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Summary

The study of fractal quantities and structures exhibit-
ing highly erratic features on all scales has proved to
be of outstanding signi�cance in various disciplines.
While scaling phenomena are pervasive in natural and
man-made constructs, such objects are less fractal than
multifractal. In most simple terms this means that mo-
ments of di�erent orders scale di�erently with increasing
resolution.

This paper should be understood as a tutorial in multi-
fractals and their analysis via wavelets, in view of pos-
sible applications in geophysics. It is elaborated how a
description of the well log measurement through wavelets
provides a new way of modeling reection of waves in a
material which is dependent on frequency. The wavelet
analysis has the potential to provide an explanation for
the inconstencies that are observed when comparing sub-
surface models that have been constructed from measure-
ments with di�erent resolutions, such as surface seismic,
vertical seismic pro�les and well logs.

Introduction

Multifractal structures have been found in various con-
texts, most prominently in the study of turbulence,
stock market exchange rates and recently also network
data tra�c, introducing fruitful and novel aspects to the
mentioned �elds. This paper is written in the hope of
achieving the same in the area of geophysics.

The idea of using multifractal measures in geophysics is
not new, but has been pioneered by Mandelbrot (Man-
delbrot, 1989). More recent work (Herrmann, 1997) at-
tempts to acommodate the concept of a multifractal sub-
surface in the theory of seismic wave propagation.

Fractals are objects of a complex structure on all scales.
Here, we are mostly interested in functions and processes.
Fractal functions, e.g., are nowhere di�erentiable (ubiq-
uitous details when zooming in), and fractal processes
do not show convergence in the sense of a central limit
theorem (zooming out). A useful parameter for the com-
plexity of such fractal sets is the fractal dimension, which
is closely related to the degree of H�older regularity which
again can be thought of generalizing the degree of di�er-
entiability to real numbers.

The fractal dimension, however, is a global parameter
which measures the `overall worst' behavior and does not
account for a possible variability of the degree of regu-
larity. Multifractal analysis, thus, ideally aims towards a

compact representation of the `spectral decomposition' of
a signal into parts of equal strength of regularity.

While it is possible to provide such a representation in
di�erent ways, the most convenient in the present context
is using a the wavelet transform. This analytical tool can
be thought of as testing the signal with a waveform which
is localized in time (or space) and in frequency. It has,
thus, the advantage over the Fourier transform of giving
information not only of the global frequency content of
a signal but also shows where in time certain frequency
components occur. Wavelets, being constructed through
rescaling of a mother wavelet, provide a natural tool for
a scaling analysis.

Well log data, such as sonic velocity measurements, often
clearly show a multifractal structure (Herrmann, 1997).
So, �rst of all multifractal models have an application
in the construction of realistic models of the subsurface
(Mandelbrot, 1989) (e.g. velocity models).

An issue of central importance in exploration seismology
is the connection of well log measurements to seismic data.
These two types of measurements clearly take place on a
di�erent scale, and hence the scaling properties of the
subsurface should be taken into account when comparing
seismic and well log data. The multifractal character of
well logs indicates that an understanding of wave prop-
agation through a multifractal structure may be an im-
portant step towards the incorporation of measurement
scale into our seismic models. In this paper, we challenge
the classically trained mind with a novel point of view,
which is to abandon the usual picture of a subsurface that
consists of a stack of homogeneous layers, but to view it
rather as a material parts of which will act as reectors
depending on frequency (or scale).

Being meant as a tutorial, this paper introduces the prin-
ciples of multifractals and explains how wavelets are of
use as a tool for multifractal analysis.

Multifractal Analysis

A nice, more elaborate introduction to the basic ideas of
multifractal analysis and an extensive bibliography can
be found in the introductory parts of (Riedi, 1995; Riedi,
1996; Riedi and Mandelbrot, 1998), as well as in (Evertsz
and Mandelbrot, 1992). In this paper we are limited to
presenting only what is important in this context.

Let us start by noting the conceptually important fact
that a `fractal' is a set, while a multifractal is a measure,
or distribution. In other words, while fractal geometry is
interested in the complexity of a set which is measured by
one single parameter, the dimension, multifractal analysis
is committed to account for inhomogeneities.



Multifractals and Wavelets

Fractals

The study of fractal quantities and structures has proved
to be of outstanding signi�cance in various disciplines. As
one of the most prominent examples, fractional Brownian
motion (fBm) has a `fractal' or highly erratic appearance
which is intimately related to its spectral properties.
Indeed, it is not surprising that non-di�erentiability is
reected in frequency representations. Consequently, the
most e�cient estimators of the fractal parameter H of
fBm are using the power spectrum, and wavelets.

However, fBm is not a typical fractal object since it is ho-
mogeneous, or monofractal, i.e. its local degree of H�older
continuity Ht is the same at all times t. On the other
hand, most real world signals and an increasing number
of processes have been shown to exhibit multifractal struc-
ture, meaning that Ht takes di�erent values and actually
varies erratically in time. It is clear that such a structure
calls for a time dependent frequency analysis. Therefore,
wavelets are the optimal tool, being well localized both in
time and in frequency.

Singularities

A function or a process Y (t) is called C�(t0) if there is a
polynomial P and a constant C such that

jY (t)� P (t)j � C � jt� t0j
� (1)

for t close to t0. The local degree of H�older continuity
Ht0 at t0 is then the largest � > 0 for which Y is C�(t0).

It is clear that such a notion is mainly of theoretical im-
portance and hard to deal with in real world estimations.
Wavelets, as mentioned before, seem to have the most po-
tential to approach such a task. We postpone elaborating
on these issues to the end, though, and explain the object
of multifractal analysis in a more narrow context, which is
actually completely su�cient for the scope of this paper.

Having analysis and modeling of well log data in mind we
may concentrate on processes Y with positive increments
X. Often, it is in fact this positive process X we are
interested in, such as a velocity or density �eld. But as
will become apparent in an instant it is more practical to
construct Y .

If we further assume that the data has no polynomial
trends, i.e. P in (1) reduces to the constant Y (t0), the
de�nition of Ht simpli�es enormously to

Ht = lim
"!0

1

log "
log jY (t+ ")� Y (t� ")j: (2)

(If the indicated limit does not exist for a t we will replace
it by the liminf.)

Multiplicative Cascades

The most simple example of a positive increment process
with multifractal properties are multiplicative cascades.

Introduced by Mandelbrot (Mandelbrot, 1974) as a model
of energy dissipation of the velocity �eld in turbulence
they are well understood by now (Kahane and Peyri�ere,
1976; Holley and Waymire, 1992; Riedi, 1995).

For simplicity we will construct the process Y on the time
interval I := [0; 1] such that Y (0) = 0. To start, set Y (1)
equal to some positive random valueM0

0 . The observation
that M0

0 is the increment of the limiting process Y over
I, though trivial, will help in the sequel.

To get the iterative construction going, choose 2 positive
random variablesM0 andM1 over some probability space

 such that M0 +M1 = 1 for almost all ! 2 
. Denote
the two halves of I by I10 = [0; 1=2] and I11 = [1=2; 1], and
de�ne M1

i �M
0
0 to be the increment of Y over I1i , where

M1
i is distributed as Mi. Due to M0 +M1 = 1, this is in

agreement with the �rst step of the construction.

Now iterate replacing I by I1i . At stage n, the total in-
crement M0

0 over I is split over the 2n dyadic intervals
of order n. To be more precise, let us use the notation
ki := 2ki�1 + k0i with k

0

i = 0 or 1, starting iteration with
k�1 := 0. In other words, kn2

�n =
Pn

i=0
k0i2

�i lies in

[0; 1] and has binary digits k0i. Since kn+1 div 2 = kn
and kn+1mod 2 = k0n, the increment of Y over Inkn :=

[kn2
�n; (kn + 1)2�n] is Mn

kn
�Mn�1

kn�1
� � �M1

k1
�M0

0 , where

the random variables Mn
kn

i.i.d., with law Mk0
n
.

While we allow dependence within scale, that is, among
Mn

kn
for �xed n but di�erent choices of k0i, we enforce

independence across scale, that is, between Mn
kn

for �xed
digits k0i (i = 0; 1; 2; : : :) and di�erent n.

Iterating inde�nitely, we will have de�ned Y in the dyadic
points. Since the multipliers are smaller than 1 the in-
crements over dyadic intervals tend to zero. Due to our
requirement that Y be increasing, it must be continuous
and the whole process is de�ned. It is now clear that Y
is much more compact model than the sequence of dyadic
increment processes Xn. A derivative of Y in the usual
sense, the other option of a compact representation, does
not exist as follows from (5) below.

Singularities of Cascades

To understand the multifractal properties of this binomial
cascade process Y let us assume for the moment that the
multipliers were chosen deterministically, i.e. Mn

kn
= mk0n

for some �xed numbers m0 and m1. Also, for simplicity
let us focus on dyadic increments, i.e. � = 2�n. If t has
binary digits k0i in the notation introduced above, then
the increment over the dyadic interval containing t is
Xn

kn
= Y ((kn + 1)2�n)� Y (kn2

�n). Being a product of

the multipliers M i
ki
, this can then be written in a simple

manner using the number of zeros l(n) among the �rst n
dyadic digits k0i of t:

Xn
kn = m

l(n)
0 m

n�l(n)
1 : (3)

So, if the limiting frequency of digits � = limn l(n)=n
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exists, Ht takes the form

Ht = lim
n!1

(1=n) log2X
n
kn = � log2m0 + 1� � log2m1:

(4)

Multifractal structure of Cascades

It follows immediately from (4) that we will �nd the
whole interval between log2m0 and log2m1 as values
Ht. The multifractal spectrum will now express how
frequently, or how rarely these values will occur. To ob-
tain such information we best employ limiting theorems
from probability theory, where we consider an adequate
random choice of t. (Recall that Y is still deterministic.)

First, choosing t uniformly, the Law of Large Numbers
(LLN) shows that � = 1=2 `almost surely', i.e. for a set of
(Lebesgue) mass 1 we have Ht = a0 := (1=2) log2(m0m1).
Since we can have a whole range of Ht, l(n)=n must ap-
proximate values di�erent from the expected a0. Due
to the LLN, their t-probability (or relative number) will
have to decay to zero as n increases. Theorems on Large
Deviation Principles (LDP) state that this decay is expo-
nentially fast. Using (3) one �nds easily, as n ! 1 and
"! 0 (Riedi, 1995; Riedi, 1996):

Pt[a� " � (1=n) log2 jX
n
k j � a+ "] ' 2n(f(a)�1) (5)

We take this rate function f(a) as our measurement of
`how rarely' one will �nd Ht = a, and call it multi-
fractal spectrum. Since Pt[: : :] = (1=2n)#fk : : :g, (5)
expresses that the `normalized logarithmic histograms'
(1=n) log Pt[: : :] should collapse onto one curve f in the
limit n!1. They form, thus, a `scale invariant'.

It follows from (4) that Y is di�erentiable with derivative
0 in all points t with Ht > 1. Since a0 > 1 this will be
the case almost everywhere. In points t with Ht < 1, on
the other hand, a `derivative' would take the value 1.
In other words, the increment process Xn will have to
provide the bulk of the innovations of Y in fewer time
intervals as n grows. In the limit it must, therefore, be
singular and a derivative of Y exists only in the distribu-
tional sense.

Multifractal formalism

Precisely speaking, (5) is a statement about observing
approximative H�older continuity on coarse scale, rather
than Ht itself. However, in the given context it can be
shown that f has also the desired geometric meaning, i.e.
it gives the fractal dimension of the set of points t with
Ht = a (Riedi, 1995; Cawley and Mauldin, 1992). The
smaller this dimension is, the `thinner' the corresponding
set.

In practice, dimensions are di�cult to estimate whence
the de�nition (5) of the spectrum f is more suitable for
application. Moreover, the theory of LDP provides us
with a numerically more robust tool for an estimation
of f , the moment generating function � of t-random vari-
ables log jXn

kn
j which involves averaging: Using IEt[exp(q �

log jXn
kn
j)] = 2�n

P2n�1

k=0
jXn

k j
q one can write

� (q) := lim
n!1

(1=n) log2

2n�1X

k=0

jXn
k j

q (6)

In practice, one will estimate � (q) as the least square �t-
ting slope of log2

P
jXn

k j
q against n. The multifractal

formalism reads as (Riedi, 1995; Riedi, 1998):

�(q) = f�(q) := inf
a
(qa� f(a)) ;

i.e. �(q) = af 0(a)� f(a) at q = f 0(a).

Consequently, f(a) = q� 0(q) � � (q) at a = � 0(q), but in
general f(a) � ��(a). As the Legendre transform of f ,
� (q) is a concave function, and the same can be expected
from f in nice cases, e.g. when �(q) is di�erentiable for
all q. As an example let us compute the cascade above:

� (q) = lim
n!1

(1=n) log2(m0
q +m1

q)n = log2(m0
q +m1

q)

Random Cascades

Having dealt with deterministic setting, let us return
to random signals. The assumption of independence of
the multipliers will allow to use martingale arguments to
show convergence of the process. While a more complete
account on a generalization of (5) can be found in (Riedi,
1998) we can mention here only how to generalize (6):
One sets simply

�(q) := lim
n!1

(1=n) log2 IE

2n�1X

k=0

jXn
k j

q

replacing the expectation over time t by the one over t
and !.

For the random cascade, one �nds

�(q) = log2(IE[M0
q] + IE[M1

q])

As was shown in (Kahane and Peyri�ere, 1976) this func-
tion carries important information besides the multifrac-
tal spectrum. One fact of interest might be, that the
increment process will have marginals with diverging mo-
ments of all orders q > 1 such that �(q) is negative. This
provides a useful alternative to stable processes which are
hard to simulate.

Wavelets

In our exposition so far the simpli�cation (2) of local
regularity was essential. When dealing with polynomial
trends as well as with more general functions { not
necessarily of positive increments { wavelets, or a more
general time-frequency analysis is the tool of choice to
detect multifractal structures.
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In very rough terms, a wavelet  is a function which is
well localized in space and frequency. Preferably,  would
have compact support and its Fourier transform should
decay fast. Furthermore,  should meet some regularity
conditions which can be found in any related text (Mallat,
1989; Daubechies, 1992). Using rescaled and dislocated
versions  n;k(t) :=  (2n(t � k)) one will obtain an L2

basis.

Since the frequency content of  n;k is shifted depending
on n, the decomposition of a signal Y in this basis will
then provide valuable information about the location of
oscillations and, thus, singularities. As a matter of fact
the connection between H�older continuity (1) and the de-
cay of wavelet coe�cients cn;k :=

R
Y  n;k can be made

rather precise using Besov spaces and Sobolov embedding
(Ja�ard, 1991).

To be more precise, one property which makes wavelet
transforms attractive is the fact that they provide a com-
pact representation. As has been observed in many con-
texts, most coe�cients are very small, the large one ly-
ing on so-called `lines of maxima'. These lines bifurcate
as resolution increases, reecting in some way the multi-
fractal structure of the signal. For certain multiplicative
cascades similar as introduced above it has been shown
that replacing the increments Xn

k in (6) by the cn;k on
the lines of maxima will allow to estimate the multifrac-
tal spectrum (Bacry et al., 1993; Ja�ard, 1993).

Conclusions

In this paper we propose a novel way of putting the
wavelet transformation to use in exploration seismology.
It has been demonstrated convincingly by (Herrmann,
1997) that well log data shows multifractal structure. At
a given scale n, or equivalently for a given frequency, the
location of the lines of maxima of the wavelet transform
of the impedance log could indicate the location where
a wave-pulse of the given frequency would experience
its most important reection. Since these locations are
scale dependent we suggest to view the subsurface as
a material which will reect waves depending on their
frequency content.
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