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Summary

We introduce and discuss biorthogonal wavelet trans-
forms using the lifting construction. The lifting
construction exploits a spatial{domain, prediction{error
interpretation of the wavelet transform and provides a
powerful framework for designing customized transforms.
We discuss the application of lifting to adaptive and
non{linear transforms, transforms of non{uniformly
sampled data, and related issues.

Introduction

Many applications (compression, analysis, denoising,
etc.) bene�t from signal representation with as few
coe�cients as possible. We also wish to characterize a
signal as a series of course approximations, with sets of
�ner and �ner details. The Discrete Wavelet Transform
(DWT) provides such a representation.

The DWT represents a real-valued discrete-time signal in
terms of shifts and dilations of a lowpass scaling function
and a bandpass wavelet function [2]. The DWT decom-
position is multiscale: it consists of a set of scaling coe�-
cients c0[n], which represent coarse signal information at
scale j = 0, and a set of wavelet coe�cients dj [n], which
represent detail information at scales j = 1; 2; : : : ; J . The
forward DWT has an e�cient implementation in terms of
a recursive multirate �lterbank based around a lowpass
�lter h and highpass �lter g [12, pp. 302{332]. The in-
verse DWT employs an inverse �lterbank with lowpass

�lter eh and highpass �lter eg, as shown in Figure 1 For

special choices of h, g, eh, and eg, the underlying wavelet
and scaling functions form a biorthogonal wavelet basis
[2].
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Fig. 1: Filter Bank Representation of Wavelet Transform.

The economy of the wavelet transform stems from the
fact that the DWT tends to compress real-world signals
into just a few coe�cients of large magnitude. Compres-
sion follows from the \vanishing moments" property of
wavelets, which guarantees that the wavelet coe�cients of
low-order polynomial signals are zero [2]. Thus, if a sig-
nal is exactly polynomial, it can be completely described
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using scaling coe�cients alone. In more realistic situa-
tions, the signal will not be polynomial, but may be well-
approximated by a piecewise polynomial function. Be-
cause wavelet functions also have localized support, most
of the wavelet coe�cients of such a signal will be zero ex-
cept those corresponding to wavelets having support near
the breakpoints of the polynomial segments.

It is enlightening to view the DWT as a prediction-error
decomposition. The scaling coe�cients at a given scale
(j) are \predictors" for the data at the next higher reso-
lution or scale (j�1). The wavelet coe�cients are simply
the \prediction errors" between the scaling coe�cients
and the higher resolution data that they are attempting
predict. This interpretation has led to a new framework
for DWT design known as the lifting scheme [3].

In this paper we use lifting to construct DWTs for non{
traditional problems. The paper is organized as follows.
First, we review the basic lifting construction, and gener-
alize this construction to a non{uniform grid. Next, we
describe applications of lifting to adaptive and non{linear
wavelet transforms, along with a scheme for multi{scale
interpolation to a uniform grid. We close with concluding
remarks and plans for future work.

The Lifting Concept

Lifting, a space-domain construction of biorthogonal
wavelets developed by Sweldens [3], consists of the
iteration of the following three basic operations (see
Figure 2):

Split: Divide the original data into two disjoint subsets.
For example, we will split the original data set x[n]
into xe[n] = x[2n], the even indexed points, and
xo[n] = x[2n+ 1], the odd indexed points.

Predict: Generate the wavelet coe�cients d[n] as the er-
ror in predicting xo[n] from xe[n] using prediction
operator P:

d[n] = xo[n]�P(xe[n]): (1)

Update: Combine xe[n] and d[n] to obtain scaling co-
e�cients c[n] that represent a coarse approximation
to the original signal x[n]. This is accomplished by
applying an update operator U to the wavelet coef-
�cients and adding to xe[n]:

c[n] = xe[n] + U(d[n]); (2)
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Fig. 2: Lifting stage: Split, Predict, Update.
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These three steps form a lifting stage. As seen in Figure
2, a lifting stage has the same structure as a �lter bank
ladder structure [5]. Iteration of the lifting stage on the
output c[n] creates the complete set of DWT scaling and
wavelet coe�cients cj [n] and dj [n].1

The lifting steps are easily inverted, even if P and U are
nonlinear or space-varying, or the data is non{uniformly
sampled. Rearranging (1) and (2), we have

xe[n] = c[n]� U(d[n]); xo[n] = d[n] +P(xe[n]): (3)

Predictor Design: We initially assume the data is
uniformly sampled, and the prediction operator P is a
linear shift-invariant �lter, with z transform P (z). In Fig-
ure 3, we illustrate a symmetric, N = 4 point predictor
P (z) = p1z

�1+ p2+ p3z+ p4z
2. By tracing the contribu-

tion of xe[n] and xo[n] through the tree to the point d[n],
we can �nd the equivalent �lter that would be applied to
the original data x[n]. In vector form, we have

g = [�p1; 0; �p2; 1; �p3; 0; �p4]
T
: (4)

(Note the zeros at the positions corresponding to odd
points in the original data, except for the 1 in the center.)
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Fig. 3: Prediction �ltering. An N = 4 point linear prediction
�lter P (z) yields the prediction vector g shown across the top.

Recall that the goal of the prediction step is to elimi-
nate all low-order polynomials from x[n] in creating the
wavelet coe�cients. For a linear predictor, this is easily
accomplished by the following simple procedure. Form
the N � (2N � 1) matrix V whose rows are the mono-
mial signals: [V]m;n = nm, n = �(N � 1); : : : ; (N � 1),
m = 0; 1; : : : ; N � 1. (We make the convention 00 = 1.)
Now, for the predictor to suppress all polynomials up to
order N � 1, we require that

Vg = 0: (5)

This set of linear equations is readily solved, sinceV forms
the �rstN rows of a Vandermonde matrix, which is always
invertible [10]. Upon recognizing that the solution lives
in an N -dimensional subspace, we can rewrite (5) in a
simpler form in terms of a new N �N matrix V� and p,
the vector of coe�cients of the prediction �lter P (z)

V�p = [1; 0; : : : ; 0]T : (6)

Update Design: The (linear) update �lter U(z) creates

c[n] by updating each xe[n] with the nearest eN wavelet

1In fact, all wavelet transforms can be factored into a series
of lifting stages (with perhaps multiple predicts and updates
per stage) [9].

coe�cients d[n] from either side. The update order eN
can be chosen independently of N ; however, the predic-
tion coe�cients pk must be �xed prior to determining the
update �lter in the standard lifting programme.

In Figure 4, we trace the contribution of the original xe[n]
and xo[n] to each c[n] for an N = 2 point predict followed

by an eN = 4 point update; U(z) = u1z
�2 +u2z

�1 +u3 +
u4z. In vector form, we have the equivalent �lter h at the
top of the Figure. Note that h is a function of both the
update coe�cients uk and the prediction coe�cients pk.
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Fig. 4: Update �ltering. An N = 2 point linear predict fol-

lowed by an eN = 4 point linear update yields the update vector
h shown across the top.

The update �lter vector h should pass low-order poly-
nomials into c[n] while attenuating high-order polynomi-
als. In the predictor design described above, we elimi-
nated low order polynomials by requiring that Vg = 0.
The rows of Vg were monomial signals: [V]m;n = nm,
n = �(N � 1); : : : ; (N � 1), m = 0; 1; : : : ; N � 1. We
design the update coe�cients in similar fashion; as the
prediction �lter g eliminated low{order polynomials, the
update �lter h eliminates high{order polynomials. We
create these high{order polynomials by taking low order
monomials and superimposing alternating signs. Thus,
we form the ~N � (2 ~N � 1) matrix V0 whose elements
are [V0]m;n = (�1)nnm, n = �(N � 1); : : : ; (N � 1),
m = 0; 1; : : : ; N � 1. Since our goal is to attenuate these
high order polynomials, we again require that

V0h = 0: (7)

This set of linear equations is also easily solved, since V0

factors into the �rstN rows of a Vandermonde matrix and
a diagonal matrix with all entries �1's. We rearrange 7
to get

V�0u = [1; 0; : : : ; 0]T : (8)

For the example in Figure 4, we have

h = [�p1u1; u1; (�p1u2�p2u1); u2; (1�p2u2�p1u3);

u3; (�p2u3�p1u4); u4; �p2u4]
T
: (9)

Since the N = 2 prediction coe�cients are already deter-

mined, there are eN = 4 unknowns (the update coe�cients
uk) in h. Solution of 8 yields these update coe�cients.

In summary, we design the prediction step to eliminate
the low-order polynomial signal structure, leaving only
the high-order details. We design the update to pre-
serve the low-order polynomial signal structure at the



Flexible Wavelet Transforms Using Lifting

next coarser scale.2 Since lifting is developed entirely in
the space-domain, the lifted transform can be adapted
to the signal borders instead of simple periodization or
zero{padding [4]. Also, it is possible to eliminate and
preserve fewer polynomials than we have prediction and
update coe�cients, respectively. This permits the incor-
poration of other problem{dependent constraints into the
lifted wavelet transform. For example, the prediction op-
erator could be designed to eliminate constants while min-
imizing the total variance of the detail coe�cients [7].

Lifting Constraints and Vanishing Moments: The
standard wavelet transform can be constructed as shown
in Figure 1. By factoring the synthesis and analysis �lters
into their polyphase components [12, pp. 120{134], the
transform can be constructed as shown in the the top of
Figure 5. Also, by combining the prediction and update
steps, the lifted wavelet transform can be implemented as
shown in the bottom of Figure 5 (assuming linear opera-
tors and a uniform sampling grid).
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Fig. 5: Wavelet Transform: Polyphase Form (top) and Lifting{
Combined Steps (bottom).

We equate the entries in these polyphase matrices, yield-
ing the following relations:

H(z) = He(z
2)+z�1Ho(z

2) = 1�P (z2)U(z2)+z�1U(z2)
G(z) = Ge(z

2)+z�1Go(z
2) = �P (z2) + z�1

with similar expressions for eH(z) and eG(z).
We have the wavelet �lters in terms of the prediction
and update operator coe�cients. Since this is a wavelet
system, these �lters must satisfy a recurrence relation
[2], and as we add vanishing moments to the underly-
ing wavelet functions, we place constraints on the lifting
operators. For example, if we add a zeroth vanishing mo-
ment to  (t) we have:Z

 (t)dt =

Z X
k

g[k]�(2t� k) dt = 0 (10)

To satisfy this equation, we must have
P

k
g[k] = 0,

which, in turn, forces p1 + p2 � � � + pN = 1. This is the
�rst prediction constraint (the prediction must eliminate

zeroth order polynomials)! Every vanishing moment we

add to  (t) (and, by the biorthogonal structure, to e�(t))
is equivalent to eliminating higher order polynomials in

2In order to normalize the energy of the underlying scal-
ing and wavelet functions, we actually output 2�1=2d[n] and
21=2c[n] from the lifting stage.

our prediction step. In similar fashion, adding vanish-

ing moments to e (t) and �(t) is equivalent to the linear
update constraints.

Thus, adding vanishing moments is equivalent to elimi-
nating and preserving polynomials with the predict and
update steps, respectively. Both interpretations yield iden-

tical constraints on the wavelet �lters h, g, eh and eg.
However, the lifting scheme never explicitly utilizes the
polyphase representation or the underlying scaling and
wavelet functions, and therefore makes the incorpora-
tion of non{linearities and adaptivity into the wavelet
transform more understandable. If lifting constraints
are traded for other problem{dependent constraints, it is
clear that vanishing moments in the underlying wavelet
functions are being surrendered.

Irregular Sampling

Since the lifted wavelet transform is a spatially{based
construction, the extension to non{uniformly sampled
data is straightforward. We present here an alternate
interpretation to that developed by Sweldens [4]. We
have data x[n], but the data are indexed by i[n]. That
is, x[0] lies at coordinate i[0], x[1] lies at coordinate i[1],
etc. Although any split of this data is possible3, we
again choose an odd/even split, where xe[n] = x[2n],
xo[n] = x[2n+ 1].

Predictor Design: As stated earlier, the goal of the
prediction step is to eliminate all low-order polynomials
from x[n] in creating the wavelet coe�cients. This was
accomplished by creating a set of prediction coe�cients
pk which predict each xo[n] as a low{order polynomial
version of its even neighbors.

For irregularly sampled data, the same mechanics apply.
Instead of uniform samples of the low order polynomial,
we are given samples at irregular indices ie[n] (the indices
of the even data). We trace the prediction coe�cients
through the same tree shown in �gure 3. Then, we �nd
the coe�cients by requiring the prediction vector g to
eliminate low order polynomials. However, in this case,
the low order polynomials are sampled at irregular inter-
vals. Thus, we again form the N�(2N�1) matrixV, but
its rows are now monomial signals sampled at the appro-
priate indices: [V]m;n = i[n]m, n = �(N�1); : : : ; (N�1),
m = 0; 1; : : : ; N � 1. (Again, 00 = 1.) We require that

Vg = 0: (11)

so that the predictor suppresses all polynomials up to or-
der N�1. Again, the solution exists in an N -dimensional
subspace, so we have

V�p = [io[k]
0
; io[k]

1
; : : : ; io[k]

N�1]T : (12)

V� is always invertible; the only change from equation
5 is the right hand side, which is now a function of the
index io[k].

3Including optimizing the split to minimize average dis-
tance, or blocking the data and splitting by vectors [11].
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Update Design: This update design is identical to that
described earlier, except we have irregular coordinates.
We again trace the update coe�cients up through the tree
in �gure 4, and create an update vector h with elements
at the coordinates i[n]. We desire to attenuate high-order
polynomials, so we apply h to monomials with alternating
signs (these monomials are evaluated at the i[n]). We

collect terms and solve for the eN update coe�cients uk.

Extensions

Adaptive and Non-linear Transforms: Lifting is
a \natural" interpretation of the wavelet transform, en-
tirely in the spatial domain. Thus, lifting easily allows
the incorporation of adaptivity into the prediction step.
The lifting construction guarantees perfect reconstruction
regardless of the choice of prediction and update opera-
tors. However, when we incorporate adaptive predictors,
we need to make a modi�cation to retain the coarse char-
acteristics of the scaling coe�cients.

The Update/Predict Programme: In the lifting
framework of Figure 2, the update structure depends on
the predictor structure. Hence, if P is space-varying or
nonlinear, then so is U , and the update design procedure
becomes unwieldy. A crafty detour around this problem
is to perform the update step �rst, followed by the pre-
diction [6]. The relevant equations then become

c[n] = xe[n] + U(xo[n]); d[n] = c[n]�P(xe[n]): (13)

After designing a linear update �lter to preserve the �rsteN low-order polynomials in the data, we can apply any
space-varying or nonlinear predictor without a�ecting the
coarse approximation c[n].

Since the update/predict lifting stage creates c[n] prior to
d[n], the prediction operator can be designed to optimize
performance criteria other than polynomial suppression
capability. For example, the predictor could be a median
�lter. Also, the scaling coe�cients c[n] can be quantized
and reconstructed before the d[n] are computed [6]. This
permits a signal{adaptive predictor without propagation
of quantization error.

Multiscale Interpolation to Uniform Grid: Lifting
can be used to construct a multiscale analysis for a non{
uniformly sampled signal. Since the lifting construction
is based on polynomial interpolation [4], this suggests a
lifting algorithm to interpolate data to a uniform grid [13].

In the prediction step, the prediction �lter coe�cients pk
are chosen to �t a low order polynomial over a window
of the even data xe[n]. We interpolate this polynomial at
an odd coe�cients xo[n], and the detail coe�cient is the
failure of xo[n] to be predicted by the local polynomial.
However, we could interpolate this low order polynomial
to any point; not just at xo[n]. Thus, the detail coe�-
cients could be constructed on a regular grid, with each
coe�cient the failure of an interpolation of xo[n] to be
predicted by its nearest even neighbors. These detail co-
e�cients could then be used to update the xe[n] to create
the scaling coe�cients c[n]; these coe�cients need not be

interpolated to the uniform grid.

The next iteration of the wavelet transform would create
the next set of detail coe�cients on the uniform grid, and
continue in this fashion until all the data have been inter-
polated. We speculate that application of the appropriate
inverse lifted transform (on the uniform grid) should yield
a uniformly sampled version of our non{uniformly sam-
pled data.

Conclusions

For many applications, the traditional wavelet transform
is not well suited. Lifting increases our 
exibility while
retaining the useful properties of the traditional wavelet
transform. Also, lifting is an entirely space{domain
construction. Thus, we can use lifting to accommodate
non{traditional problems, including non{uniformly
sampled data. In this paper we presented such an
algorithm, and discussed extensions to adaptive and
non{linear transforms. We also proposed an algorithm
for multi{scale interpolation of non{uniformly sampled
data to a uniform grid.
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