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Abstract

The proportional-bandwidth and constant-bandwidth time-frequency signal decompositions
of the wavelet, Gabor, and Wilson orthonormal bases have attracted substantial interest for
representing nonstationary signals. However, these representations are limited in that they are
based on rectangular tessellations of the time-frequency plane. While much effort has gone into
methods for designing nice wavelet and window functions for these frameworks, little consider-
ation has been given to methods for constructing orthonormal bases employing nonrectangular
time-frequency tilings. In this correspondence, we take a first step in this direction by deriving
two new families of orthonormal bases and frames employing elements that shear, or chirp, in
the time-frequency plane, in addition to translate and scale. The new scale-shear fan bases and
shift-shear chevron bases are obtained by operating on an existing wavelet, Gabor, or Wilson
basis set with two special unitary warping transformations. In addition to the theoretical benefit
of broadening the class of valid time-frequency plane tilings, these new bases could possibly also
be useful for representing certain types of signals, such as chirping and dispersed signals.
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1 Introduction

The continuous wavelet transform and the short-time Fourier transform are multidimensional func-
tionals that map one-dimensional signals to the two-dimensional time-frequency plane [1]. Both
have been utilized in numerous signal processing applications to analyze the time-varying frequency

content of nonstationary signals.

Attention has focused recently on using these transforms to construct orthonormal bases and
frames for the signal space of square-integrable functions L*(IR).! A function (or signal) s from

L*(IR) can be represented in terms of a doubly-indexed, orthonormal basis set {b,, ,} using?
s = Z Cmon P (1)
m,n

Each expansion coefficient ¢,, ,, is computed by projecting the signal onto the corresponding basis
element; that is ¢, ,, = (8, bs.n), where (f,g) = [ f(u)g*(v)du denotes the inner product for
L*(R).

The elements of a wavelet basis are obtained by translating and scaling a single nonarbitrary

but fixed wavelet function gwavelet

bwavelet(t) = aam/Q gwavelet(aamt - nt0)7 (2)
with {9 ag = 2 and m,n € Z. The basis elements can be interpreted as “tiling” the time-frequency
plane in a proportional-bandwidth (constant-Q) fashion; the tiling for an idealized wavelet basis
is depicted in Fig. 1(a). A class of wavelets having both compact support and arbitrarily high

regularity (smoothness) has been derived by Daubechies [4].

Short-time Fourier transform bases are often referred to as Gabor bases, because they share
the same form as the seminal transform of Gabor [5]. The elements of a Gabor basis are obtained

by translating and modulating a single nonarbitrary but fixed window function ggapor

bGabor(t) — gGabor(t _ ’Ilto) €j27rmf0t7 (3)

m,n

with tg fo = 1 and m,n € Z. A Gabor basis tiles the time-frequency plane in a constant-bandwidth
fashion; the tiling for an idealized basis is pictured in Fig. 1(b). Windows generating Gabor bases
have been constructed by Balian [6], Jensen, Hgholdt, and Justesen [7], Tolimieri and Orr [8], and
Coifman, Meyer, and Wickerhauser [9]. Recently, constant-bandwidth bases of the Wilson type

have been proposed as a well-localized alternative to the Gabor bases [10].

!To be concrete, we will discuss only orthonormal bases for the Hilbert space L?(IR) in this paper. Note, however,
that all results apply also to the more general frame case [2] and that many results can be extended to more general
Banach spaces [3]. From this point on, we will also simply use the term basis to mean orthonormal basis.

2All sums and integrals are assumed to go from —oc to oo unless otherwise stated.
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Figure 1: Idealized tiling of the time-frequency plane by (a) the elements {bﬁf%‘ﬂet} of a wavelet

orthonormal basis and (b) the elements {b%},‘iw} of a Gabor orthonormal basis.

With the wavelet, Gabor, and Wilson bases, we have two disparate tilings of the time-
frequency plane, each of which is well suited for representing certain classes of signals. However,
what if the signals we wish to decompose are not well modeled by either a proportional-bandwidth
or a constant-bandwidth analysis? For example, the energy of a frequency modulated signal will
be spread over many basis coefficients in both types of expansions, since it traces a path in the
time-frequency plane that is not well modeled by either of the basis tilings shown in Fig. 1(a) or (b).
Clearly, to best match signals of this sort, we must find more flexible bases whose elements are not

restricted to a strictly rectangular geometry in the time-frequency plane.

While much effort has gone into methods for designing nice wavelet and window functions
g for the wavelet, Gabor, and Wilson bases, little consideration has been given to methods for
constructing orthonormal bases and frames employing nonrectangular, “non-Manhattan” tessella-
tions of the time-frequency plane. In this correspondence, we take a first step in this direction
and present two new families of orthonormal bases employing elements that shear, or chirp, in
the time-frequency plane in addition to translate and scale. These new bases can be interpreted as
generalizing the wavelet, Gabor, and Wilson basis constructions to allow chirping elements. Besides
the theoretical benefit of expanding the class of time-frequency tilings available through current
techniques, these new bases may produce better results (packing more energy into fewer expansion
coefficients, for example) than existing bases for certain types of signals, since the chirping action

can be used to better match the basis elements to these signals.

The remainder of this paper is organized into two major sections, one for the generaliza-
tion of the proportional-bandwidth (wavelet) bases and one for the generalization of the constant-
bandwidth (Gabor, Wilson) bases. In the following section, we construct a special warping operator
that remaps orthonormal wavelet bases into fan bases, whose elements scale and shear in the time-

frequency plane. Then, in Section 3, we apply a similar procedure to the Gabor and Wilson bases



to yield two types of chevron bases, whose elements translate and shear in the time-frequency plane.
Results on the regularity of these new basis constructions follow in Section 4. A discussion and

conclusion are offered in the final section.

2 Generalized Wavelet Bases: The Fan Bases

2.1 Basis elements

The key to the construction of the scale-shear fan bases is in the Fourier transform of a wavelet

basis element:
Bwavelet _ F bwavelet _ m/2 G m —727 ntg a(')"f 4
m,n (f) - m,n (f) = Q wavelet(ao f) € : ( )

Here F denotes the Fourier transform operator and G yavelet represents the Fourier transform of
Gwavelet; We will use capital letters to denote the Fourier transforms of functions. Recall that a

wavelet expansion is valid only for wavelets gwavelet € LQ(IR) that satisfy the admissibility condition

2 df
/leavelet(f)| m (5)

This condition can also be expressed as Gyayelet € K1(IR), where K,(IR) is the “weighted L2”
Hilbert space defined as

K,(R) = {z: /|2(v)|2|

Note that Ko(IR) = L*(RR).

dv
,UlT

< oo}, r € IR. (6)

The scale-shear fan bases are constructed simply by replacing the linear f term in the expo-

nential of (4) with another power of f:

BIL(S) = 5 Gl [) e PSS, e e, e 0, 7)

fan

Taking the inverse Fourier transform of B;7", yields the proposed fan basis element of order c:

bl (1) = (F7VBES)(0) = 1™ (€ gta) (73D, ¥

Here the operator C; represents convolution with a hyper-chirp function of order ¢ and chirp rate &,

that is
(Crg)t) = (g » hp)(D), (9)
with

hS(t) = (F—l e—j%klflcsign(f))(t) — /e—j%rklflcsign(f) g2 ft df. (10)

Equation (8) indicates that the building blocks of a fan basis are obtained by convolving a fixed

function gy with a chirp function of rate npy and then scaling the result. The chirp convolution
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Figure 2: Idealized tiling of the time-frequency plane by the elements {bfz?n} of a fan orthonormal

basis for the case ¢ = 2 (linear chirp). The tiling is generated from a single, fixed wavelet function

via scaling and shears in time.

causes the basis elements to shearin the time direction in the time-frequency plane. Different values
of the order parameter ¢ correspond to different types of chirps and, hence, produce completely
different time-frequency plane tilings: ¢ = 1 yields the usual wavelet transform, ¢ = 2 yields bases
employing linear chirps, ¢ = 3 yields bases employing parabolic chirps, and so on. The tiling for an
idealized fan basis for the ¢ = 2, linear chirp case is illustrated in Fig. 2. The tilt of the elements

in the fan suggests that these bases could prove useful for representing linear chirp signals.

2.2 The axis warping operator A.

We now establish the validity of the proposed fan basis given in (8). Remarkably, a simple change

of variable will yield all generalized wavelets g¢,,, that generate fan orthonormal bases.

Definition 1 The axis warping operator A. on L%(IR) is given by
(Aez) (v) = |e|"? 0|1/ 2(Jv|sign(v)), c€IR, ¢ #0. (11)
The inverse axis warping operator is

(AZ'2)(0) = [e[7/2]0]0=9/2 2(Jo]"/* sign(v)) (12)

In this section, we will apply this warping operator to the Fourier transform of a wavelet
basis element to construct a fan basis element. Note that A. maps the complex Fourier-domain
sinusoid e/2™f to the chirp function \/c|f]c=T /27 If1°sign(f) A fundamental property of the axis

warping operator is that it is an isometric isomorphism from the space K,(IR) onto K (IR).?

#Two vector spaces, X' and Y, are said to be isomorphic if there is a one-to-one, linear mapping T of X onto Y [11].
Two normed vector spaces, X' and Y, are isometrically isomorphic if they are isomorphic and if the corresponding
mapping T is isometric; that is if ||T'z||y = ||z||x, where || ® ||/ represents the norm in the space U.



Roughly speaking, if two vector spaces X' and Y are isometrically isomorphic, then they
are structurally equivalent in the sense that the points in ) are simply relabeled versions of the
points in X" (and vice versa). An isometric isomorphism 7" that links a space A" with itself, that is,
T:X — X, is termed unitary. A very important unitary operator is the Fourier transform, which

maps L?(IR) onto itself. We now state the key result of this section.

Theorem 1 The axis warping operator A. is an isomelric isomorphism from the Hilbert space

K, (IR) onto K..(IR) for all r,c € IR, ¢ # 0.

Proof: The linearity, isometry, and bijectivity of A. are easily verified using the simple change of

variable u = |v|°sign(v) in each case. O

Since the Fourier transform operator F is an isometric isomorphism from L?(IR) onto L*(IR),
the three-part operator @, = F~'A_F formed by composing F with the axis warping operator is
also an isometric isomorphism. The following diagram summarizes an important set of spaces that

are linked isometrically and isomorphically by these operators:

A E dckm 2 Bcr(m) P B (13)
The set A signifies the set of all admissible wavelets in L?(IR) that generate wavelet bases. The
Fourier transform maps the admissible wavelets to the set A containing functions 1) that satisfy
the wavelet admissibility condition G € K(IR) and 2) whose inverse Fourier transforms generate
wavelet bases. The map A, takes these Fourier transforms and warps them, yielding a function in

the set B. An inverse Fourier transform takes these resulting functions back to the time domain.

Note, as a special case of Theorem 1, that A, is unitary from Ko(IR) = L%(IR) onto Ko(IR) =
L*(IR). Thus, if the set A from the left side of (13) is expanded to all of L%(IR), then the three-part

operator isometrically and isomorphically links the following spaces:

F

I*(R) = I¥R) =

Lo IAR) = LY. (14)

This demonstrates that ©, = F~'A_F is unitary on L*(IR).

2.3 Fan bases from wavelet bases

An important property of an isometric isomorphism is that it maps orthonormal bases to orthonor-
mal bases. Thus, if we apply the operator O, to the elements of an arbitrary wavelet basis for
L*(IR), the result will be another basis for L*(IR). It is easy to see that the application of @, to

an arbitrary wavelet basis yields the fan basis of (7) and (8); that is, we have

b (1) = (0.byeet)(1) (15)
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Figure 3: (a) A “Daubechies-2” wavelet basis element ¢ [4] and (b) a portion of the warped function
O3 ¢. The function O3 g generates a valid fan basis of order ¢ = 2 when used in (8).

1/c

if we make the correspondences gran = O gwavelet; Po = to, and g = aq;’ . Hence, every wavelet
orthonormal basis for L?(IR) can be mapped into an equivalent fan orthonormal basis of order ¢ for
L?*(IR) simply by applying the unitary operator ©. to the wavelet gyayelet generating the wavelet
basis and then employing (8). Furthermore, this procedure generates all fan bases of all orders.
This follows from the fact that the inverse of the three-part operator, ©7! = F71AZIF, is also
unitary, and hence, it maps every fan basis to a wavelet one. We have thus proved the following

fundamental result.

Theorem 2 The function Gyaveles generates an orthonormal wavelet basis for Lz(ﬂ%) with param-
eters ag, g if and only if the function gean, where gian = O Gwavelet, generates an orthonormal fan

1/c

basis of order ¢ # 0 for L*(IR) as in (8) with parameters ro = ay'* and po = to.

Note that the sampling lattices of the two bases in the theorem are subtly different. Most
1/

conspicuous is the rg = ay’° spacing in scale in the fan bases (typically ag = 2 for a wavelet basis).
In Fig. 3 we plot the warped function @, g, with g a “Daubechies-2” wavelet [4]. This warped

function, while no longer compactly supported,! generates a valid fan basis of order 2.

Note that since the set B in (13) signifies all functions g., that generate valid fan bases, the
set B represents an admissibility condition for these functions. This condition is Gan € K.(IR).
For the case ¢ = 2, this condition is consistent with the admissibility condition derived for the

continuous-valued scale-shear transform in [12].

fan

The computation of the coefficients ¢,

for the fan basis expansion (1) appears cumbersome,
but it can be efficiently implemented by again utilizing the special properties of the operator Q.. The

isometry of this operator from L*(IR) onto L%(IR) allows us to compute the expansion coefficients

*We do not know at present whether there exist compactly supported functions generating fan bases.



by first “prewarping” the signal and then computing the wavelet basis coefficients:

cﬁilfn = <s,bfmalfn>
= (071s, O7 bl )
= (07", byt (16)

While indicating that the fan basis expansion can be implemented just as efficiently (modulo the
prewarping) as the original wavelet basis expansion, this computation also emphasizes the dual
interpretation that warping a basis set to match a signal is equivalent to prewarping the signal to
match the original basis. Efficient computation of the prewarped signal ©®! s should be possible
using techniques analogous to the fast Mellin transform, which requires a geometric scaling of the
transform axis [13], [14], [15].

3 Generalized Gabor and Wilson Bases:
The Resetting Chevron Bases

3.1 Basis elements

The mathematical machinery of the previous section can also be applied to the Gabor and Wilson
bases. Since the axis warping operator A, of (11) maps functions z(v) that vary linearly in v to
functions that vary in powers of v, application of A. to a valid Gabor basis generates a basis with

elements that employ chirp, rather than simply sinusoidal, modulation:

bl (1) = (AbGor)()
_ |C|1/2 |t|(c_1)/2 gGabor(|t|c sign(t) . nto) €j27r m fo |t|°sign(t)' (17)

However, while the set {b/  } is an orthonormal basis for L*(IR), the shape of the function in front
of the exponential changes with each value of n, and thus, this basis cannot be built from simple
translates and chirp modulates of a single, fixed window function. This limitation results because
the action of the time shift by nty does not commute with the action of A.. Therefore, in the next
section, we will modify the structure of A, to construct a new axis warping operator whose action

does commute with time shifts.

The result is a family of resetting shift-shear bases. Taking tg = 1 (without loss of generality),

the elements of the order ¢ resetting shift-shear basis derived from a Gabor basis are given by
b (1) = gareser(t — n) €270 LD e e R, e £ 0. (18)

The term “resetting” is used to indicate that the instantaneous frequency of the chirp modulation

is reset to zero at every integer along the time axis. The time-frequency plane tiling for an idealized
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Figure 4: Idealized tiling of the time-frequency plane by the elements {bfﬁ;‘gset} of a (Gabor)

resetting chevron orthonormal basis for the case ¢ = 2 (linear chirp). The tiling is generated from
a single, fixed window function via translations in time and shears in frequency.

Gabor shift-shear basis is shown in Fig. 4 for the case ¢ = 2 (linear chirp). Because of the “V”
shape of the basis tiling, we will refer to these bases as (resetting) chevron bases. Note that in
contrast to the scale-shear fan bases — which utilize convolution with chirp functions to shear in
the time direction in the time-frequency plane — the chevron bases shear in the frequency direction
by chirp modulation. However, like the fan bases, the tilting elements of the chevron bases could

prove useful for efliciently representing chirp signals.

3.2 The resetting axis warping operator Y.

We now demonstrate that the Gabor resetting chevron bases of (18) are valid orthonormal bases

for L*(IR). We begin by modifying the axis warping operator A, of Section 2.

Definition 2 The resetting axis warping operator Y. is given by
(Yez)(u) = [e['/? (u— )T 2((u|u))*+ u)), ceR, c#£0. (19)
The inverse resetting axis warping operator is

(T712) () = [e[™ (= [u))* 7 2 ((w— [u)) + [u]) . (20)

The effect of T, is to periodically (between each integer) warp the scale of the function z
and multiply it by a periodic «(°=1/2 window. Figure 5 illustrates the effect of To on the Gabor
basis element bfﬁgb“, which was computed using the window constructed in [7] for ggapor- In this
case, To warps the single sinusoid to resetting chirp functions. The resetting axis warping operator

shares a key property with its cousins A. and O..

Theorem 3 The reselting avis warping operator Y. is unitary from L*(IR) onto L*(IR) for all
c€ IR, c#0.
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Figure 5: The resetting axis warping operator T, applied to the Gabor basis element bfﬁgbor(t) =
g(t) e’®™ where g is the window function constructed in [7]. (a) Real part of the Gabor basis

element b{a>°*(1). (b) Real part of the resetting chevron basis element bgifeset(1) = (Tg bf&gbor) (1).

The proof is very similar to that for Theorem 1 and is therefore omitted.

3.3 Resetting chevron bases from Gabor and Wilson bases

We can infer from Theorem 3 that Y. maps each orthonormal basis for L2(IR) to another orthonor-
mal basis for L?(IR). Furthermore, it is simple to show that the application T. to an arbitrary

Gabor basis yields a resetting chevron basis of the form (18); that is, we have
bimet(t) = (TebGEr)(1) (21)

if we make the correspondences gGreset = Ye 9Gabor and ¢o = fo. Thus, every Gabor orthonormal
basis can be mapped into an equivalent resetting chevron orthonormal basis of order ¢ (and vice
versa) simply by applying the unitary operator Y. to the window ggabor generating the Gabor basis
and then employing (18). Furthermore, this procedure generates all chevron bases of all orders,
since Y1 is also unitary and, hence, maps every resetting chevron basis to a Gabor one. The

following theorem summarizes our results.

Theorem 4 The function ggapor generates an orthonormal Gabor basis for L*(IR) with parameters
to = 1, fo = 1 if and only if the function gGreset, Where §Greset = L ¢ §Gabor, generates an orthonormal

resetting chevron basis of order ¢ # 0 for L*(IR) as in (18) with parameters to = 1,q9 = 1.

Note that while we have emphasized the Gabor case up to this point, the operator Y. can
also be used to construct families of resetting chevron bases from the Wilson bases [10] in exactly

the same fashion.



4 Regularity of the New Bases

It has been recently demonstrated that the regularity of the wavelet/window is an important per-
formance criterion for a basis, since the degree of regularity controls the extent to which errors in
the basis expansion coefficients are propagated into the resulting signal expansion (1) [4], [16], [17].
Roughly speaking, if a function has a regularity order of a, then it possesses at least |a] continuous

derivatives. There are several different definitions of regularity order; see [16], [17] for more details.

Since the fan bases are constructed by applying the axis warping operator A, in the frequency
domain to the Fourier transform of a wavelet gywavelet, we will find the following definition most

convenient for results on these bases.

Definition 3 A function g has Sobolev regularity order a — 1/2 if the function f*G(f) €
L*(IR), where G is the Fourier transform of g.

Now, the simple structure of A, leads directly to a fundamental result.

Theorem 5 Let gyavelet be a function of Sobolev regularity order oo — 1/2. Then, the Sobolev

regularity order of the function ggan = O, gwayelet S ca — 1/2.

Proof:  We must show that the function [ (A.Gyavelet)(f) € L*(IR). Using the definition of

Sobolev regularity and the change of variable u = | | sign(f), we have

17 162 717 Goare 11 sien( £ df

/lua Gwavelet(u)|2 du. (22)

/ |fca (AcGwavelet)(f)|2 df

Since the regularity order of gywavelet is @ — 1/2, this last term is finite, and the result follows. O

This result demonstrates that fan bases of order ¢ > 1 are more regular than the original
wavelet bases from which they were derived. This is due to the fact that, for ¢ > 1, the frequency
axis warp A, compresses the wavelet function in the frequency domain, reducing the high frequency

content of the resulting time domain function g¢,;, and thus making it smoother.

Unfortunately, a similar result does not hold for the resetting chevron bases. In particular,
the warped window greset constructed by the application of the resetting axis warping operator Y, to
a Gabor or Wilson window function cannot be continuous (see Fig. 5(b), for example). The source
of the problem is the multiplication by the resetting window function (u — || )(C_l)/2 in (19). This
function, while highly regular between integers, is discontinuous at each integer. However, we note
that while this lack of regularity will limit the resetting time and shear bases to applications where

smoothness is not a prerequisite, this is already somewhat the case for the Gabor bases, since if

10



a window g generates a Gabor basis, then either g or its Fourier transform G is not continuously
differentiable.’

5 Conclusions

The proportional-bandwidth and constant-bandwidth signal decompositions of the wavelet, Gabor,
and Wilson bases have attracted substantial interest recently for representing signals with time-
varying frequency content. However, these representations are also limited in that they are based
on a rectangular tessellation of the time-frequency plane. Since few tools have been developed
for dealing with the signal classes for which these tilings are ill suited, we have explored in this
paper some simple nonrectangular time-frequency tilings. The most striking feature of the new
scale-shear fan bases (8) and the shift-shear resetting chevron bases (18) is that they represent
signals completely in terms of chirp functions. While the creation of the two new time-frequency
plane tilings in Figs. 2 and 4 is theoretically interesting, these new bases may also be useful for

representing certain types of signals, such as chirping and dispersed signals.

Our approach in deriving these two new classes of bases was to “bootstrap” the existing
wavelet, Gabor, and Wilson basis theory to the problem at hand via the special axis warping op-
erators A, and T.. In the fan basis case, this approach proved remarkably successful, resulting in
a class of bases that not only have the correct form, but also have improved regularity properties
over the wavelet bases from which they were derived. In the chevron basis case, this approach
proved somewhat less successful. To arrive at a set of bases generated by only translations and
chirp modulations, we were forced to modify the warping operator A. to the resetting axis warping
operator T.. Unfortunately, the resetting operator is not sufliciently smooth to preserve the reg-
ularity properties of the Gabor or Wilson bases, and the resulting resetting chevron bases are at

best only almost continuous.

The existence of an isometric isomorphism between the fan bases and the wavelet bases is no
doubt due to the strong connection between their underlying group structures — the group that
spawns the scale-shear fan transform [12] is isomorphic to the scalar affine group that spawns the
wavelet transform [1]. On the other hand, the lack of strong connections between Gabor bases,
which are generated by the Weyl-Heisenberg group [1], and the Wilson and chevron bases, which
are not generated by any group, makes it more understandable why the application of axis warping

operators to the Gabor and Wilson bases did not create completely satisfying chevron bases.

Note that several of the bases we have considered can be related to a discretization of the
metaplectic transform, a new transform introduced in [19], [20] and studied further in [12]. In the

wavelet and Gabor bases, the transformations applied to the wavelet/window are limited to time-

This fact follows directly from Definition 3 and the Balian-Low Theorem, which states that if a window g generates

a Gabor basis, then either tg(t) ¢ L*(IR) or fG(f) ¢ L*(IR) [6], [18].

11



frequency translation and time-frequency scaling. The five-dimensional metaplectic transform, on
the other hand, is constructed to implement a general 2 X 2 unimodular, affine transformation,
Az + b, |A| =1, in the time-frequency plane. The extra degrees of freedom in this transformation
allow basis elements to not only translate and scale in time-frequency, but also to shear and rotate.
It is shown in [12] that the wavelet, Gabor, and fan bases (¢ = 2 case) correspond to discretizations
of the metaplectic transform along certain two-dimensional planes of its five-dimensional analysis

space.

Finally, besides the development of a more general theory for nonrectangular time-frequency
tilings, this paper leaves many questions unanswered. We have not considered chirp basis de-
compositions for discrete-time signals. One potential problem with discrete-time signals is that
a chirp signal will eventually violate the Nyquist criterion and alias. However, there could exist
discrete-time bases that actually take advantage of this aliasing property. Another interesting re-
search direction is the application of more general unitary operators for warping bases. Since every
unitary transformation maps a basis set to another basis set, there seems to be no reason to stop
with the two axis warping operators employed in this paper. This approach is adopted in [21], [22],
where it is shown that unitary transformations provide a simple means for matching basis sets to

particular classes of signals.
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