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ABSTRACT

Traditional filtering methods operate on the entire signal or image. 1n some gpli cations, however, errors are mncentrated in
spedfic regions or feaures. A prime example is images generated using computed tomography. Pradicd implementations
limit the amount of high frequency content in the reconstructed image, and consequently, edges are blurred. We introduce a
new post-reconstruction edge enhancement algorithm, based on the reassgnment principle and wavelets, that locdizes its
sharpening exclusively to edge features. Our method enhances edges without disturbing the low frequency textural details.
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1. INTRODUCTION

The projedion-slice theorem forms the foundation for tomographic reconstruction and is fundamental in a variety of fields
(e.g., biomedicd imaging, synthetic gperture radar, opticd interferometry).*> In biomedica computed tomography, cross
sedion images of the human body are produced from data obtained by measuring the dtenuation of x-rays along a large
number of rays through the @oss ®dion (SeeFig. 1).> The atenuation function at each projedion angdle is colleded. The
projedion-slice theorem then states that the wlledion of 1-D projedions, obtained from all possble agles, exadly
reconstructs the 2-D Fourier transform of the original image. A 2-D inverse Fourier transform completes the reconstruction.
Pradicd li mitations, however, must be mnsidered.

First, pradicd systems provide only alimited number of projedion angles and afinite number of recevers. Asaresult, only
a limited number of sampled 1-D projedions is available. Seoond, rotational movement of the emitter/detedor around the
patient produces a polar sampling grid for the wlledion of 1-D projedions. With a polar grid, the sample density is non
uniform, with alarger number of samples nea the enter and sparse sampling at the edges of the grid. Both of these pradica
considerations require some form of interpolation to produce the 2-D Fourier transform on a redangular grid.® Third, digital
implementation of the inverse Fourier transform requires the projedions to be band limited. This bandwidth may be
deaeased due to high frequency noise cnsiderations, but this also limits the desirable high frequencies creaed by the
structures within the aoss sdion.” Aliasing artifads are then apparent in the inverse Fourier transformed image.
Consequently, the vast majority of the arors induced by all three of these mnsiderations occur at edges?® High pass
information is essentially lost in pradicd implementations.

In this paper, we introduce anew, nonlinea image sharpening algorithm that is locdized exclusively on edges. The
algorithm operates on the post-reconstruction image and is based on the reassignment principle®'® and wavelets***? Edges
are identified using the wavelet transform and are alaptively rebuilt using reassignment on the wavelet coefficients. We
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Fig. 1. Our projedion-sliceimplementation colleds 1,000 parallel rays onto a detedor that has a normalized length of 1.5. The detedor
length is greaer than the unit square in which the thoradc phantom resides to all ow projedions from any angle without clipping
the phantom's feaures. A total of 800 different angles are used. We follow the general rule of having the number of projedion
angles equal or greaer than 172 times the number of desired pixels.® Our final remnstructed images have 512x512 pixels.

locdizethe filtering operation, because the vast mgjority of the aror resides only in the edge feaures. Also, subtle variations
(smocth regions) in gray scade may represent important feaures (e.g., a poarly differentiated tumor). Alteration of non-edge
feauresin such casesis unacceptable.

This paper is organized as follows. Sedion 2 provides a brief introduction to the projedion-slice theorem and some of its
pradicd limitations. Sedion 3 discusses the mncept of reassignment and the gpproach we used for this applicaion. Sedion
4 detail s the Haa undedmated discrete wavelet transform and our reassignment algorithm. Sedion 5 contains the simulation
results, and contrasts the dgorithm's effed on edge versus non-edge feaures. Conclusionsarein Sedion 6.

2. PROJECTION-SLICE THEOREM

The projedion-dice theorem involves remnstructing a two-dimensional (2-D) function from its 1-D projedions at all
possble anges. The 1-D Fourier transform of the projedion of a 2-D function, g(x,y), a an ange wis equal to the dlice of
the 2-D Fourier transform of the function at an angle w. If we know the 1-D projedions of a 2-D function at al possble
angles, we know the 2-D Fourier transform of the function which is equivalent to knowing the function. We can, therefore,
recmnstruct the function exadly. One commonly used technique to reconstruct the original image from its projedions is
filtering and then badk-projedion.*?

Theimage can be reconstructed from the projedions using the Radon inversion formula:
g(xy)=fo [5, P(F)|f|explj 27f (xcosw + ysinw)) df dw (1)

where P(f) is the Fourier transform of the 1-D projedion p(t).">®> From the inversion formula (1), the first step in the
reconstruction (inner integral) is to filter ead of the projedions using a filter with frequency resporse |f|. The filter has a
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Fig. 2. The basic thoradc cavity phantom used for the smulations. The phantom cgptures three main anatomical structures: the lungs,
heat, and spina column without the rib cage. The lungs, heat, and chest wall are ale to expand and contrad to simulate these
region'sfunction. Also, the entire model can be shifted haizontally to simulate patient movement.® The phantom resides within a
unit square.

pradicd limit in its digital implementation due to the cyclic nature of the discrete Fourier transform. The filter must be band
limited. Pradica concerns about attenuating high frequency noise dso warrant alimited bandwidth.

After computing the filtered projedions, we sample & (xcosw + ysinw) for each w and integrate over w In our
implementation, we have only a finite number of sampled projedions. Since the samples of the filtered projedion required
for back-projedion may lie between the avail able sampling instants, we linealy interpolate.®

We use athoradc phantom similar to the Shepp-Logan head phantom® to simulate a coss ®dion (SeeFig. 2). Our basic
model captures threemain anatomicd structures: the lungs, heat, and spinal column without the rib cage. Regions of like
functional adivity (e.g., right and left lung) are assgned similar densiti es, although not exadly the same. Dislike functional
components have widely varying densities. We used the thoradc model insteal of the Shepp-Logan head phantom so that
region gowth (i.e, heat, lung, and chest wall expansion), and bod; shift (i.e.,, horizontal movement) during image
aaquisition could also be studied.?

Our projedion-sice implementation colleds 1,000 marald rays at a detector that has a normalized length of 1.5. The
detecor length is greaer than the unit square in which the phantom resides to alow projedions from any angle without
clipping the phantom's feaures. A total of 800 dfferent angles are used. Our final reconstructed images have 512x512
pixels.

In Fig. 3, the spinal column geometries from Fig. 2 are enlarged. The top image is the original phantom while the bottom
image is from the recnstruction. The mgjority of the squared error for the entire image resides in the alge feaures. The
elipses in our phantom, and therefore their projedions, exceal the highest frequency of the |f| filter in (1), which creaes
aliasing.
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Fig. 3. The spinal column geometries from Fig. 2 are enlarged. The vast mgjority of the squared error for the entire reconstructed image
residesin the edge fedures.

Improving the number of projedion anges and the number of samples does reduce the squared error, but the eror still
resides primarily at edges. We, therefore, turn to post-reconstruction means for enhancement based on reassgnment.

3. REASSGNMENT

Any standard FIR linea convolutional filtering convolves the signal §[n] with afilter kernel h[n] of length M.
M_

1
r[n] =9n]Oh(n] = % k] hn-K] )
k=0
Note that the location of the result r[n] is placed at position n, which has a constant offset. Unfortunately, low pass linea
filters leave smoath regions relatively unaffeced while aeas of large change (discontinuities) are spread aut or smeaed. The
filtered values, however, are denser surrounding the discontinuity. We require ameansto rebuild these elges.

Reassignment is a nonlinea filtering approad that uses the center of mass to determine where r[n] should be placed. The
displacement function d[n] caculates the center of massof the signal, windowed with the filter:°
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Note that the location of the result r[n] is now reassigned to location d[n] instead of n as above (SeeFig. 4). One problem
with the discrete implementation is that the ratio in (3) is not necessarily an integer and could place areasdgned value
between sample points. Several interpolation methods have been presented;’® however, we mnstrain the locaion paint as
described below. First, let usreview some of the alvantageous properties of reassgnment.

d[n]=n

3

First, the convolution between two functions, one with length a and one with length b, results in a function that has length
a+b-1. Conversely, ressggnment results in a final function that has a length egual to the maximum of a and b. In other
words, reassgnment retains the same region of suppat. Seoond, Dirac delta functions remain urchanged by the
resssgnment operation. Finaly, triangle shaped regions in the original signal result in triangle shaped regions in the result
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Fig. 4. Traditional convolutional filtering places the result at the center n of the operation. Reasdgnment differs in that the result is
placal at the center of massd[n].

but with a smaller region of suppart after reasssgnment.’® All of these properties are useful when considering our
recmnstructed image.

There is, however, one @mncern. Reassignment limits the amplitude & the aenter of massto the amplitude of the filtered
signal r[n].** We dleviate the amplitude limit by addtive resssgnment. Insteal of strictly relocaing samples, we rebuild
edges by adding samplesto the eenter of mass The detail s of which are provided in Sedion 4.

We dso resolve any issue with d[n] not being an integer. Since we use high and low pass filters of length two in the next
sedion, let us focus our discussion to this gedfic case. Consider an edge (discontinuity) that has been reshaped by
computed tomographic reconstruction. To be considered an edge, we asume that there still exist two samples separated by a
relatively large jump. If atwo-point linea FIR filter h[n —k] is applied as in (2), a high pass(HP) filter output has a three-
point triangular shape while alow pass (LP) output has a threepoint smocth transition similar to the original edge with a
central point in the middle. The ceter of mass at an edge feaure is the pek of the triangular region for the HP output and
the midde point of the smoath transition for the LP output. We reamgnize the feaures creaed by the two-point high and low
passfilters, and use that information to our advantage.

4. UNDECIMATED WAVELET-DOMAIN REASSGNMENT

We locdize the gplication of the reassignment principle by using the undeamated dscrete wavelet transform (UDWT).
Wavelets have an integral edge detedtion property. A major drawbadk to wavelets is shift and rotation invariance™® Shift



invariance is addressed by using the undedmated wavelet transform. We aequately handle diagonal edges of any
orientation (rotation invariance) by using small image aeaoperations (2x2 pixels).

The UDWT provides a high and low passoutput. The single scale 1-D transform is given by:
LP[n] =% s[k] h[n-K], kOz,
K

HP[n] =S sk W[n-k], kOZ (4)
k

where LP[n] and HP[n] are the low and high pass UDWT coefficients, and h[n] = [1 1] and h'[n] = [1 -1] are the low and
high pass Haa filters, respedively. Since our algorithm operates grictly on rows or columns, §[n] is either the rows or
columns of the computed tomography reconstructed image before edge enhancement. Only a single scde expansion of the
wavelet transform is required to identify edge fedures.

We use the high pass Haa UDWT to identify the location of edges.'® The transform operates first on each row of the image.
We gply additive reassignment described below, then inverse transform. A second iteration is performed operating only on
the mlumns, after all operations on the rows are cmpleted. The inverse transformis given by:

S{n] = (LP{n] -~ HP[r) (5)

where S[n] is €ither the rows or columns of the post-reconstruction, localy edge enhanced image.

We focus first on the alditive reassignment of the HP output. With referenceto Fig. 5 (top), the HP signal is used to locae
edges by noting the triangular regions at discontinuities. A locad maxima of |HP[n]| greater than a user defined threshold
(TOL) identifies an edge. Let us cdl the locd pe& of the signal WC. To rebuild the edge, the samples adjacent to WC are
added to the locd pe&k, then reset to zero (additively reassigned), if they have the same signas WC. Oppasite signs indicae
that the computed tomography reconstructed signal overshot the elge; therefore, it should not be reassgned. The HP
resssgnment allows the ceantral point (WC) to exceal the original value of HP[n], which is necessary to rebuild the elge.
Also, our additive reassgnment conserves the HP signal's energy.

We must now consider the reasssgnment of the LP filtered output. The LP filtered signal does not have the same spiky nature
as the HP. It follows the trends in the original signal. Since we have reassigned the HP signal, the LP signal must be
adjusted before we can recombine the signals throudh the inverse UDWT (5). Modifications at samples of the HP output
require modifications at the same sample locdions to the LP signal. The question now is what values do we use to modify
the LP signal?

Since the pe& of the reassdgned HP output is the center of the transition in the LP output, we desire the "large” valued
sample ajacent to the LP transition point to increase and the "small" valued adjacent sample to deaease. We aljust the LP
samples adjacant to the LP transition point by the amount the HP samples were aljusted at the same positions as gown in
Fig. 5. Thisadievesthe more extreme slope desired for the LP signal.

We have one last concern. As mentioned previously, two cases exist for the HP output reassignment. We ather modified the
HP pe& (WC) by both adjacent samples or only one. (A Dirac delta function in the HP signal remains unchanged after the
HP resssgnment.) To appropriately handle both of these cases, we alditively reassign the values adjacent to WC to the LP
transition point if they have the same sign as WC. Depending on the edge dharaderistics of the original signal, the transition
point will not be dtered substantialy, or in the cae of only one HP adjacent sample added to the LP transition point, the
transition point becomes the start of the upward/downward slope of the edge.

Figure 5 shows the reassignment processgraphicdly. On the left, a locd maximum has been identified for the HP output,
and bah of the ajacant samples have the same sign. The ajacant samples are added or subtracded to neighboring samples
as own before the HP coefficients are reset to zero. Similarly, on the right, the same reasssgnment occurs even though we
have alocd minimum. The right most adjacent HP point is not considered, since it has the oppdsite sign as the locad
minimum. The procedure is also explained with the foll owing pseudo-code:

1) Traverse eab row of the high pass (HP) wavelet coefficients and ched if the ésolute value of a mefficient = TOL.
Determine if the identified sample is alocd maximum or minimum by checking if its absolute value is greaer than the
absolute value of its adjacent HP coefficients on the same row. We label alocd maximum or minimum WC.
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Fig.5. The origina row signal (top plot, middle) is decompased into its high and low pass comporents using the Haa unded mated
discrete wavelet transform (UDWT). Locd maxima of the asolute value of the high passoutput, greaer than a user defined
threshadld, indicate alge features. The aljacent values to these locd maximums (or locd minimums), if the same sign, are used to
reassgn bah the high and low pass adjacent vaues as shown in the top graph. (The right most adjacent value is not the same sign
as the locd minimum; hence, we display the reassdignment operation with dashed lines.) The bottom graph shows the resulting
waveforms for the high and low passcomporents. Both of these amporents are used to reconstruct the signal through the inverse
UDWT (bottom plot, midde).



a) If theleft adjacent HP coefficient has the same sign as WC:
i) Addtheleft adjaceit HP coefficient to WC.
i) Subtrad the left adjacent HP coefficient from the low pass (LP) wavelet coefficient at the same location.
iii) Subtrad the left adjacent HP coefficient from the LP wavelet coefficient at the same location as WC.
iv) Set theleft adjacent HP coefficient to zero.
b) If theright adjacent HP coefficient has the same sign as WC:
i) Addtheright adjacent HP coefficient to WC.
i) Addtheright adjacent HP coefficient to the low pass (LP) wavelet coefficient at the same location.
iii) Addtheright adjacent HP coefficient to the LP wavelet coefficient at the same locaion as WC.
iv) Set theright adjacent HP coefficient to zero.
2) After al row operations are mwmplete, apply inverse UDWT (5). Reped the steps above for column operations on the
column-wise UDWT coefficients.

The dfed of the reassignments along the rows is to sharpen verticd edges and the vertica component of any diagonal edges.
After all additive row reassgnments are complete, we inverse transform along the rows. Next, the forward transform (4) is
applied along the mlumns instead of the rows. Additive reassignment along the clumns is completed before gplying the
inverse transform. In this fashion, the horizontal edges and horizontal components of any diagonal edges are dso sharpened.

5. SIMULATION RESULT S

We demonstrate our procedure with the thoradc cavity phantom from Fig. 2. The phantom is contained within a unit square
and is composed of 512x512 pixels. To reoonstruct the phantom, we used 800 pojedion angles with each projedion
containing 1,000 sample positions on a detedor of length 1.5. The projedion-slicetheorem and a cnvolution filter are used.
We measure the squared error (SE) for the entire image using the foll owing equation:
M-1 N-1 N )
sE=y ¥ (plmnl-g[m,nl) (6)

m=0 n=0

where p[m, n] isthe original phantom image, and g[m, n] isthe post-reconstruction, locdly reassgned image.

As shown in Table I, the squared error for the entire image is 51.9. (No noise was added in the simulation.) For analysis
purposes, we define an edge & any pixel value that had a SE more than 0.0005 We based this value on the densities
assgned to the phantom.? Even though the smocth features have alarge SE (20.3) in the original recnstruction, over 95% of
that error exists outside of the "patient's’ body (i.e., the blad region outside the cavity in Fig. 2). Errorsin this region are
easily removed since they are dose to zero. Errors in smocth feaures primarily consists of Moiré patterns (visible in Fig. 3
(bottom)).

After completing the reassignment based, locdized filtering by first operating on rows then on columns, the SE was lowered
from 51.9 to 33.8. Reordering the processto first operate on columns then rows produced a SE of 34.1. In the former case
(SE = 33.8), adramatic reduction in error in edge feaures was observed whil e smooth region were basicaly unchanged.

The subjedive difference ca be seen by comparing the unfiltered reconstruction in Fig. 3 (bottom) against the image using

post-reconstruction, locdized resssgnment in Fig. 6 (bottom). Figure 6 (top) contains the same enlarged region of the
original phantom shown in Fig. 3 (top) for comparison.

TABLEI

SQUARED ERROR RESULTS FOR A ROW THEN COLUMN LOCALIZED REASSGNMENT

Origina Reonstructed After Locdized Change
Image Reassignment
Edge Regions 3161 ( 60.9%) 13.60 ( 40.2%) 18.01 (57.0%)
Smoath Regions 20.30 ( 39.1%) 20.24 ( 59.8%) 0.06 ( 0.3%)
Total 5191 (100.0%) 33.84 (100.0%) 18.07 (34.8%)
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Fig. 6. The spina column geometries from Fig. 2 are enlarged. Thetop imageisthe origina phantom whil e the bottom image is from the
post-reconstruction, locdized reasssgnment. Our algorithm uses the undedmated discrete wavelet transform and reassgnment to
rebuild only the edges. Note the nealy exad pixel-for-pixel reanstruction o the dli pses edges. (The width at the bottom of
ead dllipse does $row some difference @mpared to the original.) At the same time, the Moiré patterns of the original
reconstruction (Fig. 3 (bottom)) are still apparent. Non-edge feaures are not atered, as these may be key elements in the image
and do na contain the mgority of the aror.

6. CONCLUSIONS

In this paper, we have proposed a new post-recmnstruction, locdized resssgnment method. Pradicd applicaion of the
projedion-slice theorem for tomographic reconstruction limits the amount of high frequency information. Consequently,
edges are blurred whil e reproducing smooth regions acarrately. Our method uses the undedmated discrete wavelet transform
to locdi ze the reassgnment operation on the wavelet coefficients themselves. We essentially rebuild only the edge feaures.
We focus our effort on the edge features sncethe vast mgjority of the eror exists there. In addition, subtle variationsin gray
scde may indicate key fedures, such as a poarly diff erentiated tumor, and must not be dtered.

The results of our test case ae areduction in squared error at the edges of 57%, while aea with small variations in gay
scae were dtered only 0.3%.
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