A SIMPLE SCHEME FOR ADAPTING
TIME-FREQUENCY REPRESENTATIONS

Douglas L. Jones® and Richard G. Baraniuk®*

¢ Coordinated Science Laboratory
University of lllinois
1308 West Main Street
Urbana, IL 61801
E-mail: d-jones@csl.uiuc.edu

5 Department of Electrical and Computer Engineering
Rice University
P.O. Box 1892, Houston, TX 77251-1892
E-mail: richb@rice.edu

Appears in IFEFE Transactions on Signal Processing, Vol. 42, No. 12, Dec. 1994

Abstract

Signal-dependent time-frequency representations, by adapting their functional form
to fit the signal being analyzed, offer many performance advantages over conventional
representations. In this paper, we propose a simple, efficient technique for continu-
ously adapting time-frequency representations over time. The procedure computes a
short-time quality measure of the representation for a range of values of a free param-
eter and estimates the optimal parameter value maximizing the quality measure via
interpolation. Many representations, including the short-time Fourier transform, the
cone-kernel distribution, and the continuous wavelet transform, support adaptation, at
a computational cost of only a few times that of the corresponding static representa-
tions.
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1 Introduction

Most time-frequency representations (TFRs) employ some kind of smoothing kernel, window,
or filter to reduce noise and cross-components [1,2]. The choice of kernel dramatically affects
the appearance and quality of the resulting TFR. It has been shown that, according to
several different measures of performance, the optimal kernel depends on the signal being
analyzed [3-5]. Therefore, utilization of any fixed kernel severely limits the class of signals

for which the resulting time-frequency representation can perform well.

As an example, consider the signal shown in Fig. 1. It contains several narrow pulses,
two sinusoids that overlap in time, and a Gaussian component. Figure 2 illustrates three
short-time Fourier transforms (STFTs) of this signal computed using Gaussian windows of
varying lengths. A short window (Fig. 2(a)) matches the pulse components well, but smears
the sinusoidal and Gaussian components in the frequency direction. A medium-length win-
dow (Fig. 2(b)) matches the Gaussian component well, but smears the pulse and sinusoidal
components in both the time and frequency directions. A long window (Fig. 2(c)) matches
the sinusoidal components, but smears the pulse and Gaussian components in the time di-
rection. These figures illustrate the fundamental drawback of the STFT: it is impossible
to obtain simultaneously good time and good frequency resolution using a single fixed win-
dow. The continuous wavelet tranform [6] suffers from the same tradeoff, although in this
case the tradeoff is a function of frequency. Moreover, a related tradeoff between time-
frequency resolution and cross-term suppression applies to the kernel function in all bilinear
(Cohen’s class) time-frequency representations. In short, no TFR employing a fixed window,

wavelet,or kernel performs well for all signals.

Due to this fundamental limitation of fixed windows or kernels, several researchers
have developed signal-dependent or adaptive TFRs (see [3-5,7-9] and the references in [4]).
These methods often exhibit performance far surpassing that of fixed-kernel representations;
however, they are either very computationally expensive or perform only off-line, block
analysis of short signals. Thus, a need exists for simple, time-adaptive, computationally

efficient TFRs suitable for real-time, on-line applications.

This paper presents a new scheme for adapting a TFR with a single free parameter.
Section 2 describes the optimization formulation, which is based on maximizing the short-
time concentration of the TFR. The proposed method supports on-line parameter adaptation
over time, and applies to many classes of TFRs. For example, it can optimize the instan-

taneous window length in a STFT, the 7-extent of the cone-kernel distribution [10], or the
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Figure 1: Test signal containing, from left to right, a unit pulse, the sum of two gated
sinusoids, a Gaussian, and two unit pulses.
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Figure 2: STFTs of the test signal computed using (a) short (3 sample), (b) medium (23
sample), and (c) long (47 sample) Gaussian windows.



“@Q-factor” of the mother wavelet in a continuous wavelet transform. A fast algorithm, de-
scribed in Section 3, reduces the computational cost of the adaptive scheme to only a few
times that of an equivalent fixed-kernel TFR, making it viable for most TFR applications.
As demonstrated in the examples of Section 4, the performance of the adaptive TFRs often

greatly exceeds that of fixed-kernel representations.

2 The Adaptive Scheme

The development of a signal-dependent or adaptive TFR requires a means of determining
an appropriate window or kernel function without extensive a priori knowledge of the signal
characteristics. Procedures based on mathematical optimality criteria appear most promis-
ing [3-5]. In these approaches, optimization problems incorporating the signal to analyze

yield an optimal adaptive window or kernel.

One of these successful approaches to adapting TFRs maximizes the concentration of
a parameterized STFT. The algorithm described in [3] optimizes two STFT window param-
eters (window length and chirp rate) at each time-frequency location but, while effective,
generally requires about three orders of magnitude more computation than a simple fixed-
window STFT. We propose here a simpler concentration-based adaptive procedure that sup-
ports only time adaptivity of a single parameter and finds only an approximate maximizer
of concentration. Due to this simplification, this approach requires only a few times the
computation of a fixed-parameter transform. The adaptive technique developed here is not
limited to adapting just STFT parameters; most TFRs parameterized by a single parameter

p can be optimized.

To obtain a simple adaptive TFR from a TFR D,(7,Q) parameterized by a single
parameter p, we adjust p over time to maximize a measure of short-time time-frequency

concentration

L2 I Dy (7, Q) w(r — ¢)|* dr dQ

C(t,p) = -
7) (S22, S22 1Dy (7, Q) w(r — 1)[2 dr d2)

(1)

Here w(7) is a one-dimensional window function centered at 7 = 0. The optimal time-varying

parameter of the TFR is thus defined as

p*(t) = argmax, C(t,p). (2)

The basis for this optimization approach rests on the intuition that a parameter providing

high time-frequency concentration results in good time-frequency localization and high res-
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olution. The ratio of the Ly norm to the Ly norm of the TFR favors “peaky” distributions
that place as much signal energy into as small a region of time-frequency as possible, thus

achieving a concentrated representation.

The local concentration measure C(t,p) is a simplified version of the concentration
measure utilized in [3] and is similar to kurtosis in statistics and also to a heuristic defini-
tion of entropy used for minimum entropy deconvolution in seismic signal processing [11].
Several other concentration, entropy, or peakiness measures have been studied in seismic
applications [12]; for the purposes of adaptive time-frequency analysis, they yield essentially

identical results and can be used interchangeably.

3 Efficient Implementation

Ideally, the optimal TFR parameter p*(¢) at each time ¢ would be selected by computing
the short-time concentration C(¢,p) as a function of the continuous-valued parameter and
choosing the maximizing value. However, determination of the concentration for a large
number of parameter values could be quite expensive, because each value of the parameter
corresponds to a different TFR. We propose that the short-time concentration be computed
only for several discrete values p;,2 = 1,..., P, of the parameter, over a range of values that
includes its maximum and minimum acceptable values. The resulting short-time concentra-
tions C(t,p;) represent samples of C'(¢,p), so an estimate of the optimal parameter value
p*(t) can be obtained by interpolating between the samples C(t, p;) to find the optimal value
of p. Fortunately, as a rule the concentration measure is well-behaved and slowly varying
with p; thus C(t,p) can be sampled very coarsely with very little degradation in the final
result. Experimentally, sampling as coarsely as once or twice per octave and using quadratic
or cubic polynomial interpolation yields excellent results. Once the optimal parameter value
p*(to) is computed at time o, the time slice D« (4,)(f0,w) of the optimal-parameter TFR can

be computed based on that value.

Computation of the short-time concentrations represents the major expense of the
adaptive algorithm. Fortunately, all of the information in D,(¢,w) necessary to compute
C(t,p) can be summarized in two one-dimensional functions, obtained as the L* and L?
norms of each time slice of the transform

alrnp) = [ DO a(rp) = [ D) e (3)
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Using (3), the short-time concentration measure can be computed as
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If the window function w(7) has compact support (as it will in practice), then the integrals
in (4) are over finite intervals, and only the portions of ¢4(7, p) and ¢3(7, p) centered around

time ¢ need be stored.

In practice, we use TFRs D,(n, k) discretized on a rectangular grid in time and fre-
quency. The integrals in (3) are then computed as sums, for each time index n, over the
frequency index k. With a rectangular weighting window of extent £M samples, the numer-

ator integral Cy(t,p) in (4) reduces to the recursion

n+M

Cy(n,p) = Z ca(n,p) = Ca(ln—1,p) + caln+ M,p) — ca(n — M — 1,p), (5)

n—M

which can be updated at negligible cost. A similar recursion holds for the denominator
integral Cy(t, p). Finally, due to the inherent smoothness of D,(t,w), only modest oversam-
pling in time and frequency is necessary to accurately estimate the concentration. Thus the
test TFRs D,,(n,k) used in practice can be coarsely sampled, greatly reducing the overall

computational cost of the adaptive algorithm.

The total computational cost of this algorithm equals the cost of computing P coarsely
sampled fixed-parameter TFRs with parameter values p;, plus the minor cost of updating
and interpolating the short-time concentration measures using (3) and (5), plus the cost of
computing the TFR using the optimal parameter. The value of P necessary for excellent
performance is usually less than ten, and the coarsely sampled, fixed-p TFRs cost substan-
tially less to compute than the full-resolution optimal-parameter TFR. The total cost of the

adaptive approach thus ranges from only two to ten times that of a fixed-parameter TFR.

4 EXAMPLES

4.1 Adaptive Short-Time Fourier Transform

As illustrated earlier in Fig. 2, the choice of STFT window length greatly affects the result-
ing TFR. No fixed window can work well for signal components of widely varying duration.

Figure 3(a) presents an adaptive-window STFT of the 190-sample signal shown in Fig. I.
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Figure 3: (a) Optimal-window STFT of the test signal from Fig. 1. (b) Optimal time-varying
window length p*(¢). The window length was varied to maximize the value of the short-time
kurtosis concentration measure (4).

The length of a Gaussian window was selected as the adjustable parameter p for the al-
gorithm of Section 3. The short-time concentration (4) for five different window lengths
(p=3,6,12,24,48 samples) was computed at each time location, and the optimal window
length was interpolated using a cubic polynomial. The length of the weighting window w
in (4) was set to 61 samples. (The weighting window length should always be at least
slightly longer than the longest trial window length p,, to provide unbiased concentration
estimates.) In comparison to the STFTs of Fig. 2, Fig. 3(a) exhibits the benefits of adaptiv-
ity by closely matching the time-duration of the most significant signal component at each

time. Figure 3(b) shows the optimal window length as a function of time.

The abrupt right edge of the Gaussian component in Fig. 3(a) results from its proximity
to the second pulse function, whose large energy causes the adaptation to optimize for it
rather than for the Gaussian component as it enters the short-time concentration window.
This behavior is characteristic of this family of adaptive TFRs, in that the adaptation tends
to optimize the performance for the largest-energy component in the short-time concentration
window w. The performance may not be well optimized for nearby components of smaller

energy if they have very different time-frequency characteristics.

Figure 4 depicts several STFTs of the bird song of the Cerulean Warbler (Dendroica
cerulea) [13]. Figure 4(a) shows the STFT computed using a short, 64-point Gaussian
window, and Fig. 4(b) shows the STFT computed using a longer, 256-point Gaussian window.
The short window is best for the ending “buzzy” portion of the signal, while the longer
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Figure 4: Comparison of several TFRs of a portion of the bird song of a Cerulean Warbler
(Dendroica cerulea). The sampling rate was 16 kHz. (a) STFT computed using a short
(64-sample) Hamming window. (b) STFT computed using a long (256-sample) Hamming
window. (¢) STFT computed using the optin%ﬂ time-varying window.



window is more concentrated in the chirping portion. The adaptive-window STFT, computed
using window lengths between these two extremes, is given in Fig. 4(c). The length of the
weighting window w was set to 200 samples. This figure illustrates the benefits of time

adaptivity, since neither fixed-window STFT works well for all portions of the signal.

4.2 Adaptive Cone-Kernel TFR

Heretofore, we have discussed mainly adaptive STFTs. However, the adaptive scheme pro-
posed above is quite general and applies to any TFR that can be parameterized in terms of a
single parameter. An important example is the cone-kernel distribution [10], which exhibits
the important property of preservation of outer time support. A “r-extent” parameter char-
acterizes the cone-kernel proposed in [10]; the quality of the resulting TFR often depends
greatly on this parameter. Figures 5(a), (b), and (c) illustrate the cone-kernel distribution
of the test signal of Fig. 1 for three choices of 7-extent (9, 65, and 128 samples, respectively).

Figure 5(d) illustrates an adaptive cone-kernel distribution in which the 7-extent pa-

rameter is adapted to minimize a measure of short-time entropy, which we define as
Etp) = — [ [ a7 1Dy(n @) w(r - 1)
log (a,()™ | Dy(r, Q) w(r — 1)[") dr dS2. (6)
Here, a,(t) is a time-varying normalization factor
a(t) = /m 1D(7, Q) w(r — t)[ dr dQ, (7)

and r > 0 is a constant. The magnitude of D,(7,€) is used in the entropy calculation,
because the cone-kernel distribution can take on negative values. Alternative approaches
could be based on the positive part of D,(7,Q) or on short-time versions of the generalized
Rényi entropy discussed in [14]. Regardless of the exact details, short-time entropies can be
computed efficiently in a manner similar to (3), (4). For Fig. 5(d), six different 7-extents,
from p; = 5 to pg¢ = 128, were used, and the optimal value was interpolated using a quadratic
fit. The kurtosis concentration measure (4) yields almost identical results. The optimal time-

varying 7-extent parameter is graphed in Fig. 5(e).

While long cone lengths can yield good results for isolated components of short du-
ration, artifacts due to interactions between different components in the cone interval can
appear. For example, the medium cone-length distribution of Fig. 5(b) contains artifacts
between the Gaussian component and the following impulse. The adaptive technique avoids

these artifacts by using a short-length cone over that region.
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Figure 5: Cone-kernel distributions of the test signal computed using (a) small (9 sample),
(b) medium (65 sample), (c) large (128 sample), and (d) the optimal time-varying 7-extent
parameters. The optimal 7-extent parameter, graphed in (e), is varied to minimize the value
of the short-time entropy concentration measure (6).
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4.3 Adaptive Wavelet Transform

As a final example, consider the continuous wavelet transform (CWT) [6]. The CWT is
an attractive alternative to the STFT in applications where the durations of the signal
components scale inversely with their frequency. Given a bandpass wavelet function ¢ whose
Fourier transform is centered at frequency wy and has bandwidth B, the CWT of a signal s
is defined as

D(tw) = [ sw g*(i(u - t)) du. (8)

S Wo

The CWT is a constant-¢) TFR, with the ()-factor of the analysis being the center-frequency-
bandwidth quotient wy/B. The @ of the wavelet has a large effect on the quality of the repre-
sentation of the CWT in time-frequency. Setting () too small results in excessive smearing of
signal components in the frequency direction; setting () too large results in excessive smear-
ing of signal components in the time direction. One commonly used wavelet with adjustable

center frequency and bandwidth is given by?
Guo.o (1) = exp(—t?/20?) cos(wot); (9)

Either wg or o can be adapted to maximize concentration in the CWT. The required CWTs

can be efficiently computed using the algorithm in [15].

5 Conclusions

This paper presents a simple procedure for the automatic optimization and time adaptation
of many TFRs with a kernel/window/wavelet adjustable by a single parameter. Even this
modest amount of adaptivity often yields greatly improved results, and in some cases achieves
most of the benefits promised by more complicated signal-dependent time-frequency repre-
sentations. This procedure generally requires only a few times the cost of a fixed-parameter
distribution and supports on-line, real-time computation. Two or more paramenters can be
adapted using a multi-dimensional version of this algorithm, but the cost increases geomet-
rically with the number of parameters. By supporting adaptivity at a cost comparable with

traditional methods, this technique makes adaptive TFRs viable for most applications.

!Note that this wavelet does not exactly satisfy the wavelet admissibility condition [6].
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