct) 206 |lwik| <ujn, V5, k

4 Multifractal Wavelet Model

Let us summarize our basic wavelet-based approach for modeling
nonGaussian LRD network traffic. As with the WIG we will char-
acterize the Haar wavelet variance decay as a function of scale to
capture the short-range and long-range correlations. In contrast
to the WIG, we will enforce the constraint (11) to ensure the non-
negativity of the model output.

To keep things clear, we will introduce three different processes:
the continuous-time model output c(t), its integral D(t), and a
discrete-time approximation C[k] to ¢(t). These three signals are
related by

(k+1)2~"
ClH = /k ot)dt=D((k+1)2") =D (k2").  (12)

9-n
Here, c(t)
tively.

For notational simplicity, we will assume that both ¢(¢) and D(t)
live on [0, 1] and that C[k] is a length-2™ discrete-time signal. Thus,
there is only one scaling coefficient Up o in (8). (A more general
case is treated in [29].) We will primarily focus on C[k].

For the Haar wavelet transform, C[k] relates directly to the
finest-scale scaling coefficients:

and D(t) play roles analogous to fGn and fBm, respec-

C[k] 22U, %, k=0,1,...2" — 1. (13)

4.1 The model

The positivity constraints (11) on the Haar wavelet coefficients
suggest a very simple multiscale, multiplicative signal model for
positive processes. In the multifractal wavelet model (MWM) we

compute the wavelet coeflicients recursively by
Wik = Ajk Uik, (14)

with A, r a random variable supported on the interval [-1,1]. To-
gether with (10), we obtain (see Figure 3)

Uj2k
Uj2k+1

2721+ Ajyr k) Ujma ks

15
=2 21— A1) U1k (1%)

See [38] for a similar model used as an intensity prior for wavelet-
based image estimation.

To generate a realization of an MWM process, we perform the
following coarse-to-fine synthesis:
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Figure 3: MWM construction: At scale j, generate the multiplier
Ajr ~ B(pj,p;), and then form the wavelet coefficient as the product
W;r = A; xUj k. At scale j +1 of this tree, form the scaling coefficients
in the same manner as the WIG model in Figure 2.

1. Set j = 0. Fix or compute the coarsest (root) scaling coeffi-
cient Uy o, establishing the global mean of the signal.

2. At scale j, generate the random multipliers A4; , and calculate
each W, via (14) for k=0,...,2? — L.

3. At scale j, use U;, and W;; in (10) to calculate Ujtq 2k
and Ujt1,2k41, the scaling coefficients at scale j + 1, for
k=0,...,20 — 1.

4. Tterate steps 2 and 3, replacing j by j + 1 until the finest scale
j = n is reached.

We can express the signal C[k] directly as a product (or cascade)
of the random multipliers 1+ A; ;. Decomposing each shift & into

n

. . —1 S .
a binary expansion k = . ki2" "1 7%, we can write

1

(=% Ai,)

n—1
1
Clk] =27"Uni =27 Uop [ 1+

. 5 ; (16)
=0
with
1—1
ko=0, and k=) k277, i=1,...,n-1 (17)
j=0

This result can be derived by iteratively applying (15) [29].

Since the scaling coefficients are generated simultaneously with
the wavelet coefficients, there is no need to invert the wavelet
transform. The finest-scale scaling coefficients U, 1 are in fact the
MWDM output process (13). The total cost for computing N MWM
signal samples is O(N). In fact, synthesis of a trace of length 2%
data points takes just 8 seconds of workstation cpu time.

4.2 [ multipliers

All that remains is to choose an appropriate distribution for the
multipliers A; ;. For simplicity of development, we will assume
that the A; ;’s are mutually independent and independent of Uj ;.
We will also assume that the A;’s are symmetric about 0 and
identically distributed within scale; it is easily shown that these
two conditions are necessary for the resulting process to be first-
order stationary [29]. This leads us to the choice of the symmetric
beta distribution, B(p,p) (see Figure 4) for the A, ’s

Aj,k ~ /B(pjapj)a (18)

Table 1: Comparison of the tree-based WIG and MWM models. For
approximating a signal with a strict fGn covariance structure, both the
WIG and MWM require only three parameters (mean, variance, and
H).

| WIG | MwWM |
Additive Multiplicative
Gaussian Asymptotically Lognormal
LRD matched LRD matched
Monofractal Multifractal
log, N + 2 parameters log, N + 2 parameters
O(N) synthesis O(N) synthesis

1

a -

Figure 4: Probability density function of a B(p,p) random variable A.
For p = 0.2, A resembles a binomial random variable, and for p = 1 it
has a uniform density. For p > 1 the density appears like a truncated
Gaussian density, and as p increases, the density resembles a Gaussian
density more and more closely.

with p; the beta parameter at scale j. The beta distribution is
compactly supported, easily shaped, and amenable to closed-form
calculations. The variance of a random variable A ~ 3(p,p) is

1

var[A] = il

(19)

In the MWM, the p; play a role analogous to the 012- of the WIG
model. With one beta parameter per wavelet scale, the MWM uses
approximately log, N parameters for a trace of length N. Distri-
butions with more parameters (e.g., discrete distributions or mix-
tures of betas) could be used to capture high-order data moments
at a cost of increased model complexity [29]. See Table 1 for a
comparison of the WIG and MWM properties.

4.3 Covariance matching

The p;’s allow us to control the wavelet energy decay across scale,
since

var(W]-_l,k) _

Var(Wch)

2var [Aj—1,k] _ 2pi+1
var[A; ] 1 +var[A;_1x]) pj1+1

(20)

Thus, to model a given process with the MWM, we can select the
p;’s to match the signal’s theoretical wavelet-domain energy decay.
Or, given training data, we can select the parameters to match the
sample variances of the wavelet coefficients as a function of scale.

To complete the modeling, we must choose the parameter py of
the model and characterize the distribution of the coarsest scaling
coefficient Upo. From (14) and (19) we obtain

(2]70 + l)VaI'(WO,()) = E[Ug,o], (21)

which allows us to obtain po from estimates of IE[Ug,] and
var(W070).

To precisely model Uy, we would have to use a strictly non-
negative probability density function to ensure the non-negativity
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of the MWM output. However, in practice a Gaussian model at
the coarsest scale (requiring IE[Up o] and var[Up o]) is usually suf-
ficient if enough scales are employed (so that IE[Up ] > standard
deviation of Up,).

5 Experimental Results

In this section, we perform experiments with real data traces to
demonstrate the MWM’s capacity to capture important proper-
ties of real data. As expected, the MWM does an excellent job
in capturing the correlation structure of real data sets. We also
observe that the MWM performs well in matching the marginals
and higher-order moments of real data. Recall that the Gaussian
WIG model is also capable of capturing the correlation structure
of training data. We thus have two models, both of which capture
the correlation structure of real data but with the MWM com-
ing closer to matching the marginals and higher-order moments.
Equipped with these models, we are in an excellent position to
perform queuing experiments to study if the correlation structure
is by itself sufficient to capture the queuing behavior of real traffic.

5.1 Real data

We use two well-known real data traces in our experiments. The
first (LBL-TCP-3) contains two hours’ worth of wide-area TCP
traffic between the Lawrence Berkeley Laboratory and the rest of
the world [14]. This data contains the following information about
each packet: the time-stamp, (renumbered) source host, (renum-
bered) destination host, source TCP port, destination TCP port,
and number of data bytes. In our experiments we use only the
time-stamp and data bytes information. We form a data trace
by counting the number of bytes of packets that arrive in con-
secutive time intervals of 6 ms and use the first 220 data points
in our simulation experiments. This trace has a sample mean of
257.5 bytes/(unit time) and sample standard deviation of 562.6
bytes/(unit time).

The second real data set is one of the famous Ethernet data
traces collected at Bellcore Morristown Research and Engineering
facility [1]. The trace (BC-pAug89) began at 11:25 on August 29,
1989, and ran for about 3142.82 seconds (until 1,000,000 packets
had been captured). As in the case of the LBL-TCP-3 data set, we
obtain a data trace by summing the bytes of packets that arrived
in consecutive time intervals of 2.6 ms. We use the first 22° data
points of this trace in our experiments. This trace has mean 345.8
bytes/(unit time) and standard deviation 703.4 bytes/(unit time).
The BC-pAug89 trace is approximately a second-order self similar
process with H = 0.79 [37].

5.2 Physical Interpretation

The MWM multipliers have a simple interpretation as recursively
partitioning the arriving bytes into smaller and smaller time inter-
vals. For instance, the value Up o determines the total number of
bytes in the entire trace. The value Ag o determines how many of
these packets will be placed in the first half of the trace. The value
A1,0 then determines how many of these bytes will be placed in
the first quarter of the trace, and so on.

When trained on real network data, the behavior of the multipli-
ers A; ;. changes with scale, with extremely low variance at coarse
scales and high variance at fine scales. Amazingly, this is consis-
tent with both the small-scale behavior of actual traffic and the
large-scale properties resulting from the superposition of a large
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number of souces [7,8]. At fine scales multiplicative schemes with
large variances produce bursts like those in real data (recall Figure
1). At coarse scales, the scaling coefficients (which correspond to
the arrival of traffic over large time scales) involve only a hand-
ful of low-variance multipliers A;;. From (15) we can write, for
example, at the third-coarsest scale:

a U
Uso L % (1+ Aoo) (1+ Ay )
fd Upo

~ T (]. -+ A070 -+ AI,O) (22)
Thus, for a fixed Uy at the coarsest scale, to a first-order approxi-
mation, the MWM is additive at the coarse scales provided the ran-
dom variables A; ; are small in amplitude. Moreover, the A; ; are
approximately Gaussian for these low-variance (high-p) symmet-
ric 3 multipliers [39]. Hence, coarse-resolution MWM outputs will
exhibit an additive, Gaussian-like behavior consistent with that
of the previously justified ON/OFF models and notions of client
behavior as a superposition of sources [7,8].

5.3 Matching of Real Data

In order to study how well the MWM and WIG models can match
real data, we train them on the the real data traces. To fit the
WIG and MWM models to the data, we use the procedure out-
lined in Sections 3.2 and 4.3, which involves taking a Haar wavelet
transform of the real data and estimating the variances (7]2- of the
wavelet coefficients at each scale. We estimate these variances only
at the 15 finest scales, because at coarser scales there are not a suffi-
cient number of coefficients to obtain good variance estimates. As
a result, we synthesize data traces of maximum length 2'® data
points. For both the MWM and WIG, we model the coarsest-scale
scaling coefficient Uy as a Gaussian random variable with mean
and variance equal to the sample mean and variance of the scaling
coefficients of the real data at this scale. With trained models in
hand, we now generate synthetic data traces.

Due to space constraints, we present fitting results only for the
LBL-TCP-3 trace. Recall from Figure 1 that visually the syn-
thetic MWM looks very similar to the real trace. We compare the
marginals of MWM and WIG traces to that of the LBL-TCP-3
trace at three different aggregation levels. From Figure 5 observe
that the MWM marginals are similar to that of the real data trace,
while the Gaussian WIG marginals differ significantly. We also ob-
serve that the WIG traces have a considerable number of negative
points, a result of the low mean and high standard deviation of the
real data trace.

We next compare the correlation matching abilities of the two
models. We compare the variance-time plots of the real data, the
MWM traces, and the WIG traces in Figure 6(a). The variance-
time plot estimates were obtained by averaging the empirical
variance-time plots of 32 independent realizations of the models.
We observe that, as expected, both the MWM and WIG models do
a good job of matching the correlation structure of the real data.

We plot the multifractal spectra (see Section 6) of the LBL-TCP-
3 data and the synthetic MWM trace in Figure 6(b) (calculations
for the negative moments of the WIG data become numerically
unstable and hence the spectra for the WIG is not included). We
observe that the spectra match extremely well except for large
values of a. This corresponds to a close match of the scaling of
higher-order moments, but a somewhat less accurate match of the
scaling of the negative moments.
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Figure 5: Histograms of the bytes-per-times process at different aggregation levels for (a) wide-area TCP traffic at the Lawrence Berkeley
Laboratory (trace LBL-TCP-3) [14], (b) one realization of the WIG model, and (c) one realization of the MWM synthesis. The top, middle and
bottom plots correspond to bytes arriving in intervals of 6 ms, 12 ms and 24 ms respectively. Note the large probability mass over negative values

for the WIG model.

=

o
)

* LBL-TCP-3
°o o WIG
* o MWM

-
o]

(Var(x™)
(X
5

Log 2

@

—— LBL-TCP-3
=== MWM

12

0.8 14

5 10
Log,(m)

Figure 6: (a) Variance-time plot of the LBL-TCP-3 data “x”, the WIG-
data “©”, and one realization of the MWM synthesis “o”. (b) Multifrac-
tal spectra of the LBL-TCP-3 data and one realization of the MWM
synthesis.

5.4 Queuing results

Much effort has been exerted studying the effect of the correlation
structure on queuing performance [2,17-19]. Gaussian models that
capture the correlation structure of traffic have been proposed [1,
15] and theoretical results for the tail queue probability have been
obtained [9,11,40]. These models are in many cases appropriate
for modeling data traffic. For example, the WIG model has been
shown to capture the queuing behavior of video traffic well [15].
For the WAN/LAN data traces that we consider here, however,
this is not the case.

The multiplicative structure of the MWM captures both the cor-

relations of the real data as well as the higher-order moments. With
its inherent approximately lognormal marginal distribution, it also
comes close to matching the marginals of the real data traces.

Intuitively, the more traffic characteristics a model matches, the
better will it match the queuing behavior of real traffic. Hence, it
is not surprising that a perfect fitting of second-order correlations
and marginals as done in [22] leads to a good match of queueing
behavior.

Here, we take a different approach comparing two simple and
quite related models in their ability to capture the queueing be-
havior of the two real data sets. With this experiment we hope
to shed some light on the impact of marginals and higher-order
correlations on queuing behavior.

In all experiments, data traces are fed as input to an infinite
length single-server queue with link capacity 800 bytes/unit time.
We estimate the tail queue probabilities of the various data traces

as
number of time instants Q > z

PlQ>a] = (23)

total time duration of trace i
We also provide confidence intervals with confidence level of 90%
for the estimated queue distribution (1/L)XE | P;[Q > z], where
L is the total number of traces, assuming that it is a Gaussian
random variable [41].

With both real traces, we performed the same queuing exper-
iment. We first trained the MWM and WIG models on the real
traces as described in Section 5.3. We then synthesized 480 MWM
and WIG traces of length 2'%, fed them as input to our theoreti-
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cal queue and obtained their queuing behavior. Recall that both
the WIG and MWM capture the mean, variance and correlation
structure of the real data.

In Figure 7(a) we compare the average queuing behavior of the
MWM and WIG traces to that of the real trace LBL-TCP-3. We
observe that the MWM traces match the queuing behavior of the
real data trace much better than the WIG traces. From Figure 5
we notice that the WIG data traces have a considerable number of
negative data points. This is because the LBL-TCP-3 data set has
a large ratio of standard deviation to mean, which when modeled
by a Gaussian process leads to a large fraction of data points going
negative. In order to test whether these negative values are the
cause for the poor performance of the WIG model, we set negative
values to zero in the WIG traces and obtained the queuing behavior
of these new traces. We call the new data traces WIG+. We see
from Figure 7(a) that the queuing performance of the WIG+ traces
is not substantially better than that of the WIG traces.

Thus, we conclude that the Gaussian WIG traces do not give a
good approximation to the queuing behavior of the real data set in
spite of capturing the correlation structure of the real data trace.
Furthermore, the ad hoc procedure of setting all negative values
to zero does not improve matters. In fact, the ad hoc procedure
used in creating the WIG+ data traces destroys the statistics of
the traces. Other ad hoc procedures like excluding all negative
data points or setting all negative points to their absolute value
also destroy the statistics of the traces. This reveals some of the
problems associated with Gaussian models for modeling traffic with
marginals similar to those of the real data traces considered here.

The results for the real trace BC-pAug89 are shown in Figure
7(b) and are similar to those for the LBL-TCP-3 trace. Clearly, the
MWM again performs far better than the WIG model in capturing
the queuing behavior of the real data.

These queuing experiments indicate that the correlation struc-
ture of traffic is not the only factor that decides the queuing behav-
ior of data traffic. Since the MWM outperforms the WIG model in
matching queuing behavior, we conclude that the additional traffic
characteristics of real data captured by the MWM, like marginals
and higher order moments, have a substantial effect on the queuing
behavior of traffic with statistics similar to the real data sets that
we considered here.

6 MWM is a Cascade

We now link the MWM with the theory of cascades. The technical
details in this section are not necessary for understanding or apply-
ing the MWM and can be omitted on a first reading. Multiplicative
cascades generalize the self-similarity of fractal models such as f{Gn
and fBm by offering greater flexibility and richer scaling properties,
including burstiness and scaling of higher-order moments [25,29].
Identifying the MWM algorithm with a multiplicative cascade al-
lows us to benefit from the accumulated theoretical and practical
knowledge of the field of multifractals, including a precise under-
standing of the convergence of the MWM algorithm, properties of
the marginal distributions, advantages over monofractal {Gn mod-
els, and a range of possible refinements and extensions. For these
reasons, we find it useful to examine the MWM within the context
of cascades and multifractals.

The backbone of a cascade is a construction where one starts at
a coarse scale and develops details of the process on finer scales
iteratively in a multiplicative fashion. The MWM is one such cas-
cade, as (15) and (16) reveal. In accordance with the notation for
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Figure 7: Comparison of the queuing performance of real data traces
with those of synthetic WIG and MWM traces. In (a), we observe that
the MWM synthesis matches the queuing behavior of the LBL-TCP-3
data closely, while the WIG synthesis does not. Even when negative
values of the WIG data are set to 0 (WIG+), the WIG traces do not
come close to matching the correct queuing behavior. In (b), we observe
a similar behavior with the BC-pAug89 data.

cascades, setting

(1 + (_1)k2_1Ai—1,ki—1)
2

M =U§ and M; = , 0<i<m, (24)

and substituting into (16) leads us to (see Figure 8(a))

Clk] =27"Mg [ [ Mix.,

i=1

(25)

with the k; and k} defined in the same way as for (16).

Our aim in this section is to both introduce and give an intuitive
understanding of cascades to the reader. After studying the na-
ture of the MWM’s marginals, we compare cascades with Gaussian
LRD processes such as the WIG. As already hinted in the introduc-
tion, cascades such as the MWM are ideal for modeling burstiness.
We explain this here by developing the multifractal formalism (for
further details, see [29]).

6.1 Lognormal marginals

Multiplicative structures, in particular the product representation
(25), naturally lead to lognormal marginals. If the M are all pos-
itive and identically distributed, then C[k] will be approximately
lognormal by the CLT. Figure 5 shows that Gaussian modeling
seems unfit in this network scenario; various other authors make
a case for marginal distributions, including the lognormal, with
tails that are much heavier than the Gaussian [20, p 364], [21].
We do not claim that the lognormal is appropriate for all traffic
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Figure 8: (a): The MWM translates immediately into a multiplicative cascade in the time domain (cf. (25)). (b) — (c): We demonstrate the
Legendre transform T +— T* in the simple case of concave, differentiable functions such as the spectra of a typical MWM ((33) with p = 1.66,
H = .85). Set @ = T'(q), then T*(a) is such that the tangent at (q,T(q)) passes through (0,—T*(c)). In other words, —T*(a) + qa = T(q). By

symmetry, the tangent at (o, T™(«)) has slope q and passes through (0,

—T(q)). There are two notable special values of q. Trivially, T(0) = —1,

whence the maximum of T* is 1. In addition, every positive increment process has T'(1) = 0, whence T+ touches the bisector.

at all scales, and for a limited number of scales a cascade signal
can behave differently from a lognormal. However, this link be-
tween cascades and useful marginal models for traffic points to the
viability of cascades for providing realistic traffic models.

6.2 Cascades vs. fGn

There is a fundamental difference between cascade modeling and
modeling via self-similar processes such as fGn or the WIG, which
treat traffic as a mean rate superimposed with fractal noise. Addi-
tive self-similar models “hover” around the mean with occasional
outbursts in both positive and negative directions, while multi-
plicative cascades “sit” just above the zero line and emit occasional
positive jumps or spikes. In mathematical terms this distinction
is best captured by examining negative moments: for self-similar
models, these are the negative moments of the fractal noise, hence
they capture uninterestingly small variations around the mean; for
cascades, on the other hand, these are the negative moments of the
process itself, so they capture unnaturally small values and provide
useful information.

6.3 Measuring burstiness

For the ease of notation let k,2" — ¢ mean that ¢t € [k,27™, (k,+
1)27™) and n — oc. The strength of growth, also called the degree
of Hélder continuity, at time ¢ of a process Y (¢) (that corresponds
to D(t) of the MWM) with positive increments can be character-
ized by

t) = li iy h
a(t) kn21_nﬂl_>t ag. where
1
ap = ——log, Y ((kn +1)27™) = Y (kn27™)|.  (26)

The smaller the «(t), the larger the increments of ¥, and the
“burstier” it is at time ¢. The frequency of occurrence of a given
strength «, as visible from an analysis on coarse scales can be
measured by the multifractal spectrum:

f(a) :==1lim lim

e—0n—oco

1
“logy #{ka = 0,...,2"—1 (27)
ap € (a—e,a+e)}.

By definition, f takes values between 0 and 1 and is often shaped
like a N and concave, but not always. The smaller f(a) is, the

“fewer” points ¢t will show a(t) ~ a. If @ denotes the value a(t)
assumed by “most” points ¢t then f(a) = 1.

Note that this analysis via increments (26) is sufficient provided
Y (t) has no polynomial trends. If, on the other hand, polynomial
terms are present, then the increment-analysis will yield f(a) =1
for « = k € IN where k is the order of the first non-vanishing
derivative of Y. Then one has to eliminate the polynomial influ-
ence, a) via wavelets or, b) by subtracting the trend if known. The
known trend for self-similar processes is none other than the “mean
arrival rate”.

It is, therefore, important to mention that our analysis of real
traces in Section 5 shows no integer scaling exponent «(t), except
for a(t) = 1 for a small number of ¢, that is, f(1) < 1. Thus, we
conclude that polynomial trends are not present in the real traffic
traces studied here. Since we did not remove any trend from the
real data prior to our analysis, this result suggests that the data is
not well characterized by self-similar models.

6.4 Higher-order moments and the MF spec-
trum

Cascades such as the MWM possess rich multifractal spectra. Un-
like cascades, the strong self-similarity of the fBm (1) forces it to
have a trivial multifractal behavior. To be precise, for the fBm,
a(t) = H for all t. To demonstrate this, we will use information
about the scaling of higher-order moments of the two types of pro-
cesses to obtain their multifractal spectra.

Let us define

T(q) = nh_{r;o _inlog2IE[Sn(q)], where (28)
2" -1

Sn(q) = Z Y ((kn +1)27") = Y (ka27™)|"
kn=0

2" -1
§ 2nazn
kn,=0

Note that T is always concave, since log, IES, (¢) is concave. For
a typical plot of T' and f see Figure 8 (b) and (c).

The multifractal spectrum f(«) and T'(q) are closely related as
the following instructive hand-waving argument shows. Grouping
in the sum S, (q) of (28) the terms according to af ~ a, and using
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(27) we get
Sn(q)

Za ZQHNQ (27"")(1 ~ Ea onfa(a)g—nga

~ 2—ninfa(qoz—f(;(oc))‘

(29)

We conclude that we must “expect” T'(q) to equal inf, (qa— fa(a)).
For the special case of an MWM process, i.e., Y = D, it can be
shown (see [42]) that the dual relation holds. This relation is called
the multifractal formalism and reads

f(@) =T* () := inf(ga — T(@)). (30)

Simple calculus shows that T*(a) = qa — T(q) at a = T'(q)
provided 7" (q) < 0. This relation via the Legendre transform T*
is typical of the theory of large deviations [43]. The goal there is
to establish relations such as (30) under most general assumptions.
To use the correct terminology, f is the rate function of a so-called
large deviation principle (LDP): it measures how frequently or how
likely the observed aj ~deviates from the “expected value” @.

In order to estimate T'(¢) from data, it is customary to use the
approximation 2-"7(®) ~ S, (¢). For the MWM this is equivalent

to

271

9—3iT(a) E |2—J'/2Ujk|q‘

k=0

Any linear fit of log S(;)(¢) against j will give the slope T'(g).
Let us calculate T'(q) for the MWM model, i.e., Y = D. Using

independence of the multipliers M ,2 and denoting by 3’ the sum
over all k, =0,...,2" — 1 we find

(31)

IE[Sn(q)] Y E(ME)T - (M) - E(Mp)

iIE(M("))" - IE(MW)a CIB(MQ)?

= EM0)7-2"- f[]E (M@)q . (32)

In the second step we made use of the fact that the multipliers
M, are identically distributed to M (). To this we add the fact
that the moments of the M () converge to the ones of the limiting
random variable M for the next equation, and end by assuming
that M = (1 + A)/2 with A being S-distributed as in (19) to

obtain:
MWM: T(g) =

= —-1-log

—1 - log, IE[MY)
L(p+q)T(2p) .
2 T(2ptgrp) 17 TP

(33)

and T'(q) = —oc if ¢ < —p.

The function T'(q) is a simple statistical description of the pro-
cess that captures marginal information, but which also governs the
“burstiness” through the multifractal formalism. It must be em-
phasized here that the multifractal parameters T'(q) of the MWM
process do not necessarily imply that the process cannot be mod-
eled parsimoniously. For example, in the case of the MWM, the
(B-distributions for the multipliers are controlled by the parameters
pj (20). If one replaced the right side of (20) by the powerlaw for
fGn then all values T'(g) would be determined by H [29].

Now let us compute T'(q) for the self-similar fBm. From (1) we
find

E i |B((kn +1)27") — B(kn,2~™)|?

=2"E[|B(2™)|7] = 2" E[|B1)7] (34)
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which yields for fBm

gH —1 for q> —1,

—00 for ¢ < —1. (35)

fBm: T(q) = {

This is probably the most compact way to express the monofrac-

tal character of fBm: taking the Legendre transform of 7' shows

that fBm possesses only one degree of “burstiness” (a(t) = H)
which is omnipresent (compare also (3)).

6.5 Multifractal scaling of moments and LRD

The multifractal scaling exponent T'(2) of a process Y is closely
related to the LRD parameter H, since both measure the power-
law behavior of some second-order statistics. More precisely, T'(2)
measures the scaling behavior of the second sample moments (28),
while H (5) can be estimated from the scaling of the sample vari-
ance.

For a process Y with zero-mean increments Z this can be made
precise. Let us denote resolutions by m = 2=". We define Z(™)
such that mZ(™ is the increment of Y at resolution m. From Sec-
tion 2.1 we find first that var(Z(™))~ m2?H -2, Next, (28) gives (28)

gives 20T 2 BY, o on i [mZ{"? = 2722|202 =

const - 2~ "var(Z(™)). Comparing the exponents of 2™ we find
T(2)=1+ (2H —2), or,
T(2 1

H= % for zero-mean processes. (36)

This is in agreement with the theoretical formulas (33) and (35)
for the spectra of MWM and fBm, respectively.

For multifractal measures such as the MWM a first difficulty
in establishing a relation between H and T'(2) arises from the fact
that these processes are not second-order stationary. So, LRD can-
not be defined as usual through the decay of the auto-correlations.
However, alternative fractal properties, such as the decay of aggre-
gate variances (Section 2.1) or wavelet coefficients (Section 3.2),
which are equivalent to LRD in the presence of second-order sta-
tionarity, can still be defined and calculated, leading to the same
result (36).

7 Conclusions

The MWM provides a new multiscale tool for synthesis of nonGaus-
sian LRD traffic. Computations involving the MWM are extremely
efficient — synthesis of a trace of NV sample points requires only
O(N) computations. In fact, synthesis of a trace of length 2'8 data
points takes just 8 seconds of workstation cpu time. The param-
eters of the MWM, numbering approximately log N, are identical
in number to the WIG model and are simple enough to be either
inferred from observed data or chosen a priori. We can reduce the
number of parameters further by developing a parametric charac-
terization of the wavelet energy decay across scale.

With the MWM and WIG models, we have been able to fit actual
traffic traces, and have developed preliminary queueing results that
demonstrate the importance of the nonGaussian nature (including
scaling of higher-order moments) of traffic in determining queueing
performance.

Apart from being a useful tool for fast synthesis of realistic data
traffic, the MWM is a promising analysis tool for the network re-
searcher. Further research could make the MWM viable for data
prediction. The parameters of the MWM could also be used to cap-
ture the effect of different protocols on shaping data traffic (e.g.,
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the TCP protocol). In short, the use of the MWM in real-time
network protocols and control algorithms seems very promising.

References

[1] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On
the self-similar nature of Ethernet traffic (extended version),”
IEEE/ACM Trans. Networking, pp. 1-15, 1994.

[2] A. Erramilli, O. Narayan, and W. Willinger, “Experimen-
tal queueing analysis with long-range dependent traffic,”
IEEE/ACM Transactions on Networking, vol. 4, pp. 209-223,
April 1996.

[3] M. Taqqu and J. Levy, Using renewal processes to generate
LRD and high variability. In: Progress in probability and
statistics, E. Eberlein and M. Taqqu eds., vol. 11. Birkhaeuser,
Boston, 1986. pp 73-89.

[4] N. Likhanov, B. Tsybakov, and N. Georganas, “Analysis of an
ATM buffer with self-similar input traffic,” Proc. IEEE, Info
com 95 (Boston 1995), pp. 985-992, 1995.

[5] F. Brichet, J. Roberts, A. Simonian, and D. Veitch, “Heavy
traffic analysis of a fluid queue fed by a superposition of
ON/OFF sources,” COST, vol. 242, 1994.

[6] P. Flandrin, “Wavelet analysis and synthesis of fractional
Brownian motion,” IEEE Trans. Inform. Theory, vol. 38,
pp. 910-916, Mar. 1992.

[7] M. Crovella and A. Bestavros, “Self-similarity in World Wide
Web traffic. Evidence and possible causes,” in Proceedings of
SIGMETRICS ’96, May 1996.

[8] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-
similarity through high-variability: Statistical analysis of eth-
ernet LAN traffic at the source level,” IEEE/ACM Trans.
Networking (Extended Version), vol. 5, pp. 71-86, Feb. 1997.

[9] J. Choe and N. Shroff, “Supremum distribution of gaussian
processes and queueing analysis including long-range depen-
dence and self-similarity,” Stochastic Models submitted, 1997.

[10] I. Norros, “On the use of fractional Brownian motion in the
theory of connectionless networks,” COST, vol. 242, 1994.

[11] N. Duffield and N. O’Connell, “Large deviations and overflow
probabilities for the general single-server queue, with applica-
tions,” Math. Proc. Cambr. Phil. Soc., vol. 118, pp. 363-374,
1995.

[12] I Norros, “Four approaches to the fractional Brownian stor-
age,” Fractals in Engineering, pp. 154-169, 1997.

[13] G. Gripenberg and I. Norros, “On the prediction of fractional
Brownian motion,” preprint ilkka.norros@utt.fi, 1995.

[14] V. Paxson and S. Floyd, “Wide-area traffic: The failure of
Poisson Modeling,” IEEE/ACM Transactions on Networking,
vol. 3, pp. 226244, 1995.

[15] S. Ma and C. Ji, “Modeling video traffic in the wavelet do-
main,” in Proc. of 17th Annual IEEE Conf. on Comp. Comm.,
INFOCOM, pp. 201-208, Mar. 1998.

[16] N. Duffield, “Economies of scale for long-range dependent traf-
fic in short buffers,” Telecommunication Systems, to appear,
1998.

[17] B. K. Ryu and A. Elwalid, “The Importance of Long-range
Dependence of VBR, Video Traffic in ATM Traffic Engineer-
ing: Myths and Realities,” Proc. ACM SIGCOMM Conf.,

vol. 26, no. 4, pp. 3-14, 1996.

D. P. Heyman and T. V. Lakshman, “What are the impli-
cations of long-range dependence for VBR-video traffic engi-
neering?,” IEEE/ACM Transactions on Networking, vol. 4,
pp- 301-317, June 1996.

[19] A. Neidhardt and J. Wang, “The concept of Relevant
Time Scales and its application to queuing analysis of self-
similar Traffic,” Proc. SIGMETRICS '98/PERFORMANCE
’98, pp. 222-232, 1998.

[20] J. Roberts, U. Mocci, and J. V. (eds.), “Broadband network
teletraffic,” in Lecture Notes in Computer Science, No 1155,

Springer, 1996.

[21] S. Bates and S. McLaughlin, “The estimation of stable distri-
bution parameters from teletraffic data,” preprint, 1998.

[22] C. Huang, M. Devetsikiotis, I. Lambadaris, and A. Kaye,

“Modeling and simulation of self-similar VBR compressed

video: a wunified approach,” Computer-Communication-

Review, vol. 25, pp. 114-125, Oct. 1995.

[23] C. Huang, M. Devetsikiotis, I. Lambadaris, and A. Kaye,

“Fast simulation of self-similar traffic in ATM networks,” ICC

’95 Seattle, vol. 1, pp. 438—44, 1995.

[24] M. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for

long-range dependence: An empirical study,” Fractals., vol. 3,

pp. 785-798, 1995.

R. Riedi and J. L. Véhel, “Multifractal properties of TCP
trafficc: A numerical study,” Technical Report No 3129,
INRIA Rocquencourt, France, Feb, 1997.  Available at
www.dsp.rice.edu.

[26] P. Mannersalo and I. Norros, “Multifractal analysis of real
ATM traffic: a first look,” COST257TD, 1997.

[27] A. Feldmann, A. C. Gilbert, and W. Willinger, “Data net-
works as cascades: Investigating the multifractal nature of In-
ternet WAN traffic,” Proc. ACM/Sigcomm 98, vol. 28, pp. 42—
55, 1998.

[28] A. C. Gilbert, W. Willinger, and A. Feldmann, “Scaling anal-
ysis of random cascades, with applications to network traf-
fic,” IEEE Trans. on Info. Theory, (Special issue on multi-
scale statistical signal analysis and its applications), vol. 45,
April 1999.

R. H. Riedi, M. S. Crouse, V. Ribeiro, and R. G. Baraniuk, “A
multifractal wavelet model with application to network traf-
fic,” IEEE Trans. Info. Theory, (Special issue on multiscale
statistical signal analysis and its applications), vol. 45, April
1999. Available at www.dsp.rice.edu.

[30] D. R. Cox, “Long-range dependence : A review,” Statistics :

An Appraisal, pp. 55-74, 1984.



12

[31] P. Abry, P. Gongalves, and P. Flandrin, “Wavelets, spectrum
analysis and 1/f processes,” preprint, 1996.

[32] B. V. Rao, K. R. Krishnan, and D. P. Heyman, “Performance
of Finite-Buffer Queues under Traffic with Long-Range De-
pendence,” Proc. IEEE GLOBECOM, vol. 1, pp. 607-611,
November 1996.

[33] M. Paulekar and A. M. Makowski, “Tail probabilities for a
multiplexer with self-similar traffic,” Proc. IEEE INFOCOM,
pp- 1452-1459, 1996.

[34] M. Grossglauser and J.-C. Bolot, “On the relevance
of long-range dependence in network traffic,” Computer-
Communication-Review, vol. 26, pp. 1524, October 1996.

[35] I. Daubechies, Ten Lectures on Wavelets. New York: SIAM,
1992.

[36] L. Kaplan and C.-C. Kuo, “Extending self-similarity for frac-
tional Brownian motion,” IEEE Trans. Signal Proc., vol. 42,
pp- 3526-3530, Dec. 1994.

[37] P. Abry and D. Veitch, “Wavelet analysis of long range de-
pendent traffic,” IEEE Trans. Inform. Theory, vol. 4, no. 1,
pp- 2-15, 1998.

[38] K. E. Timmerman and R. D. Nowak, “Multiscale Bayesian es-
timation of Poisson intensities,” in Proc. 31st Asilomar Conf.,
(Pacific Grove, CA), Nov. 1997.

[39] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Uni-
variate Distributions, vol. 1-2. New York: John Wiley & Sons,
1994.

[40] I. Norros, “A storage model with self-similar input,” Queueing
Systems, vol. 16, pp. 387-396, 1994.

[41] R. Jain, The Art of Computer Systems Per-
formance: Techniques for experimental design, measurement,
simulation, and modeling. John Wiley & Sons, Inc., 1991.

[42] R. H. Riedi, “Multifractal processes,” IEEE Info. Theory,
submitted 1999.

[43] J.-D. Deuschel and D. W. Stroock, Large Deviations. Aca-
demic Press, 1984.

PROCEEDINGS SIGMETRICS 99, ATLANTA, GA



