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ABSTRACT

Joint signal representations of arbitrary variables extend
the scope of joint time-frequency representations, and pro-
vide a useful description for a wide variety of nonstationary
signal characteristics. Cohen’s marginal-based theory for
bilinear representations is canonical from a distributional
viewpoint, whereas, from other perspectives, such as char-
acterization of the effect of unitary signal transformations
of interest, a covariance-based formulation is needed and
more attractive. In this paper, we present a simple covari-
ance-based characterization of bilinear joint signal repre-
sentations of arbitrary variables. The formulation is high-
lighted by its simple structure and interpretation, and nat-
urally extends the concept of the corresponding linear rep-
resentations.

1. INTRODUCTION

Joint signal representations in terms of physical quantities
other than time and frequency have recently been investi-
gated by a number of authors [1, 2, 3, 4, 5, 6]. For example,
joint time-scale representations (TSRs) [1, 2] analyze signal
characteristics in terms of time and scale content. The mo-
tivation for studying such generalized joint representations
is to develop tools that can provide a useful description for
a broad class of nonstationary signal characteristics.

In existing literature, the construction of joint signal
representations (JSRs) has been based on two main ap-
proaches. Cohen’s pioneering method for constructing bi-
linear time-frequency representations (TFRs) interprets the
TFRs as quasi-energy distributions which satisfy certain
marginal constraints analogous to probability distributions.
The other main approach is to consider arbitrary quadratic
forms in the signal, parameterized by variables of interest,
and then to impose certain covariance constraints to char-
acterize a certain class of JSRs. The concept of covari-
ance relates prescribed changes in the signal to correspond-
ing changes in the JSR, in a well-defined and consistent
manner. For example, the affine class of TSRs character-
izes the representations which are covariant to time-shifts
and scalings; that is, the TSRs undergo similar changes in
the variables (time and scale) [1, 2]. Mathematically, such
signal changes are characterized by parameterized unitary
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transformations. Covariance properties are particularly im-
portant in situtions in which certain changes in the signal
(changes in the parameters of the unitary operator) need
to be estimated or detected. For example, the use of TFRs
and TSRs for optimal detection of signals with unknown
time, frequency or scale changes, crucially depends on such
properties [7, 8§].

In view of the recent interest in generalized JSRs, Cohen
has recently extended his original marginal-based method
to joint representations of arbitrary variables [3, 9]. A simi-
lar approach was proposed by Baraniuk [10] and was shown
by Sayeed and Jones to be equivalent to Cohen’s [11]. Co-
hen’s marginal-based approach seems fairly complete, and
is canonical from a distributional viewpoint since the rep-
resentations measure the distribution of signal energy as
a function of the variables. Some results on a covariance-
based generalization for two variables have been recently
reported by Hlawatsch and Bolcskei [12, 13]. However, as
we will elaborate later, their approach is restricted to the
case of two variables and has a rather complicated formula-
tion that does not highlight some of the key features of the
covariance-based approach.

In this paper, we present a simple covariance-based char-
acterization of JSRs of arbitrary variables, and our formu-
lation yields a canonical method for generating such JSRs.
Our theory, when restricted to the case of two variables, is
equivalent to that proposed in [12, 13] but, as we will see, it
has a much simpler, direct form that makes it conceptually
more attractive as well.

2. PRELIMINARIES

We assume that the signals of interest belong to a closed
subspace H of the Hilbert space L*(IR) of finite-energy sig-
nals. Let G C R be a parameter set and let {Ug}gec be
a family of unitary operators defined on H; that is, for any
9€G,Uy:H — H and (Ugs,Ugs) = (s,s) for all s € H
where (-,-) denotes the inner product defined on L*(R).
For a given g = (91,92, -+, 9n) € G, each “coordinate”, g;,
represents a variable or physical quantity of interest.

The family of unitary operators {Ug4} represents signal
transformations that are of interest to us; for example, the
time-frequency shift operator or the time-scale shift opera-
tor (time-shifts and scalings) for N = 2 (see the examples
in Section 4). In many cases, certain natural constraints on
the operators {U,} dictate that G is a group (we denote
group operation by e) and Uy is unitary representation of
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G on H [2, 14, 15]; that is,
U,U, = U,e (within a phase factor!) (1)

and this will be assumed throughout the paper.

Although we have considered arbitrary group represen-
tations of the form {U,}, it is worth noting that in most
cases of interest, the operator Uy will be a composition
of N unitary operators that are themselves unitary repre-
sentations of one-parameter groups.”? The reason is that,
usually, individual variables of interest, such as time, fre-
quency or scale, are associated with operators and then the
joint representations are constructed.

3. A CANONICAL COVARIANCE-BASED
CHARACTERIZATION

Suppose that {Ugy} is a group of unitary operators and we
are interested in bilinear (quadratic) JSRs that react in a
covariant fashion to the transformation of signals by U,.
For example, in [1], the affine class is defined as the class
of quadratic JSRs that are covariant to the time-scale shift
operator (see Section 4.2). A natural notion of covariance
is provided by the group relation; that is, the JSRs should
react to the unitary transformation Uy as

(PU,s) (a) = (Ps)(g "ea) forall a,ge G, (2)

where the signal s belongs to H and the quadratic JSR
is denoted by the operator P which maps the signal into
the space of (possibly) complex-valued functions defined on
G.% Recall that each “coordinate”, a;, of an element a of G
represents a variable or quantity of interest. The following
theorem provides a simple characterization of all bilinear
JSRs covariant to Uyg.

Theorem. For any bilinear JSR P satisfying (2), there
exists a linear operator K, : ¥ — H such that for all
seH

(Ps)(a) = (KpU,-15,U,-18), a €G . (3)

Conversely, any linear operator K, : H — 7 defines a
bilinear JSR via (3) which satisfies the covariance relation

(2).
Proof. First suppose that P is defined by (3). Then, we

have
(PUgs)(a) = (KpU,-1Ugs,U,-1U,s)
= <KPU(g_10a)_187U(g_loa)_15>
= (Ps)(9”'®a) (4)
In certain cases U,U, = ef¥(@:bU,,, but since we are

mainly interested in quadratic signal representations, this phase
factor will not be an issue. Even for linear representations such
a phase factor is inconsequential in most cases.

2More precisely, the underlying group G is a Lie group [14].

3Related group theoretic and covariance-based arguments
(coadjoint representations and the method of orbits [14]) are used
in [2] to derive analogues of the Wigner distribution for the affine
group, and in [16] to define wideband ambiguity functions.

and thus P satisfies (2). Conversely, suppose that P is an
arbitrary bilinear representation that satisfies (2). It follows
that there exists a family of linear operators {K, } such that
(Ps)(a) = (Kgs,s), a € G. Tt follows from (2) that

<KGU985 UQS> = (Kg_loasa S) (5)

for all s € H and for all a,g € G. By setting a = 6 and
substituting g for ¢, (5) yields

(Ps)(g) = (Kys,8) = (KgU,-15,U,-15) (6)

which completes the proof.*

Thus, the covariance properties of the representations are
determined by U, in (3), and all other properties are com-
pletely determined by the linear operator K,.*> The choice
of the operator K in controlling the properties of the rep-
resentation is completely equivalent to the choice of the
kernel in Cohen’s and affine classes.

3.1. Relationship to the approach in [12,13]

As mentioned earlier, in [12, 13], Hlawatsch and Bolcskei
propose a covariance-based generalized theory for the case
of two variables (N=2). In particular, they consider gener-
alized time-frequency representations, which necessarily re-
quires a remapping of coordinates (into time and frequency)
that turns out to have a complicated form in their con-
struction. Our formulation facilitates such a remapping in
a very simple and direct manner. Essentially, the remap-
ping is accomplished with a one-to-one and onto mapping
% : IR> — G between the coordinates® [12, 13, 5], and, thus,
a remapped generalized time-frequency representation, f’, is
obtained as (b = (¢, f) € R?)

(Ps)(t, f) = (Ps)(b) = (Ps)(1(b))
(Ko Ugyy-18 Ugey-18) (7)

However, we emphasize that in many situations, such as
those involving signal detection via JSRs [7, 8, 17], such a
remapping of coordinates is unnecessary.

3.2. Interpretation in terms of linear JSRs

Further insight into the interpretation of (3) can be gained
by using the singular value decomposition of the operator
K, (if it is compact):”

(Ps)(@) = ) ok (U, 15,v) (uk, U,-15)
k

= ZUk(S,Ua’Uk)(Uauk,s) (8)

k

which implies that the value of Ps at a particular value of a
is completely determined by the projection of U,-1s onto

4We note that in [2], the Bertrands arrive at a specialized
version of (6) for JSRs covariant to time-shifts and scalings.

50perators of the form U,KU, ! are also discussed in [16]
with regard to covariance properties of phase space functions
defined on G.

SNote that (¢, f) € R? and G C IR? in this case.

7Similar expansions for Cohen’s class of TFRs are discussed
in [18] and [19].



the singular vectors, ux’s and v’s, and the singular values
ox’s. If K is Hermitian, then

(Ps)(@) = D Mel(s, Uaur)|” ©)

where the A;’s are the eigenvalues and the ug’s are the
eigenfunctions. In particular, (9) implies that the result-
ing representation is real-valued. Moreover, if K is rank-
1 then (9) reduces to (Ps)(a) = A(s,Usu)|?>. The linear
transform

(Ls)(a;u) = (s, Ugu) = /s(t)(Uau)*(t)dt (10)

is a generalization of the short-time Fourier transform or
the wavelet transform, where u is analogous to the ana-
lyzing window or wavelet. Thus, from (9) we note that
any arbitrary (real-valued) bilinear JSR (corresponding to
a compact operator) can be thought of as a weighted
sum of the squared-magnitudes of a bank of linear JSRs
(Ls)(a; ux) = (s, Uaui).

3.3. Equivalence classes of JSRs

Two groups G and G’ are isomorphic if there exists a one-
to-one and onto mapping® ¥ : G’ — G. For a given N, the
space of N-parameter groups can be partitioned into equiv-
alence classes of isomorphic groups. Given a group G and a
unitary representation Uy of G on H, (3) characterizes the
class, C, of bilinear JSRs covariant to Ug. However, there
are infinitely many unitary representations of G on H and
all of them can be generated from U, by using different
unitary transforms W : H — H as

U, =W 'UW . (11)

For a given W and the associated unitary representation,
U, it follows from (3) that the corresponding class, C’, of
bilinear JSRs can be generated from C as

C'={PW:Pe(} (12)

making C’ and C unitarily equivalent [5, 20, 11].

Similarly, for any group G’ from the equivalence class of
G, with the isomorphism given by ¥ : G’ — @G, a unitary
representation of G’ on H can be generated from Uy, by
14, 11]

U’gll = U\Il(g’) . (13)

Thus, the class C” of JSRs covariant to U}, can be gener-
ated from C via an axis-warping transformation [5, 4, 11]
as

"={VP: (VPs)(g') = (Ps)(¥(g)), PEC}. (14)

We note that the remapping of coordinates into time-
frequency, as in (7), can also be thought of as transforming
the JSR (based on a group G) into another one correspond-
ing to another group that is isomorphic to G. It can be
shown that such a remapping of coordinates is an isometry
[5, 11, 13]. Thus, we conclude that for a given G, and a

8That is continuous and has a continuous inverse [14, 11].

unitary representation Uy of G, the classes of JSRs corre-
sponding to all the groups from the equivalence class of G,
and all the corresponding unitary representations, can be
generated from the class C (defined by Uy) via

" = {VPW : (VPWs)(¢"") = (PWs)(¥(¢")), P €C}

(15)

by choosing different unitary transforms W : H — H and

isomorphisms ¥ : G — G between G and another group

G’ in the equivalence class. Hence, all the classes of JSRs

corresponding to a particular equivalence class of groups are
unitarily equivalent to each other [5, 20, 11].

4. EXAMPLES
We now illustrate our method by applying the Theorem to
some well-known classes JSRs.
4.1. Cohen’s class of bilinear TFRs.
Let H = L*(IR) and let G = IR? with the group oper-
ation defined by (z1,71) ® (z2,%2) = (z1 + y1, 22 + y2);°
(z,9)"" = (—z,—y). For 7, v € R, define the time-shift
and frequency-shift operators as (Ts)(x) = s(z — 7) and
(F.s)(z) = /2™ s(x), respectively. Let a = (¢, f) and de-
fine the time-frequency-shift operator as U5y = F, T,
which satisfies the group composition law (1). Using (3) in
the Theorem, the class of JSRs covariant to time-frequency
shifts is characterized by

Ps)(t, f) = (KpUg,p)-18,Ug p)-18)
= (KPF,fotS,F,fotS)

//KP(UZ,Ul)S(UI +t)s" (u2 + t)

*JZﬂ'f(ul uZ)dulduz

// u, 7)s(t + u+7/2)

s*(t+u—7/2)e " dudr (16)

where K, is the kernel corresponding to the operator K,
and ®(u,7) = Ky(u — 7/2,u + 7/2). We note that (16)
is a familiar expression for Cohen’s class [3], and that this
operator-based characterization of Cohen’s class is also used
in [18].

4.2. Affine class of bilinear TSRs.

Let # = L?(IR) and G = IR.x (0, 00), and let the group oper-
ation be defined by (£1,c1)e(t2,c2) = (t1+cite, crc2) (affine
group); (t,¢)™* = (—t/c,1/c). Define the dilation operator
as (Des)(z) = —zs(z/c) and the time-scale shift operator
as Ug,cy = T¢D., which satisfies the composition group law
(1). Using (3) in the Theorem, the class of bilinear JSRs
covariant to time-shifts and scalings is characterized by

Ps)(t,c) = (KpUqe)-15,Uge)-18)
= K T_ t/ch/cs T—t/ch/c )

// K (uzy un)Wa(c(us + uz)/2 + 1, f)

7= g gy duy

9Can be thought of as a subgroup of the Weyl-Heisenberg
group [14].



- / / T((u— t) /e, f)Ws(u, f)dudf — (17)

where W, is the Wigner distribution of s defined by
Ws(t, f) = fs(t +7/2)s*(t — 7/2)e”7*"f"dr and the ker-
nel 11 is related to K, as M(u, f) = [Ky(u+ 7/2,u —
7/2)e”9?"I"dr, Note that (17) is a familiar characteriza-
tion of the affine class [1].

Similarly, other covariance-based classes, such as the hy-
perbolic class covariant to scalings and hyperbolic time-
shifts [4], and the power class covariant to scalings and
power time-shifts [6], can be characterized by using the
remapped characterization in (7).

5. CONCLUSION

Cohen’s generalized method for constructing JSRs of ar-
bitrary variables, although canonical from a distributional
viewpoint, is not adequate, in general, for characterizing the
effect of unitary transformations on signals; a covariance-
based approach is needed in such situations (for example,
in signal detection scenarios). In this paper, we have pre-
sented a simple characterization of JSRs having arbitrary
group covariance properties with respect to given unitary
signal transformations based on the group. Our formulation
yields a canonical method for constructing such signal rep-
resentations, and provides a simple interpretation in terms
of corresponding linear JSRs.

Our method is valid for an arbitrary number of vari-
ables, and, in the case of two variables, is equivalent to
the approach presented in [12, 13]. However, our formula-
tion is much simpler and more direct, making it conceptu-
ally more attractive. In particular, in [12, 13] generalized
time-frequency representations are considered which neces-
sarily involves a remapping of coordinates that turns out
to be rather unwieldy and complicated in their method.
Our characterization, on the other hand, facilitates such a
remapping in a very simple and transparent manner.

Finally, we mention that in the marginal-based approach
of Cohen’s, the covariance properties are difficult to an-
alyze in general, and in the covariance-based method,
the marginal properties become nontrivial to characterize.
Some preliminary results on such issues have been recently
reported [21, 13] but still more work needs to be done to
completely bridge the gap between the methodologies of the
two approaches. The results presented in this paper should
facilitate bridging the gap.
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