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Abstract

To characterize the geometry of a measure, its so-called generalized dimensions
dg4 have been introduced recently. The mathematically precise definition given by
Falconer [F2] turns out to be unsatisfactory for reasons of convergence as well as of
undesired sensitivity to the particular choice of coordinates in the negative ¢ range.
A new definition is introduced, which is based on box-counting too, but which carries
relevant information about p also for negative ¢. In particular, rigorous proofs are
provided for the Legendre connection between generalized dimensions and the so-
called multifractal spectrum and for the implicit formula giving the generalized
dimensions of self-similar measures, which was until now known only for positive q.
Fac simile, for personal use only. (©1995 Academic Press, Inc.

1 Introduction

Given a compact set K in Euclidean space IR?, such as the attractor of dynamical systems,
the notion of Hausdorff dimension dyp(K) [F2] has been used successfully to characterize
K [FM]. But one single number such as the dimension is usually too crude and can only
describe a global aspect of the geometry of K. More subtle structures may be detected
when considering an appropriate measure with support K. Moreover, fractal sets are often
insufficient in order to model nature. In a dynamical system, e.g. many essential features
such as the long time behaviour of orbits can not be represented by a set, but rather
by a measure. To give a second example, fractal sets may approximate porous media
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but not their content of some liquid. So, measures have become of increasing interest, in
particular their local properties.

Throughout the paper y will denote a Borel measure in IR® with bounded support
K. To get an intuition of the kind of geometrical structure of y studied in this paper,
think of K as the union of infinitely many interwoven subsets K, usually fractals, with
homogeneous concentration of ;. Based on this motivation p has been termed multifractal
[EvM, MEH, HJKPS]|, with the multifractal decomposition K,.

To be more precise let U(z,d) denote the closed ball of radius § centered in z. The
quantities

o loguU(s, ) o logu(U(,9)
d,(z) := hn;ﬁ)up log 6 , d,(r):= ll%énf log 6

(1)

are called upper (lower) pointwise dimension at z. When they coincide, the common value
is denoted by d,(z). In multifractal theory, one is interested in the Hausdorff dimension
of sets like

Ko = {z :d,(z) =d,(2z) = o} (2)
and Cy = {7 :d,(z)

7
ag.

IN

Thereby, the Legendre transform has turned out to be a useful tool linking f(a) =
dun(K,) as a function of «, called the multifractal spectrum of u, with the singularity
exponents 7(q), which are given by [F2]

. log s
ss(q) == > wu(B)!  7(q):=limsup gliaﬁg)' (3)
u(B)#0 o0 108

(Here, the sum runs over a partition of IR? into cubes B of side §.) The generalized dimen-
sions dg == 7(q)/(1 — q) are interesting of their own: in the case of a dynamical system
they are directly observable from the longtime behaviour of orbits [G, HP]. Moreover,
they depend more regularly on the data p(B) [JKL, HIKPS] and are therefore more easy
to handle analytically and numerically.

According to the particular interests different notions of singularity exponents and
‘dimension distributions’ have been developed in various fields such as measure theory,
dynamical systems and applied mathematics, i.e. with emphasis on box-counting methods.
Here comes a short review on some of them.

The self-similar measures (SMF) are probably the best known multifractals. The
multifractal spectrum for a large class of such measures has been calculated in [CM].
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Thereby, the codespace is an invaluable tool (subsection 3.3). As an interesting corollary
(31) one has
d,(z) =d,(z) = for p-almost every z, (4)

where a; does not depend on z. But note, that the range of d,(x) is a whole interval
[0, @ ]. The multifractal spectrum of broader classes of invariant measures have been
found by Falconer, Edgar & Mauldin, Schmeling & Siegmund-Schultze, Collet et al. and
Brown et al. [F3, EAM, S, CLP, BMP)].

Of great interest are the ergodic invariant measures in the theory of dynamical sys-
tems. Here, naturally involved structures such as Markov partitions and Gibbs measures
allow one to work with similar methods as with SMF. In particular, making essential
assumptions on the structure of the invariant measure, formulae have been found for
the Hausdorff dimension of its support [Ru, F1] as well as for the multifractal spectrum
and related characteristics [BMP, CLP, BPTV, Ra, BR, L]. Thereby, some authors de-
velop own notions of singularity exponents which serve as a powerful tool, but which
only apply to the special situations under consideration. Relations between dimensionlike
quantities (such as generalized dimensions and Hausdorff dimension) and characteristics
of dynamical systems (such as Lyapunov exponents, entropy and pressure) are given in
[BPTV, Y, P1]. Pesin [P3] gives a survey of different notions of ‘generalized spectra for
dimensions’ which apply to arbitrary Borel measures p. Two of them, denoted by v, and
«y, are reviewed in subsection 4.2. Roughly speaking, v, is sensitive to the geometry of
the support of ;1 while o, emphasizes on the set where f is concentrated. As one might
suggest, a; = oy in the situation of (4). On the other hand, v, coincides with our notion
and is therefore different from «, in general.

The approach by Cutler [C] is tailored to measures theory and applies to finite Borel
measures y, providing a ‘dimension distribution’ 4 of a random variable é&(x), which is
related to d,(z) through £i([0, o)) = p(Cy). In the situation of (4), i reduces to the Dirac
measure concentrated in o;.

Finally, Falconer [F2| developed a multifractal formalism which is based on box-
counting methods (see (3) and also [EvM, HP]). The advantage of such an approach
is its relevance in numerical simulations. Unfortunately, (3) turns out to be unsatisfac-
tory for reasons of convergence as well as for an undesired dependence on coordinates.
The difficulties (as with the notions of Pesin) are imperceptibly hidden in the negative ¢
domain (Ex. 1).

It is the aim of this paper to present an improvement of (3): a simple but effective
change in the way of measuring the concentrations of y is enough to make the singularity
exponents a useful tool for negative ¢ also. The notion presented here serves to detect
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Figure 1: The picture shows Lk

the support K of a probabil- i?:m 5

ity measure and a box B (solid) %:}th b

which intersects K in a point, - b E:E”
b o B B Bk b

say x. It becomes apparent
that the enlarged and concen-
tric box (B); (dashed) consti-
tutes a better approximation of
a ball centered in x.

some structure of arbitrary Borel measures by box-counting methods. Since it coincides
with v, introduced in [P3] it is also relevant for dynamical systems and measure theory.
Finally, as a satisfying result, the well known formula [CM] for the spectrum of SMF
is shown to hold also in our formalism. So, the whole range of d,(z) can be observed
numerically through our notion F'.

Here is the organization of the paper. Section two introduces the new notion and proves
that spectrum and exponents are related through the Legendre transform. In section three
the self-similar measures are treated. Section four gives examples and relations to the work
of Pesin [P3].

2 An improved formalism

An improvement of (3) is proposed. Our idea is as simple as effective: we use the measure
of boxes blown up by a factor three. The essential geometrical argument in the proofs
below will be the following: whenever a box intersecting K is considered, the enlarged
concentric box meets K in its ‘middle’ and is a better approximation of a ball centered in
K than the original box (see figure 1). Thus, we feel that this method is more accurate
to measure local behaviours such as the pointwise dimension.

This does not mean, however, that every multifractal can be described entirely by its
spectrum. In particular, the newly defined singularity exponents may be infinite and so-
called left-sided spectra may occur. For examples see [MEH, ME, R]. But it is important
to notice that with the new concept infinite singularity exponents imply arbitrarily small
balls with center in K and arbitrarily small measure, while in the former formalism
7(q) = oo may equally well arise from inappropriate measurement (Ex. 1).
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2.1 Basic Properties

d
Let G be the family of all so-called d-bozes, or simply bozes B = [] [Ix0, (I + 1) with
k=1

integral l;, and with nonvanishing measure. For k > 0 let

(B)x = kl_I [(lx = %)0, (le + 1 + K)4]. ()

As will be shown, the particular choice of k is of no importance, as long as it is kept
fixed through the process. For numerical simulations it might be most convenient to
choose k = 1. We remind the reader that z denotes a Borel measure in IR? with bounded
support.

Definition 1 (Singularity Exponents and Generalized Dimensions) For ¢ € R

let
log Ss(q)

Si(@) = 3 (u((B)))" and T(g)=limsup =17 .

BeGs 40

The value oo is allowed. If the lims_ o exists for a particular q, then T(q) will be called
grid-regular. The generalized dimensions [G, HP, HJKPS] are then given by

1 1 BEZGSM((B)O log pu((B)1)

Dy:= 1T (4#1)  Di:=lmsup i = w(B))

Note that the condition ‘u(B) # 0’ chooses the boxes, not ‘u((B)1) # 0°. This is the
central idea of the new formalism (see also figure 1).

The same argument that gives the independence of 7" from the choice of x also proves
its invariance under a considerable class of coordinate transformations and justifies the
restriction of the § to an admissible sequence. The sequence J,, is called admissible if there
is a v > 0 such that 9, > 6,41 > vd, for all n.

Proposition 2 Let ® be a bi-lipschitz coordinate transformation, let p' := pu(®1(+)),
k' >0,k >0 and let (0p)new be an admissible sequence. Then for all g € IR

- log (Theas, #(B)x)) - log (Saeqy 1 ((B)w))
T(g) = limsup = lim sup .
n—00 —logd, 510 —logd
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Remarks As a corollary of theorem 19 the former notion (3) and ours coincide for
positive ¢, i.e. one has 7(q) = T'(¢) (¢ > 0). Moreover, the same independence as above
holds also for 7, but only when ¢ > 0 [R], as the two admissible sequences in example 1
show.

Proof Let G be the set of ¢'-boxes B with p/(B) # 0, furthermore set S5 (g, k') =
Ypea, W((B)w)? and Ss(q, k) = Xpeg; #((B)x)?. One idea for the proof is to use the
fact, that S5 and S; are ‘averages’, i.e. sums. More precisely, to every B’ € G we will
assign a box Bp € Gy such that y/((B')x)? < u((Bpr)x)?. To meat the fact that different
boxes B’ can have the same counterpart Bg: the terms in Ss will be repeated sufficiently
many times.

i) Take &' > 0, B' € Gj. Writing C := & (B’) and D := &7 ((B')«) for short,
w(C) = i/ (B') # 0 and diam(D) < L - diam((B')x) = L\f( + 2k")d". For every
0 > 0, the choice of which is postponed at the moment, the d-boxes constitute a
covering of IR¢. Hence there must be one of them which meets C and is not a
p-nullset. Denote this box from G4 by Bp:.

ii) Assume first that ¢ > 0. The constructed box Bp should be large. Set 7y :=
k 'L\/d(1 + 2x') and take any § from [ 0’, v 'n0"]. Since k6 > diam(D), D is
contained in (Bp/), and

U((BB’)K) > ,U'(D) = :U'l((Bl)n’) # 0.

The same estimate holds for the g—th powers. The given relation B’ — Bp: is
not one-to-one, but the number of all §'-boxes B’ for which the same fixed box
B* has been assigned as Bp: is bounded by the constant b, := (L\/Ev_lnl + 2)d.
To see this note, that every B’ with Bg = B* must intersect ®(B*) and that
diam(®(B*)) < LVds < Lvdv™'n.8'. So, repeating each term in Ss(q, k) by times
produces a counterpart for every term in S (g, k'), i.e.

Si(q, k)= DY W((B)e)? <br Y. w((B)x)? = b1Ss(q, k). (6)

B’EG’ BeGs

Interchanging K with K’ and x with &' yields corresponding constants 7, and by
with
S5(q, k) < bS5 (g, K') V8 € [n20, v ned]. (7)
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iii) Given &', n can be chosen such that §, > 196’ > 6,41. Then 6, < v, < po~1d.
Applying (7) with ¢’ = ned and (6) with § = ¢,, implies

1 1 r ' 1
limsup 1285008 o 10890 (G K)o 108 595 (0 K)
510 —logd 510 —log & S “logo,

Since the last term is smaller than the first, the desired equalities follow.

iv) Consider now the case ¢ < 0. This time the constructed box Bp should be small.
Set 73 := ((1 + k)v/dL)"*. For any 6 < n3 - &' the set (Bp), is contained in D and
so 0 # p(Bp) < pu((Bp)s) < u(D) = p/((B')x)- Raising the inequality to the ¢-th
power reverses the sign. The rest of the argument is the same as above. &

Falconer’s definition of the spectrum will now be modified in the same way as the one
for the singularity exponents.

Definition 3 (Spectrum) Let Ns(a) := #{B € G5 : u((B)1) > §*} and define

log(N, — N, —
F(a) := limlim sup og(Ns(a +¢) HC))
el 50 —logd

I

where log0 := —oo. We will call this function the box-counting spectrum or just spectrum
of w. It will be shown to be related to the multifractal spectrum f(a) = dup(K,). When
the limit 6 — 0 exists for a particular o, we call F(a) grid-reqular.

It should be emphasized that this notion uses the measures u((B);), where the boxes B
have been selected by the condition u(B) # 0. By definition F' is positive when real-
valued.

2.2 The Legendre Transform

An important tool in multifractal theory is the Legendre transform. First, we state a
result which will not be used later but which supports the saying, that 7" is more regular
than F' [HJKPS, JKL]. In particular, T is always convex (lemma 5) while F' need not be
concave everywhere (Ex. 2).

Proposition 4

T(q) = sup(F(a) — qa) Vg # 0.

aclR
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Moreover, if there exists 8 < oo such that u((B)1) > 67 for all B € Gs and all sufficiently
small § > 0, then
T(0) = sup F(a).
aclR
Proof The essential idea is given in the proof of proposition 17.2 in [F2]. However,
some refinement is needed for ¢ < 0 which can be found in [R]. &

Lemma 5 (Infinite values of T') a) If ¢ > 0 then —dq < T(q) < d.
b) Either T is infinite for all ¢ < 0 or T is real-valued for all g € R.

c) The function T(q) is continuous, conver and nonincreasing where it is real-valued.

Proof a) For any ¢ > 0 one has Ss(q) < #Gs. As a consequence of the boundedness of
the support of y there is a constant ¢ with #G5 < c¢-6~¢. Hence, T(q) < d. Furthermore,
there is a box B € G with u(B) > 1/#G5. Hence, S5(q) > 6%/c? and T(q) > —dg.

b) Fix ¢ < 0 and let o be any positive number. If there is no § as in proposition 4,
then there are arbitrarily small § > 0 with S;(¢) > 0?*. Hence, T(q) > —qa. Since «
is arbitrary T'(¢) = oo for all ¢ < 0. (This was not recognized in [F2].) If there exists
a [ as in proposition 4, then 1 < S;(q) < #Gj - 6% for sufficiently small 6 > 0. Hence,
0<T(q) <d—¢qB < oo forall g <0.

c¢) Continuity and convexity as stated are properties of the Legendre transform. Obviously,
Ss(g) is nonincreasing in ¢ for every § > 0 which carries over to 7. &

By means of proposition 4 it is easy to calculate the singularity exponents once the
spectrum is known. In typical applications however one will meet the converse situation:
one would like to be able to deduce the spectrum from the singularity exponents. This
would be straightforward if differentiability and concavity of the spectrum would be known
in advance. Such properties can be established a priori only for a multifractal formalism
distinct from ours [BMP, CM, CLP, EdM, BR), and may not hold in our situation (Ex. 2).
Therefore, we prefer a different approach which does not make use of proposition 4.

We need a result of Ellis’ on large deviations [E, page 3, theorem I1.2]. Due to lemma 5
we do not need it in its full strength and restate a simplified version. Let (€, B,, P,) be
a sequence of probability spaces. For each n, let Y,, be a B,— Borel-measurable map of
Q, into RY. Given t € R let

cn = (1/ay,) log E,[exp(t, Y,)],
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where the {a,} are a fixed sequence of positive numbers tending to infinity, E,, denotes
expectation with respect to P,, and (-, -) is the Euclidean inner product on RY.

Theorem 6 (Ellis) Assume, that c(t) := lim, o ¢, (t) exists, is real, convex and differ-
entiable for all t € RN . Let

I(z) == tzlégl {(t, z)y — c(t)}, z € RY.

Given a subset A of RY, define I(A) := inf{I(2) : z € A}. Then
a) For any closed subset H of RY,

limsup(1/a,)log P,la;'Y, € H] < —I(H).

n—oo

b) For any open subset G of RY,
lim inf(1/ay) log Pu[a;'Y, € G] > —I(G).
Our result on the Legendre transform in the direction opposite to proposition 4 is:

Theorem 7 If T is grid-regular, differentiable and convexr on IR, then

. log[Ns(a+¢) = Ns(a—¢)] .
F(a) = limlim “logs = inf(T(q) + q)

for all a. In particular, F(a) = T(q) — qT"(q) at « = —=T'(q), F is continuous in the
closure of the range of —T'(q) and takes the value —oc elsewhere.

Proof Write /() = infyer(7T'(g) + gor). The notation of theorem 6 is kept in use.

i) Fix any sequence (d,)nemn of positive numbers which tends to zero. Let Q, := G, ,
associated with its powerset B, and with the uniform probability distribution P,.
Choose the random variables Y;,(B) := log(u((B)1) on G5, and calculate their mo-
ment generating functions:

1 .1
#G, po p((B))! = 35, (0) Ss, (q)-

En[ean] —

Choosing a, := —logd, leads to

1 log S5, (q) _ logS;, (0)
2(q) = —log B, [e™"] = s — S
en(d) an 0g Ene] —logd, —logd,
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Thus
clq) =T(q) — T(0) I(z) =T(0) = I(=2),
and the hypotheses of Ellis’ theorem are satisfied.

ii) Fix any a and set H = [—«a,0[,G =] — a,00[. First, I(H) and I(G) will be
computed using well known results about the Legendre transform. Let [t, 0_oo]
denote the closure of the range of —7". Obviously, (o) = T(q) — ¢T"(q) at a =
—T'(q) while I(a) = —o0o for & € [, o). There is a unique maximum of [ at
ap = —T"(0). With the continuity of I in [a, @ o] One obtains

oo = —la) if o< o,
I(H):I(G)z{T(O)—l(a) if a < a < ay,

T(0) — () if ap < c.
The value o = s has to be omitted to guarantee the first equality. With
1
N,
5. (0) (@)

n

Pula;'Y, € G] < P,[a;'Y, € H] = P,[Y, > log6,%] =

theorem 6 gives

log N,
tim sup 28 () 10) — lim sup(1 /a,) log Pufa. 'Y, € H] < —I(H),
n—00 — IOg 571 n—00
: : log N(Sn (a) . : —1
hgr_l)glngén — T(0) =2 lim inf(1/an ) log Pu[a, " Y, € G] 2 —I(G).

iii) Since the sequence §, was arbitrary, ii) yields

Ft(a) :=lim

log Ns(a) [ l(a) ifa<ay, a#ax
50 —logd

l(ag) if a > .

This function F*(«) is strictly monotonous increasing in Jaeo, ag[. Thus, F*(a —
£) < Ff(a+e¢) for any o € |—00, ] and any ¢ > 0, where —oco < —o0 is accepted.
In the case F*(a—¢) # —oo this means that Ns(a+¢) grows essentially faster than
Ns(a—€). More precisely: choose n > 0 such that F*(a—¢)+3n < F*(a+¢) and
take do(n) > 0 such that

Ny(a+e) > 5 Fretasn  Ni(q—g) < g FHem 5 <

(NN
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for all 6 < §y. Then
1
§N5(a +¢) < Ny(a+¢) — Nsj(a—¢) < Ns(a+¢) Vo <.

This is trivial when F*(a —¢) = —oo. So, F(a) is grid-regular, and F(a) =
Ft(a+) =l(a) for all a € |—o0, oy

iv) To obtain F'(«) = I(«) for @ > a change the definitions of H and G to H :=|—00, —q/
and G :=|—o0, —a[ and work with M;(«) := #{B € G5 : p((B)1) < 6*} instead
of Ns(«), using that Ns(a +¢) — Ns(aw — €) = Ms(av — &) — Ms(a +€). &

For completeness we remark that [R] gives a ‘local version’ of the theorem above, the
proof of which is based on proposition 4.

Theorem 8 If T is differentiable at ¢ # 0 and if o = —T"(q), then
F(a) =T(q) — qT'(a)- (8)

3 Self-Similar Measures

The self-similar measures (see below) are probably the simplest measures with nontrivial
multifractal spectrum. Quite some time ago heuristic arguments have been given which
suggest a simple formula for the singularity exponents 7(¢) [HP]. But example 1 shows
that a careful treatment is needed. So far we are not aware of a rigorous calculation
of singularity exponents or spectrum based on box-counting. Therefore, this section is
considered an important contribution in the multifractal theory.

Note, that the multifractal spectrum f(«) = dup(K,), has been calculated in [CM].
As one might hope, this f and our spectrum F' coincide.

This section is divided into three parts. First, the usual formalism for Cantor sets and
symbolic dynamics are introduced. For a deeper treatment of the statements made in this
subsection, [Hut] is a good reference. Next, the singularity exponents 7" and the spectrum
F' of self-similar measures are computed. Finally, a short argument is given which leads
directly to the multifractal decomposition of SMF.

3.1 Multiplicative Cascades

Fix a natural number r. To define a so-called r-adic Cantor set K take a compact subset
V of IR¢ and choose r closed subsets Vi, ..., V, of V, not necessarily disjoint. Go on like
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this, inductively choosing r closed subsets V., (k = 1,...,7) of V}, where

i:=d1...0, € L,:={1,...,r}" and ixk:=1i1...i,k.

Call ¢ a word of length |i| = n. Finally define a cascade by

K, = U Vi K = ﬂ K,. 9)

i€l, nelN

The same labels i, j etc. will be used for finite and infinite sequences. However, it
will always be made explicit when a particular sequence is meant to be infinite. For any
infinite or sufficiently long sequence i set (i|n) := 4y ...4,. If diam(V(;,)) — 0 as n — oo
for any infinite sequence i € I, := {1,...,7}™, then NV, is a singleton, say {z;}, and
the coordinate map

T il =K i—x;

is continuous and surjective. Now let (p1,...,p,) be a probability vector, i.e. p; > 0 and
pr+ ...+ p = 1, and let P be the product measure on I, induced by the measure
{j} — p, on the factors {1...7}, i.e.

Pl{i€ I ik, = Jm, m=1...n} =pj ... pj, =i p; (10)
for all n € IN, all words j of length n and all integers k; < ... < k.
Definition 9 The measure p := P(n~*(+)) will be called a Cantor multifractal (CMF ).

Remark The construction of a CMF as described above has been termed multiplicative
cascade [EvM].
The support of y is K = m(I), its total mass is x(IR%) = 1. From its definition

p(Ve) = Pl{j € Lo = 7(j) € Vi}] 2 P{j € Ino = (jl1il) =i} = ps (11)

with equality holding in particular if V; does not intersect any Vj with |k| = [i|. The
following lemma might be important in numerical simulations.

Lemma 10 Given any p, substituting the condition ‘u(B) # 0’ in the definition of Gy
(see definition 1) by the condition ‘BN K # (07 will not affect the value T(q).

In particular for ¢ = 0:

Corollary 11 The boz dimension [F2] of the support of any p equals Dy = T(0).
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Proof Let B denote a 6-box. Then, since BN K # () is a stronger requirement than

u(B) # 0,
Ss(g) < > p((B))™
BNK#()
On the other hand if BN K # () holds, then we must have
1((B)1y2) # 0.

Thus there exists Cp € G52 and Dp € Gos, i.e. with nonvanishing measure, both meeting
(B)l/g. Hence (CB)l C (B)l, (DB)1 D) (B)l, and

p((B))? < p((CB)1)" (< 0)  u((B)1)! < pu((Dp)r)” (g 2 0).

Moreover at most 2¢ (resp. 5%) d-boxes B can share the same fixed C from G2 as Cp
(resp. the same fixed D from Gys as D). The estimate

> (BT Y ul(Cr)? <2t 3 w((@n) (¢<0)

BNK#0 BeGg C€G6/2

results and a similar one for ¢ > 0. This proves the lemma. &

3.2 Singularity Exponents and Spectrum
Now let (ws,...,w,) be a set of contracting similarities of R® with ratios Ay, ..., \,, i.e.

X €]0,1[ and |w;(z) — wi(y)| = X - |z — y| VaVy € R? (i = 1,...,r). Assume further the
existence of a nonempty open bounded set O such that

w;(0)CcO (i=1,...,7) and  w;(0O)Nw;(0)=0 (i# 7). (12)

This property was termed open set condition, or OSC for short, and O is called a basic
open set. Now, letting

V:i=0 and V;:=w(0):=w;o...0w,;,(0) (13)
establishes an r-adic Cantor set, for which the coordinate map is well-defined.

Definition 12 Assume (12). A CMF constructed by (13) is called a Self-similar Multi-
fractal (SMF) with ratios Aq,..., A, and probability vector (p1,...,p,). It is the unique
probability measure with bounded support satisfying the invariance [Hut]

)= zp (w1 () (14)
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In order to compute the singularity exponents of a SMF one could deduce a recursive law
for Ss(g) from the invariance of . In [HP] a heuristic argument is given, which uses this
idea. However, we prefer a different approach: we compare the covering of K by boxes B
from G5 with the covering by cylindrical sets V; with ¢ from Js, where

ng{lzllln EI)\1§5</\21)\Z7171} (15)
Thereby we have the approximation

Ss(q)0” = > p((B)1)*67 = 3 p(Vy)167 == 3 ptA)”

BeGs 1€J5s 1€Js

in mind. When 7 is chosen properly, the last sum equals exactly 1 for all 4, and 7'(¢) must
equal 7. This procedure has the advantage of not using the maps w;. Thus the result
obtained is valid for multifractals arising from a more general construction than SMFs.
We will need a lemma similar to lemma 9.2 in [F2].

Lemma 13 Let (V;) be a collection of subsets of R such that each V; has diameter at
most 010 and contains a ball U; of radius 020. Assume that the U; are disjoint. Then,
any set W of diameter less or equal to a36 intersects at the most b = (01 + 03)%/0d of the
closures V.

Proof One may assume W # () and choose z € W. The sets V; intersecting W lie
in the ball U(z, (01 + 03)d), and so do the corresponding interior balls U;. Comparing
volumes gives b. &

Proposition 14 Let p be a CMF, let po > p1 > 0 and let \y,..., A\, be numbers from
10, 1[ such that for every word i € I there is a point x; in V; with

Uz, 2p10:) C Vi C U (24, p2)i), (16)
U(zi, 2p00) NV =0 for all j # i with |i] = |§], (17)
w(U (1, p1As)) # 0. (18)

Then T(q) is grid-reqular and satisfies

SpIAl @ =1, (19)
=1
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Proof By the strict monotonicity of the functions z — p!A? there is a unique solution
of 7, pi\* =1 which is denoted by 7(q).
o) Note ﬁrst that Js can be obtained inductively from L, := {1,...,r} in finitely many
steps by letting L,y :={i € L, : A, <0}U{ixk:ie L, 1 <k<r X\ >}
Three facts follow easily (compare also [Hut)):

dopINT =1, (20)
i€ Js
KclUv (21)
Js
and
U(.’L‘i, 2,01/\1) M U(.’El, 2,01)\1) = (Z) (22)

for all i # j from Js. (To prove (22) one may assume n = || < |j]. Then i # (j|n)
due to (15). Thus, (17) and V; C V{;jn) prove the claim.) For convenience set

A:=min{A, ..., A\ } A i=max{\,..., A\ }. (23)

i) First let ¢ > 0. Take B € Gj. For the sake of brevity write Js(E) :={i € Js : V,NE #
0}. By (22), (15) and lemma 13 there is a number b; independent of § and B such
that

#J5((B)1) < br.

This allows the estimate

p(B)) < (Y w) < (b max p(V)) <bhi? 3 (V)"
J5((B)1) Js((B)1) Ts((B)1)

Taking the sum over all B € (G5 will yield an inequality where the right hand sum
runs more than once over certain words of Js;. But fixing i € J; and applying
lemma 13 to W = Vj gives a constant by such that

#{BEGs: VN (B #0} =#{B€Gs :ic J((B))} < by

Thus,

=2 wB)<h? 3 > p(V) <bi%h Y u(Vy)". (24)

BeGs BeGs zEJg(( ) ) 1€Js
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Finally p(V;) must be compared with p,;. This is trivial for SMFs, but in general
these two numbers are not equal. Again, the fact is used, that an average, i.e. a sum,
has to be estimated. Take j € Js. First 77'(V}) is estimated: assume z = n(k) € V.
Due to (15) there is an integer n such that i := (k|n) € J;. Hence z € V;NV;,

77 H(V;) C {k € I : In € IN with (ky|n) € J5(V})}

and by (11)
p(V) =Plr ' (VI < > mi

1€Js (V_)

Applying lemma 13 to W = V; provides a constant b3 with

#J5(V;) < bs.

Consequently
p(V;)? < (bs - maxpZ < pgt Z P

- I5(V3) i€Js(V;)

With similar ideas as above one obtains

Dou(Vi)T<bs® Y Y pif <bshs Y pif (25)

JjEJds Jj€Jds i€ Js(Vj) 1€Js

Set ¢; := max{1, A 7}. Then, 67 < ¢;\;” for any i € J; and all 7. The combination
of (24), (25) and (20) reads

Ss(q)d7 < b1 9boby Z pilo7 < b1 %beb3 "t ey Z P\ = b1bobs e,

1€Js 1€Js
This implies immediately 7'(¢) < v(q) (¢ > 0).

ii) Now S;(¢q) will be estimated from below. Take i € Jy where §' = (3pg) 'd. From
0 # p; < u(V;) follows the existence of a box B; € G5 which meets V. Since
diam(V;) < 2py)\; < 4§, the parallel body (B;); contains V. Thus p; < ,u((B_) ). Fix
a 6-box B*. Applying lemma 13 to W = B* shows, that B* can meet at the most
by sets V; with ¢ € Jy, where by depends neither on § nor on B*. Consequently,
#{i € Jy : B* = B;} < by. Hence

2t < Y ul(Bh) < ba 3o p((B

’L€J51 Z€J5/ BeGg
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With ¢, = (3p2)" - min{1,A™"} ome has 67 > ¢, X, for all i € Jy due to (15). Thus,
with (20)
Ss(@)07 > b7t S pT > bite, 3 N =

icJg icJg by

Since ¢ > 0 is arbitrary, this implies with i) that T'(q) is grid-regular and equals 7.

iii) Now let ¢ < 0. Take B € Gj. Since u(B) # 0, (21) guarantees a word i € Jy such
that V; meets B. As in ii) V; is a subset of (B); and thus 0 # p; < p((B)1). As in
i) and ii), with a constant b5 provided by lemma 13 and c3 = (3p;)” - max{1, A"},

S(;(q)m = 67 Z N((B)l)q S b55’y Z piq S b503 Z piq/\f = b503.

BeGs 1€J g i€Jgy

iv) Take i € Js with 6" = 3v/d(p;A)~*6. Here the precondition (18) is used, which
implies the existence of a box B(i) € G5 which meets U(z;, p1A;). Applying (15)
yields diam(B(Z)); = p1Ad” < p1A; and thus

(B(@) C Ulzs,2p10) C Vi
By (17)
(U 2000) € k€ L = (k] 1i) = i}
which leads to
0 # u((B(0)1) < p(U(zi,201M)) < pi-
It follows from (22) that distinct words i from Jy» have distinct B(z). Thus
SH@F =8 X p(B)) 2 Y pt > e X pAT = e

BeGy 1€ g i€Jgn

where ¢, = (p1A)7(3\/3)_’7 -min{1,A\7"}. O

The above proposition enables us to give the singularity exponents of two types of mea-
sures: certain multiplicative cascades on IR and self-similar measures (SMF).

Theorem 15 Let o be a CMF on IR. Assume the existence of positive numbers A, ..., A,
and s, t such that for all sufficiently large n € IN the interiors of the sets V; (1 € I,) are
mutually disjoint intervals of length diamVj € [sA;,tA;]. Then, T'(q) is grid-regular for all
q € R and satisfies

SN =1
=1
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Proof Take a sufficiently long word . Among Vi,is1, ..., Vi« there is at least one—
say Vi j,—With distance at least SAQAi from the boundary of V; (23). Choose m large
enough to ensure 2t - A< s- 22 and set J=Jijex1...1 € I,. Then Vi; C Vij,;, and
diam(Vi.;) < A" < 8/2 - A*\;. Now choose x; € Viuj, po = t and p; = s/2 - \”. Since
Viej C U(zi, p1Ai), pinj # 0 and dist(z;, 0V;) > 2pi\;, proposition 14 gives the desired
result. &

Besides the OSC another condition is of interest in the context of self-similarity, the so-
called strong open set condition (SOSC). The SOSC is said to hold for a set of contracting
similarities wy, ..., w,, if there is a basic open set O which intersects the invariant set
K. Of course SOSC implies OSC and seems to be more restrictive. The two conditions
given in [BG], equivalent to SOSC and OSC respectively, support this view of things.
Surprisingly, SOSC and OSC are equivalent, as was recently shown by Schief [Sch]|. This
satisfying and powerful result enables us to calculate the singularity exponents 7" of self-
similar measures.

Theorem 16 (Singularity Exponents of Self-Similar Measures) Let u be a SMF
with ratios A1, ..., A\, and probabilities p1,...,p.. Then T(q) is grid-reqular for all ¢ € R
and satisfies

T

T
A =1,
i=1

Proof Proposition 14 will be applied. Note first, that due to [Sch] there is a basic
open set O which intersects K. Choose z = (i) € O N K. Since O is open and bounded
there is p, > p; > 0 such that U(z,2p;) C O C O C U(x, pa2). Letting xy := wy(z) for all
finite words k one finds

U(:L'E, 2,01/\E) N V;_ C U)E(O) N wl(b) =
for all k£ # j with |k| = [j|. This gives (17); (16) is evident. Finally, take an integer n such

that A - diam(O) < p; and set J = i1...1,. Then, the set V;_ contains x, has diameter
Aj - diam(O) and is thus a subset of U(z, p;). From this

Visj = w(Vy) Cwp(U(z, p1)) = Ulzg, prAg),

and p(U(zg, p1Ag)) > Pr+j # 0. So, (18) is established as well. &
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From theorem 7 and 16 the spectrum F' of a self-similar measure follows immediately.
To state some interesting features of it we set:

T T
log pi AP0 log p;
0~ min log p; ) _z';lpl EDi - z; i OBPs o max log p;
oo T . T r T r -0 T . 9
i=1,...,r log )\z Zpi log)\z Z )‘ZDO log)\z 1=1,...,7 log)\z
i=1 i=1

where Dy = T(0) is the box dimension of K = supp(u). Thereby the various values of
« have interpretations as particular pointwise dimensions or ‘coarse Holder exponents’.
The latter notion is more accurate here and can be defined as [EvM]|

lim sup log pu(B(z,d))
510 —logd

Y

where B(z,d) is the unique -box containing z. Then, a,, and a_,, are interpretated as
the coarse Holder exponents of the most probable and the most rarefied points respectively,
and a; and ag as the coarse Holder exponents which occur almost surely with respect to
the underlying measure p and the (restricted and normalized) D-dimensional Hausdorff
measure respectively. For certain measures p this can be made precise.

Corollary 17 (Spectrum of Self-Similar Measures) Let u be any SMF. Then, F is
grid-regularand determined by theorem 7 and 16. More concretely, F' attains its mazimum
Dy at oy, touches the internal bisector at oy = F'(ay) and takes the value —oo for a outside
[Cloos o). Moreover, the 2 X 2 equation system

Y(E)N =1
f Y (e (26)
Lhe(f)(%) N =0 0

is for every a €|, _o| uniquely solved by v = F(a), ¢ = F'(«), and
o oAfle=l =1 and Y A =1 (27)

Pi=A7® pi=A

i

Remarks The assertion of the corollary is valid for any CMF, for which (19) holds
with grid-regular T for all real ¢. In the case r = 2 (26) is explicitly solvable by introducing
the variables z; = p;9)\;""9¢. Setting ¢; = log p; — alog \; one finds

colog(—ca) + (c1 — ¢2) log(er — ¢a) — ¢1 log(cq)
log A1 log po — log A9 log py

F(a) =
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for o €]ae, @] Thereby ao = logpi/logA; < logps/log s = a_o without loss of
generality. Formulas free from the parameter ¢ have been presented until now only for
special cases [EvM, TV].

Figure 2: The generalized dimensions D, = T(q)/(1 — ¢q) and the spectrum F(«) of a

self-similar measure with r = 4, ratios \; = ... = Ay = 1/6 and probability vector
(.1,.1,.2,.6).
Proof The case p; = AP (i =1,...,7) is trivial. Thus, as < _y will be assumed.

First, the range of —7" is |aeo, @—oo| by direct calculus as in [CM] or [R]. Now, it will be
shown that (26) is solvable exactly if « lies in the range of —7"”, and that it determines
F and F'. Assume first that (7, go) solves the system for some fixed «, and rewrite the
equations as:

T

qo \ Yo—aqo _
,lez' Ai =1
1=

T T
X PPN M logpr = a 3 pPAIT  log
1= 1=

So, necessarily T'(go) = v — aqo and @ = —T"(g). On the other hand it is now easy to
see that, if = —T"(qo), then (T(go) + o, o) provides a solution of (26). By theorem 7
one has F'(a) = T'(qo) — qT"(qo) which is . Finally, F'(«) = g since T is strictly convex
and C?, i.e. T"(q) # 0. As a consequence, the solution is unique.

It only remains to compute the values F(a+.). For simplicity assume

_ log p;
~ log N

& ie{l,...,t}

Co

for some t < r. The functions ¢;(a) = log(p;) — alog(X;) (i = 1,...,7) are strictly
increasing with zeros logp;/log A\;. There are numbers ¢ > 0 and ¢’ > ¢ > 0 such that
d < —cla) <" (i=t+1,...,r) and ¢g() > 0 (k = 1,...,%) for all @ €]au, 0 + €]
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Denote the solution of (26) by (F(«), ¢(«)). In the following limit « | a is considered.
Note first that g(a) = F'(a) — oo. Since F(«) > 0, (26.b) implies

t r
Z )\g‘(a)ck(a)eck(a)q(a) — Z )\f‘(a)(_ci(a))eci(a)q(a) S TC” . e—c’-q(a)'
k=1 1=t+1

The terms in the first sum are all positive. Thus, with F(«) < Dy one obtains
0 < ex(@)q(a) < const - g(a)e™¢ 1@eer@a(@) 0 (k=1,...,1).

On the other hand, ¢;(a)g(a) = —oo for i =t +1,..., 7 is trivial. Finally F(a) = F(ae)
for continuity reasons (theorem 7). Applying (26.a) gives F'(a). A similar argument for
_ completes the proof. O

3.3 Multifractal Decomposition

The multifractal decomposition of certain SMF on IR has been given in [CLP] and, under
less restricting conditions in [BMP]. In both papers the authors developed notions of
singularity exponents which are carefully tailored to the particular situation and are not
useful in a different context. However, they allow the computation of the multifractal
spectrum f (o) = dup(K,) (compare (2)).

Cawley & Mauldin [CM] considered SMF in IR?. Working on the codespace I, :=
{1,...,7}™ (subsection 3.1) they found the dimension of the sets corresponding to K,:

For an SMF with ratios Ay, ..., \, and probability vector (p1,...,p,) let

10g p(iin)

X = ) I : l. _ = =
U e M g Xim
Then dup(K,) = F(a), where F(a) is given by corollary 17.
Provided the compact sets w;(K) (K = supp(u)) are mutually disjoint, the coordinate

map 7 is bi-lipschitz and K, = 7(K,). Therefore, K, has the same Hausdorff dimension
as K,. Abusing the notion of Hausdorff dimension (dyp(A) = —oo iff A = ()) this reads

Theorem 18 (Cawley & Mauldin) Let p be an SMF with ratios Ay, ..., A\ and prob-
ability vector (p1,-..,py). If the sets w;(K) are mutually disjoint, then

dHD(Ka) = F(Ot)
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Similar methods were used to provide multifractal decompositions in more general
situations [F3, EAM, S]. Here, we present a short argument which leads directly to
theorem 18.

Proof i) By assumption there is an ¢ > 0 with the following property: If O denotes
the open e-parallel body of K, i.e. O = {z : Jy € K such that |z —y| < £}, then the sets
w;(0) are mutually disjoint. Consequently, O is a basic open set for the maps wy, . . ., w,.

ii) Fix ¢ for the moment. Let a(g) = —71"(g). Define the Borel measures pu, :=
fg(m71(+)), where fi, is the product measure (10) on the codespace I, induced by the
probability vector (py, .. .,p,) with p; := pIA] @ Applying the Law of Large Numbers to
the random variables X,, :=logp; and Y, := log)\ i, on I, one obtains:

T(q) 1 .
logpamy  (1/n)log(Xy+...+X,)  B[X,] E P T logpi
- — = a(q) (28)
loghyny  (I/m)log(Yi+...+Ya) ~ BYa]  § p03T@ g0,
=1

for ji, almost every i € I. In particular, ,uq(f( (@) = 1. Furthermore, for any i € Ka(q)

logp iln 10 in
) _ ¢ 25PGm) o 7(g) - T(q) — ¢T"(q) = F(a(q))- (29)
log A(ijn) log A(ijn)

iii) As usual let V; := w;(O). Let p := diam(O). Note, that V; has diameter p)\; and
measure ,(V;) = p; = pIN T@_ Let 2 € K. Due to i) there is a unique J € Iy with
x =7(j). Let r > 0. Then, there exist unique integers n and m such that

/\(l"") < 7“/,0 < )‘(l'|n71) and )\(l"m+1) < T/E < /\(l"m).

Consequently,
z € Vi) CU(z, 1) C U2, A im)) C Vijim)
and
108PGim) _logp,(Ulw,r)) _  108Pgm)
log A(jim) + log(ed) — logr = log Agjjn) + log(pA)

Thus, for any j € I,

108 D)) - 10g P jjn)
liminf ——=— =4 7)) < dy, (m(j)) = limsup ———=—.
n—oo log )\(i‘") Ha ( (_)) = n—oo  log )\(]|n)

(30)
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A

Inserting the particular value ¢ = 1 in (30) and observing u; = u yields K, = 7(K,) for
all a by definition (2). As a consequence, K, is empty for a & (a0, @ oo)-
iv) Combining (29) and (30) shows that the pointwise dimension of 1, equals

dy, (x) = T(q) — qT"(q) = F(a(q)) (31)

at all points  of K, = W(K;(q)). Moreover, fi4(Kqq) = 1 by (28). By a famous
theorem of Young [Y], also referred to as the Frostman lemma, the Hausdorff dimension
of Kq(g must equal F'(a(q)).

iv) Finally, the sets K, _ and K, _ are self-similar sets due to (30), i.e. invariant
under the family of maps {w; : logp;/log\i = a1}, respectively. The dimensions of
self-similar sets are well-known [Hut]. Here they are given by (27). &

4 Further remarks

Here, we present examples which support the necessity of an improvement of (3) and
which show that our spectrum need not be concave. Finally, we compare the notion of
Pesin [P3] with ours.

4.1 Examples

Example 1 (Binomial Measure) A binomial measure [EvM] is simply an SMF on
IR with 7 = 2. As an example choose an arbitrary probability vector (pi,ps) and set
wi(z) = z/3 and we(z) = (2 + z)/3. Then, the invariant measure

p=p1- p(wit(-) +p2 - plwy(-))

is supported by the well-known middle third Cantor set and is a binomial measure. When
the definition (3) of 7(q) is rigorously applied one obtains

7(q) = 00 whenever ¢ < 0.

Proof To every n € IN there is a k, € IN with py*» < (1/2-37")", because p, < 1.
Without loss of generality k, > n+1. Then §, := (1—37%=)37" lies in [(1—37")37",37"].
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Figure 3: On the left: The construction of the Cantor binomial measure for p; = 1/3
and p, = 2/3. On the right an illustration concerning the exceptional behaviour of some
dn-boxes (n = 1).

Since (3" +1)d, > 1 the box B := [3"0p, (3™ +1)d,[ has very small measure: B, N[0, 1] =
[1—37F 1], thus p(B,) = p*» < (6,)". For q¢ < 0 it follows that
$5,(0) 2 (Bn)" = (62)"™,

which proves the claim. &

This examples makes clear, that 7(¢) is not an appropriate notion of singularity ex-
ponents since the information of half of the ¢g-domain is lost. One may hold against that
the restriction of § to the sequence §; = 37" allows to observe the expected exponents:
s5:(q) = (P19 +p3)" and 7*(¢q) = T'(q). However, working with such a notion would mean,
that the structure of a measure to be investigated had to be known in advance. Even
worse, since 0, and ¢ are very close, numerical methods can not give reliable estimates
of 7(q) for measures with less exact self-similar structures than binomial measures. In
contrary to this, proposition 2 and theorem 14 assure that 7'(q) is not sensible to small
‘disturbance’. O

Example 2 (Nonconcave spectrum) Consider the two families of maps

x 24z 44z 6+
wl(:v):§ wa(x) = and ti(x) = 3 to(z) = 3

and the invariant measures

p=2/3-(wi' () +1/3- m(wy () and o =8/9- pa(ty' () + 1/9- pa(t5 ' (1))

Let u := (1 + po)/2. A straightforward counting argument using the disjointness of
the supports of py and po shows that F(a) = max(Fi(«), Fo(«)). This spectrum is not
concave (figure 4). So, in general, F'(«) need not equal the Legendre transform of 7T'(q)
everywhere and proposition 4 can not be used blindly to obtain F' from 7. O
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L
0 0.5 1 1.5 2

Figure 4: The spectrum F of 4 = 1/2(1 + p12) as given in example 2. It is not concave and
not everywhere differentiable. Thus, the inverse Legendre transform can not be applied
blindly to obtain F' from 7T'. The dashed parts show the internal bisector of the axes and
the spectra of p; and po.

4.2 The Notion Introduced by Pesin

In [P3] Pesin introduces different ways to define and study generalized dimensions. This
is not the place to review them in full length. Therefore, we state only what is needed for
the comparison with our formalism.

Following Hentschel & Procaccia [HP] Pesin defines the ‘generalized spectrum for
dimensions’ for ¢ > 0 as follows:

1
7 = —li 1 8))4d
Vo)  lim sup log(5 og/u (z,0))du(),
= Miminf 1 ) %dp(x).
Zq(:“) g lgi(l)n log o Og/,u (@ A

When 7,(p) = zq(u), then the common value is denoted by ~,(x). A modification of

the above definition are the ‘limit generalized spectrum for dimensions’ @,(x) and a,(u),
which are defined for —1 < ¢ <0,4g>0 through

o1 q
a,(p) == . lgiglu(zs)lg 6lmgﬁ)up T log/ U(z,0))du(z),
etc. For the reader familiar with the notion of capacity (box-dimension) of a measure
[Y], the difference between 7, (1) and @,(¢) becomes apparent through the following two
facts:

First, 7,(11) coincides with the g-dimensional capacity of IR?, while @,(u) coincides
with ¢-dimensional capacity of u [P3].

Secondly: When d,(z) = § for y-almost every x, where § does ot depend on z, then

Ag(p) = aq(p) =6
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for -1 < ¢ <0, ¢ > 0 [P3, theorem 7|. This is the case in the situation of theorem 18
with § = a; (see (31)). In contrary to this lq(:“) is in general not constant then:

Proposition 19 Let i be an arbitrary Borel measure. For any q > 0 one has

1
v, (1) = —QT(Q +1) = Dgy1 = dgy1.

Lq
Moreover, v,(u) ezists iff T(q + 1) is grid-regular.

Proof Let g > 0. Given § let B(z) denote the unique d-box which contains x and
write By (z) for (B(x));.

i) Let § > 0. Then, U(z,¢) is a subset of B;(z) for every x. The measurable function
wu(Bi(x))? is constant on every §-box B. Since the d-boxes give a partition of the space

/u (2,0))%du(x Z/ (By(2))%dp(x) = > p((B))'w(B) < S5(g+1) < 1.

BeGs
Thus, —qy, (k) <T(g+1).
ii) The ball U(zx,v/d - §) contains B(z) for every . Consequently,
/u( z,Vd - 6))'du(z) > > / z))du(z) = > w(B)™ =s5(q+1)

BeGs BeGs

by (3). Hence, —qzq(,u) >71(qg+1).
iii) Finally let ¢ > 0. For any é-box B

p(BI< (X w0) < (3 max  pu(0)'<3% S u(O).

CeGs,CC(B) CeGs, CC(Bh CeGs,CC(B);

Thus,

s5(q) < Ss(q z u((B)1)? < 3% Z Z p(C)1 = 3d(q+1)85(q).

BeGs BeGs CEG&,CC(B)l

From this,
7(q) = T(q) for ¢ > 0,

and the desired formula follows. Moreover, the given estimates imply that v, (¢) exists iff
T(q) is grid-regular. ¢
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