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Summary

In this paper we discuss the use of a time-frequency repre-
sentation, the Wigner distribution, for the decomposition
and characterization of seismic signals. The advantage of
the Wigner distribution over other representations, such
as the wavelet and sliding window Fourier transform, is its
sharp localization properties in the time-frequency plane.
However, the Wigner distribution is a not a linear trans-
formation. This non-linearity complicates the use of the
Wigner distribution for time-frequency �ltering and de-
composition. We present an optimization method for the
reconstruction of a time signal from its Wigner distribu-
tion. The reconstruction technique enables a decomposi-
tion of a signal into its time-frequency components, where
the reconstructed components are stripped o� from the
signal one by one. We illustrate the method with a real
data example. We also show how the decomposition can
be used for suppression and enhancement of events in the
time-frequency plane.

Introduction

In joint time-frequency analysis the time and frequency
domain representations of a signal are combined into
a time-frequency energy density function. This time-
frequency representation can be used to study change
of frequency content of a signal with time. There are
a number of possible time-frequency representations of
which the wavelet (packet) transform and sliding win-
dow Fourier transform are the most widely used (see
e.g. Chakraborty and Okaya 1995). Our ultimate goal is
to characterize the seismic response of the subsurface in
terms of its time-varying frequency content (Steeghs and
Drijkoningen 1995). In the wavelet transform and win-
dowed Fourier transform representation, time-frequency
resolution directly depends on the shape and size of the
analysis window or wavelet. A very short time window re-
sults in excessive smoothing in frequency and vice versa.
As a result of this trade-o� between window size and
resolution, information is lost or blurred in the time-
frequency representations. To circumvent this problem
other joint time-frequency representations with better
time-frequency localization properties can be used. A
time-frequency representation that is optimal with re-
spect to time-frequency localization is the Wigner distri-
bution. The (smoothed) Wigner distribution has been
employed in a number of signal characterization, de-
tection and decomposition problems; a comprehensive
overview can found in Cohen (1995). A drawback in
the application of a time-frequency representation of the
Wigner form for time-frequency decomposition and �l-
tering is its non-linearty. This implies that we cannot
simply apply a window to the Wigner distribution of a

signal and do an inverse transformation, as the windowed
part is not necessarily a valid Wigner distribution. In this
paper we show how the decomposition of a signal into its
time-frequency components can be carried out with an
optimization procedure. We discuss two applications of
time-frequency signal decomposition. First we show that
a hierarchical decomposition of a seismic trace results in
the observation that the signal can be characterized by
very few and fairly simple time-frequency components.
The time extent of these components is almost coincident
with seismic facies units. This last observation could be
an important step towards a better understanding of the
origins and a more quantitative interpretation of seismic
reection patterns. Another application is to use the de-
composition for the suppression or enhancement of events
in the time-frequency plane.

Theory

The Wigner distribution is based on the local auto-
correlation function Rfu; ug(t; � ) of the time signal u(t).
This instantaneous auto-correlation is given by

Rfu; ug(t; � ) = u(t+ �=2)u�(t� �=2); (1)

where � is the time lag variable and the asterisk de-
notes complex conjugation. The Wigner distribution,
Wfu; ug(t; f), is the Fourier transform of this auto-
correlation:

Wfu; ug(t; f) =

Z
�2IR

exp(�j2�f�)Rfu; ug(t; �) d�:

(2)

If a signal is multi-component, i.e. the energy is not well
conentrated in the time-frequency plane, cross-terms arise
in the Wigner distribution at locations in the t� f plane
that do not correspond to what is expected (Fig.1). If a
signal u(t) is two-component, then

u(t) = c1u1(t) + c2u2(t),

Wfu; ug(t; f) = jc1j
2Wfu1; u1g(t; f) +

jc2j
2Wfu2; u2g(t; f) +

2Refc1c2Wfu1; u2g(t; f)g;

(3)

where Wfu2; u1g(t; f) is the cross-Wigner distribution of
u1(t) and u2(t):

Wfu1; u2g(t; f) =

Z
�2IR

exp(�j2�f�)

u1(t+ �=2)u�2(t� �=2)d�:

(4)
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Figure 1: Wigner distribution of a two component signal

This last relation between t�f components is important,
because it shows that the Wigner distribution of a multi-
component signal contains the Wigner distributions of the
individual components. Consequently, if we can separate
components in the t � f domain, we can decompose a
time signal into its time-frequency components by signal
synthesis from the Wigner distribution.

Reconstruction

The Wigner distribution is derived from a one dimen-
sional time signal, so it is clear that its two dimensions
t � f are not independent. This implies that not any
time-frequency function, ~W (t; f), is a valid Wigner distri-
bution. The Wigner distribution is �ltered by multiplying
it with a t� f mask, h(t; f),

~Wfu; ug(t; f) = h(t; f) �Wfu; ug(t; f) (5)

To synthesize a time signal from this �ltered Wigner
distribution we search for a valid Wigner distribution,
Wfx; xg(t; f), that is as near as possible to the masked
Wigner distribution, ~W (t; f). If we have a �ltered distri-
bution that is once again a valid Wigner disitribution, we
can reconstruct the desired time signal, x(t), out of this
Wfx; xg(t; f). This reconstruction can be formulated as
an optimization problem, which results in an orthogonal
projection (Hlawatsch and Krattenthaler 1992). We min-
imize the approximation error; the energetic di�erence
between the �ltered ~W (t; f) and a valid Wigner distribu-
tion Wfx; xg(t; f). This error is minimized over a space
S containing all possible time signals x(t):

�2x =
 ~W (t; f)�Wfx; xg(t; f)

2 �! min
x2S

with ; ~W (t; f) 2 


and ; Wfx; xg(t; f) 2 
W ;

(6)

where 
 is the space of all time-frequency distributions
and 
W is the space of all Wigner distributions. The
solution of this minimization is given by an eigenvalue
problem. The result is the function x(t), whose Wigner
distribution, Wfx; xg(t; f), is the closest to ~W (t; f)
(Boudreaux-Bartels and Parks 1986).

Filtering in the t� f domain

To isolate the components in the t�f domain, we use rect-
angular boxcar �lters. The problem is that the Wigner
distribution of a component extends over a large area in
the t � f domain, as any bounded signal in time has
an in�nite frequency spectrum and a time-limited signal
has an in�nite duration. As a result, we can never iso-
late an entire component in the Wigner domain with a
bounded �lter. However, the formulation of the recon-
struction problem as an orthogonal projection minimizes
the artifacts that are caused by the truncation. We have
found that the shape of the masking function h(t; f) has
little e�ect on the results and that the reconstruction al-
gorithm remains stable for a wide variety of window sizes
and shapes.

Hierarchical decomposition

The reconstruction technique enables a decomposition of
the signal into its time-frequency components. If we �lter
a component and by accident include some cross-term en-
ergy, the algorithm also reconstructs the unwanted com-
ponent to some extent. This could cause serious overlap
if we would isolate every component from the original
Wigner distribution. Therefore we substract each recon-
structed component from the signal and then calculate a
new Wigner distribution. Another motive for a hierar-
chical decomposition is the presence of lower amplitude
events. Theoretically, the Wigner distribution is a time-
frequency representation with in�nite t � f resolution.
Therefore, even very weak signal-components are present
in the Wigner distribution. Nevertheless, they often re-
main undetected, because their amplitude is small com-
pared to the strong components and their cross-terms.
The weaker components can be detected if we �rst sub-
tract the the stronger ones from the signal and then cal-
culate a new Wigner distribution. We decompose the sig-
nal into its t � f components according to the following
scheme. We recall that u(t) is the original signal and
xi(t); i = 1; 2; : : : , is the ith reconstructed component.
The signal yi(t); i = 1; 2; : : : , is the remaining signal after
subtraction of the ith component.
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u(t) �!W0(t; f)

#
x1(t)
#

y1(t) = u(t)� x1(t) �!W1(t; f)

#
x2(t)
#

y2(t) = y1(t)� x2(t) �!W2(t; f)

...
xN (t)
#

yN(t) = yN�1(t)� xN (t)

Decomposition of real data

An illustration of the decomposition is given in Figure
2. The upper part of Fig.(2) shows trace from a marine
seismic data set and its Wigner distribution. Note how
well the energy is localized in distinct regions of the time-
frequency plane. We isolated a t � f component in the
Wigner distribution and subtracted this component from
the trace. In the next step a new Wigner distribution is
calculated of the signal minus the �rst component. Then
another component is isolated and subtracted from the
signal. This procedure continues until there is no local-
ized energy left in the remaining signal. The maximum
amplitudes of the components are shown in Figure 3. The
10th component is much smaller than the 9th. This dis-
continuity is a result of the reconstrution method. A com-
ponent cannot be entirely subtracted from theWigner dis-
tribution. The energy that is spread out over the masked
Wigner distribution introduces noise into the decompo-
sition scheme. We can conclude we have succesfully iso-
lated nine components in this trace. The nature of the
remaining energy is uncertain, as it could be noise that
was introduced by the decomposition scheme.

Suppression and enhancement of events

A strati�ed model (Fig.4) with alternating velocities
will have a frequency response that shows strong tuning
around the frequencies

f = (2k � 1)
c

4d
with k = 1; 2; : : : (7)

In a more realistic model, there will be a certain distri-
bution around an average thickness d. It is interesting
to see how the t � f distribution get more complicated,
when the thicknesses are perturbed. Figure 3 shows the
Wigner distributions of traces from synthetical geological
sequences with a Gaussian thickness distribution with an
average of 10m and standard deviations (�d) of 1m, 2m
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Figure 2: Hierarchical t� f decomposition

and 3m. An application of the decomposition method is
illustrated in Figure 5. The model consists of two strati-
�ed units of alternating layers with a contrast of 200m/s
between the layers. The mean thicknesses are 5m and
3m and the standard deviations are 1m and 0:3m. In the
Wigner distribution we mainly see the strong reection,
the other events are weaker and nearly invisible. Here
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Figure 3: Maximum amplitude of the isolated compo-
nents
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Figure 4: Wigner distributions of models with d = 10(m)
and �d of of 1m, 2m and 3m

we can use the decomposition method to substract the
strong reection and enhance the low amplitude informa-
tion. In the new Wigner distribution, the time-frequency
characterisitics sequences becomes very clear and the na-
ture of the strati�cation can be deduced from the t � f
representation.

Discussion and conclusions

We have implemented a decomposition technique to split
up a signal into time-frequency components via its Wigner
distribution. The method has the advantage over wavelet
and Fourier transform based methods because of the
sharp and unbiased localization of energy in the Wigner
distribution. At present, the decomposition is made
rather arbitrarily, as it is not based on a physical model
of the seismic signal in the time-frequency plane. How-
ever, we observe strong localization of energy in the time-
frequency plane. The time-extent of these components
generally coincides with distinct seismic facies. The abil-
ity to isolate and synthesize these components opens the
possibility of further processing and interpretation on iso-
lated seismic facies units. Velocity analysis, time-variant
deconvolution and �ltering techniques could bene�t from
such a facies based decomposition. An application of this
decomposition technique that was not discussed here is
the suppression events that overlap desired signal compo-
nents in both time and frequency, such as ground-roll or
reverberation. A next step is to obtain a better physical
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Figure 5: Strati�ed model and Wigner distribution of

the seismic response, (top), �ltered signal and Wigner

distribution of the t� f �ltered signal (bottom)

basis for the time-frequency decomposition, for instance
in relation to frequency-tuning in strati�ed media.
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