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 ABSTRACT

Traditional filtering methods operate on the entire signal or image.  In some applications, however, errors are concentrated in
specific regions or features.  A prime example is images generated using computed tomography.  Practical implementations
limit the amount of high frequency content in the reconstructed image, and consequently, edges are blurred.  We introduce a
new post-reconstruction edge enhancement algorithm, based on the reassignment principle and wavelets, that localizes its
sharpening exclusively to edge features.  Our method enhances edges without disturbing the low frequency textural details.
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1. INTRODUCTION

The projection-slice theorem forms the foundation for tomographic reconstruction and is fundamental in a variety of fields
(e.g., biomedical imaging, synthetic aperture radar, optical interferometry).1-5  In biomedical computed tomography, cross
section images of the human body are produced from data obtained by measuring the attenuation of x-rays along a large
number of rays through the cross section (See Fig. 1).2  The attenuation function at each projection angle is collected.  The
projection-slice theorem then states that the collection of 1-D projections, obtained from all  possible angles, exactly
reconstructs the 2-D Fourier transform of the original image.  A 2-D inverse Fourier transform completes the reconstruction.
Practical limitations, however, must be considered.

First, practical systems provide only a limited number of projection angles and a finite number of receivers.  As a result, only
a limited number of sampled 1-D projections is available.  Second, rotational movement of the emitter/detector around the
patient produces a polar sampling grid for the collection of 1-D projections.  With a polar grid, the sample density is non-
uniform, with a larger number of samples near the center and sparse sampling at the edges of the grid.  Both of these practical
considerations require some form of interpolation to produce the 2-D Fourier transform on a rectangular grid.6  Third, digital
implementation of the inverse Fourier transform requires the projections to be band limited.  This bandwidth may be
decreased due to high frequency noise considerations, but this also limits the desirable high frequencies created by the
structures within the cross section.7  Aliasing artifacts are then apparent in the inverse Fourier transformed image.
Consequently, the vast majority of the errors induced by all three of these considerations occur at edges.8  High pass
information is essentially lost in practical implementations.

In this paper, we introduce a new, nonlinear image sharpening algorithm that is localized exclusively on edges.  The
algorithm operates on the post-reconstruction image and is based on the reassignment principle9,10 and wavelets.11,12  Edges
are identified using the wavelet transform and are adaptively rebuilt using reassignment on the wavelet coefficients.  We
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localize the filtering operation, because the vast majority of the error resides only in the edge features.  Also, subtle variations
(smooth regions) in gray scale may represent important features (e.g., a poorly differentiated tumor).  Alteration of non-edge
features in such cases is unacceptable.

This paper is organized as follows.  Section 2 provides a brief introduction to the projection-slice theorem and some of its
practical l imitations.  Section 3 discusses the concept of reassignment and the approach we used for this application.  Section
4 details the Haar undecimated discrete wavelet transform and our reassignment algorithm.  Section 5 contains the simulation
results, and contrasts the algorithm's effect on edge versus non-edge features.  Conclusions are in Section 6.

2. PROJECTION-SLICE THEOREM

The projection-slice theorem involves reconstructing a two-dimensional (2-D) function from its 1-D projections at all
possible angles.  The 1-D Fourier transform of the projection of a 2-D function, g(x,y), at an angle ω is equal to the slice of
the 2-D Fourier transform of the function at an angle ω.  If we know the 1-D projections of a 2-D function at all possible
angles, we know the 2-D Fourier transform of the function which is equivalent to knowing the function.  We can, therefore,
reconstruct the function exactly.  One commonly used technique to reconstruct the original image from its projections is
filtering and then back-projection.1,2

The image can be reconstructed from the projections using the Radon inversion formula:
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where P(ƒ) is the Fourier transform of the 1-D projection p(t).1-3,5  From the inversion formula (1), the first step in the
reconstruction (inner integral) is to filter each of the projections using a filter with frequency response |ƒ |.  The filter has a
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Fig. 1. Our projection-slice implementation collects 1,000 parallel rays onto a detector that has a normalized length of 1.5.  The detector
length is greater than the unit square in which the thoracic phantom resides to allow projections from any angle without clipping
the phantom's features.  A total of 800 different angles are used.  We follow the general rule of having the number of projection
angles equal or greater than π/2 times the number of desired pixels.8  Our final reconstructed images have 512×512 pixels.



practical l imit in its digital implementation due to the cyclic nature of the discrete Fourier transform.  The filter must be band
limited.  Practical concerns about attenuating high frequency noise also warrant a limited bandwidth.

After computing the filtered projections, we sample at (xcosω + ysinω)  for each ω and integrate over ω.  In our
implementation, we have only a finite number of sampled projections.  Since the samples of the filtered projection required
for back-projection may lie between the available sampling instants, we linearly interpolate.6

We use a thoracic phantom similar to the Shepp-Logan head phantom1 to simulate a cross section (See Fig. 2).  Our basic
model captures three main anatomical structures: the lungs, heart, and spinal column without the rib cage.  Regions of like
functional activity (e.g., right and left lung) are assigned similar densities, although not exactly the same.  Dislike functional
components have widely varying densities.  We used the thoracic model instead of the Shepp-Logan head phantom so that
region growth (i.e., heart, lung, and chest wall expansion), and body shift (i.e., horizontal movement) during image
acquisition could also be studied.8

Our projection-slice implementation collects 1,000 parallel rays at a detector that has a normalized length of 1.5.  The
detector length is greater than the unit square in which the phantom resides to allow projections from any angle without
clipping the phantom's features.  A total of 800 different angles are used.  Our final reconstructed images have 512×512
pixels.

In Fig. 3, the spinal column geometries from Fig. 2 are enlarged.  The top image is the original phantom while the bottom
image is from the reconstruction.  The majority of the squared error for the entire image resides in the edge features.  The
elli pses in our phantom, and therefore their projections, exceed the highest frequency of the |ƒ | fi l ter in (1), which creates
aliasing.

Fig. 2. The basic thoracic cavity phantom used for the simulations.  The phantom captures three main anatomical structures: the lungs,
heart, and spinal column without the rib cage.  The lungs, heart, and chest wall are able to expand and contract to simulate these
region's function.  Also, the entire model can be shifted horizontally to simulate patient movement.8  The phantom resides within a
unit square.
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Improving the number of projection angles and the number of samples does reduce the squared error, but the error still
resides primarily at edges.  We, therefore, turn to post-reconstruction means for enhancement based on reassignment.

3. REASSIGNMENT

Any standard FIR linear convolutional filtering convolves the signal s[n] with a filter kernel h[n] of length M.
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Note that the location of the result r[n] is placed at position n, which has a constant offset.  Unfortunately, low pass, linear
filters leave smooth regions relatively unaffected while areas of large change (discontinuities) are spread out or smeared.  The
filtered values, however, are denser surrounding the discontinuity.  We require a means to rebuild these edges.

Reassignment is a nonlinear filtering approach that uses the center of mass to determine where r[n] should be placed.  The
displacement function d[n] calculates the center of mass of the signal, windowed with the filter:9
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Note that the location of the result r[n] is now reassigned to location d[n] instead of n as above (See Fig. 4).  One problem
with the discrete implementation is that the ratio in (3) is not necessarily an integer and could place a reassigned value
between sample points.  Several interpolation methods have been presented;10 however, we constrain the location point as
described below.  First, let us review some of the advantageous properties of reassignment.

First, the convolution between two functions, one with length a and one with length b, results in a function that has length
a+b− 1.  Conversely, reassignment results in a final function that has a length equal to the maximum of a and b.  In other
words, reassignment retains the same region of support.  Second, Dirac delta functions remain unchanged by the
reassignment operation.  Finally, triangle shaped regions in the original signal result in triangle shaped regions in the result

Fig. 3. The spinal column geometries from Fig. 2 are enlarged.  The vast majority of the squared error for the entire reconstructed image
resides in the edge features.
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but with a smaller region of support after reassignment.10  All of these properties are useful when considering our
reconstructed image.

There is, however, one concern.  Reassignment limits the ampli tude at the center of mass to the ampli tude of the filtered
signal r[n].10  We alleviate the ampli tude limit by additive reassignment.  Instead of strictly relocating samples, we rebuild
edges by adding samples to the center of mass.  The details of which are provided in Section 4.

We also resolve any issue with d[n] not being an integer.  Since we use high and low pass filters of length two in the next
section, let us focus our discussion to this specific case.  Consider an edge (discontinuity) that has been reshaped by
computed tomographic reconstruction.  To be considered an edge, we assume that there still exist two samples separated by a
relatively large jump.  If a two-point linear FIR filter h[n – k] is applied as in (2), a high pass (HP) filter output has a three-
point triangular shape while a low pass (LP) output has a three-point smooth transition similar to the original edge with a
central point in the middle.  The center of mass at an edge feature is the peak of the triangular region for the HP output and
the middle point of the smooth transition for the LP output.  We recognize the features created by the two-point high and low
pass filters, and use that information to our advantage.

4. UNDECIMATED WAVELET -DOMAIN REASSIGNMENT

We localize the application of the reassignment principle by using the undecimated discrete wavelet transform (UDWT).
Wavelets have an integral edge detection property.  A major drawback to wavelets is shift and rotation invariance.13  Shift

h[n – k]s[k]

n    "center"

Convolution

h[n – k]s[k]

d[n]    "center of mass"

Reassignment

Fig. 4. Traditional convolutional filtering places the result at the center n of the operation.  Reassignment differs in that the result is
placed at the center of mass d[n].



invariance is addressed by using the undecimated wavelet transform.  We adequately handle diagonal edges of any
orientation (rotation invariance) by using small image area operations (2×2 pixels).

The UDWT provides a high and low pass output.  The single scale 1-D transform is given by:
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where LP[n] and HP[n] are the low and high pass UDWT coeff icients, and h[n] = [1 1] and h'[n] = [1 −1] are the low and
high pass Haar filters, respectively.  Since our algorithm operates strictly on rows or columns, s[n] is either the rows or
columns of the computed tomography reconstructed image before edge enhancement.  Only a single scale expansion of the
wavelet transform is required to identify edge features.

We use the high pass Haar UDWT to identify the location of edges.12  The transform operates first on each row of the image.
We apply additive reassignment described below, then inverse transform.  A second iteration is performed operating only on
the columns, after all operations on the rows are completed.  The inverse transform is given by:
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where ][ˆ ns  is either the rows or columns of the post-reconstruction, locally edge enhanced image.

We focus first on the additive reassignment of the HP output.  With reference to Fig. 5 (top), the HP signal is used to locate
edges by noting the triangular regions at discontinuities.  A local maxima of |HP[n]| greater than a user defined threshold
(TOL) identifies an edge.  Let us call the local peak of the signal WC.  To rebuild the edge, the samples adjacent to WC are
added to the local peak, then reset to zero (additively reassigned), if they have the same sign as WC.  Opposite signs indicate
that the computed tomography reconstructed signal overshot the edge; therefore, it should not be reassigned.  The HP
reassignment allows the central point (WC) to exceed the original value of HP[n], which is necessary to rebuild the edge.
Also, our additive reassignment conserves the HP signal's energy.

We must now consider the reassignment of the LP filtered output.  The LP filtered signal does not have the same spiky nature
as the HP.  It follows the trends in the original signal.  Since we have reassigned the HP signal, the LP signal must be
adjusted before we can recombine the signals through the inverse UDWT (5).  Modifications at samples of the HP output
require modifications at the same sample locations to the LP signal.  The question now is what values do we use to modify
the LP signal?

Since the peak of the reassigned HP output is the center of the transition in the LP output, we desire the "large" valued
sample adjacent to the LP transition point to increase and the "small " valued adjacent sample to decrease.  We adjust the LP
samples adjacent to the LP transition point by the amount the HP samples were adjusted at the same positions as shown in
Fig. 5.  This achieves the more extreme slope desired for the LP signal.

We have one last concern.  As mentioned previously, two cases exist for the HP output reassignment.  We either modified the
HP peak (WC) by both adjacent samples or only one.  (A Dirac delta function in the HP signal remains unchanged after the
HP reassignment.)  To appropriately handle both of these cases, we additively reassign the values adjacent to WC to the LP
transition point if they have the same sign as WC.  Depending on the edge characteristics of the original signal, the transition
point will not be altered substantiall y, or in the case of only one HP adjacent sample added to the LP transition point, the
transition point becomes the start of the upward/downward slope of the edge.

Figure 5 shows the reassignment process graphically.  On the left, a local maximum has been identified for the HP output,
and both of the adjacent samples have the same sign.  The adjacent samples are added or subtracted to neighboring samples
as shown before the HP coefficients are reset to zero.  Similarly, on the right, the same reassignment occurs even though we
have a local minimum.  The right most adjacent HP point is not considered, since it has the opposite sign as the local
minimum.  The procedure is also explained with the following pseudo-code:

1) Traverse each row of the high pass (HP) wavelet coefficients and check if the absolute value of a coefficient ≥ TOL.
Determine if the identified sample is a local maximum or minimum by checking if its absolute value is greater than the
absolute value of its adjacent HP coeff icients on the same row.  We label a local maximum or minimum WC.



Fig. 5. The original row signal (top plot, middle) is decomposed into its high and low pass components using the Haar undecimated
discrete wavelet transform (UDWT).  Local maxima of the absolute value of the high pass output, greater than a user defined
threshold, indicate edge features.  The adjacent values to these local maximums (or local minimums), if the same sign, are used to
reassign both the high and low pass adjacent values as shown in the top graph.  (The right most adjacent value is not the same sign
as the local minimum; hence, we display the reassignment operation with dashed lines.)  The bottom graph shows the resulting
waveforms for the high and low pass components.  Both of these components are used to reconstruct the signal through the inverse
UDWT (bottom plot, middle).
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a) If the left adjacent HP coeff icient has the same sign as WC:
i) Add the left adjacent HP coeff icient to WC.
ii ) Subtract the left adjacent HP coeff icient from the low pass (LP) wavelet coefficient at the same location.
iii ) Subtract the left adjacent HP coeff icient from the LP wavelet coefficient at the same location as WC.
iv) Set the left adjacent HP coeff icient to zero.

b) If the right adjacent HP coeff icient has the same sign as WC:
i) Add the right adjacent HP coeff icient to WC.
ii ) Add the right adjacent HP coeff icient to the low pass (LP) wavelet coefficient at the same location.
iii ) Add the right adjacent HP coeff icient to the LP wavelet coefficient at the same location as WC.
iv) Set the right adjacent HP coeff icient to zero.

2) After all row operations are complete, apply inverse UDWT (5).  Repeat the steps above for column operations on the
column-wise UDWT coeff icients.

The effect of the reassignments along the rows is to sharpen vertical edges and the vertical component of any diagonal edges.
After all additive row reassignments are complete, we inverse transform along the rows.  Next, the forward transform (4) is
applied along the columns instead of the rows.  Additive reassignment along the columns is completed before applying the
inverse transform.  In this fashion, the horizontal edges and horizontal components of any diagonal edges are also sharpened.

5. SIMULATION RESULT S

We demonstrate our procedure with the thoracic cavity phantom from Fig. 2.  The phantom is contained within a unit square
and is composed of 512×512 pixels.  To reconstruct the phantom, we used 800 projection angles with each projection
containing 1,000 sample positions on a detector of length 1.5.  The projection-slice theorem and a convolution filter are used.
We measure the squared error (SE) for the entire image using the following equation:
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where ρ[m, n] is the original phantom image, and ],[ˆ nmg  is the post-reconstruction, locally reassigned image.

As shown in Table I, the squared error for the entire image is 51.9.  (No noise was added in the simulation.)  For analysis
purposes, we define an edge as any pixel value that had a SE more than 0.0005.  We based this value on the densities
assigned to the phantom.8  Even though the smooth features have a large SE (20.3) in the original reconstruction, over 95% of
that error exists outside of the "patient's" body (i.e., the black region outside the cavity in Fig. 2).  Errors in this region are
easily removed since they are close to zero.  Errors in smooth features primarily consists of Moiré patterns (visible in Fig. 3
(bottom)).

After completing the reassignment based, localized filtering by first operating on rows then on columns, the SE was lowered
from 51.9 to 33.8.  Reordering the process to first operate on columns then rows produced a SE of 34.1.  In the former case
(SE = 33.8), a dramatic reduction in error in edge features was observed while smooth region were basically unchanged.

The subjective difference can be seen by comparing the unfiltered reconstruction in Fig. 3 (bottom) against the image using
post-reconstruction, localized reassignment in Fig. 6 (bottom).  Figure 6 (top) contains the same enlarged region of the
original phantom shown in Fig. 3 (top) for comparison.

TABLE I

SQUARED ERROR RESULTS FOR A ROW THEN COLUMN LOCALIZED REASSIGNMENT

Original Reconstructed
Image

After Localized
Reassignment

Change

Edge Regions 31.61  (  60.9%) 13.60  (  40.2%) 18.01  (57.0%)

Smooth Regions 20.30  (  39.1%) 20.24  (  59.8%)   0.06  (  0.3%)

Total 51.91  (100.0%) 33.84  (100.0%) 18.07  (34.8%)



6. CONCLUSIONS

In this paper, we have proposed a new post-reconstruction, localized reassignment method.  Practical application of the
projection-slice theorem for tomographic reconstruction limits the amount of high frequency information.  Consequently,
edges are blurred while reproducing smooth regions accurately.  Our method uses the undecimated discrete wavelet transform
to localize the reassignment operation on the wavelet coeff icients themselves.  We essentially rebuild only the edge features.
We focus our effort on the edge features since the vast majority of the error exists there.  In addition, subtle variations in gray
scale may indicate key features, such as a poorly differentiated tumor, and must not be altered.

The results of our test case are a reduction in squared error at the edges of 57%, while areas with small variations in gray
scale were altered only 0.3%.
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