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ABSTRACT

Optimal detectors based on time-frequency /time-scale rep-

resentations (TFRs/TSRs) admit a representation in terms
of a bank of spectrograms/scalograms that yields a large
class of detectors. These range from the conventional
matched filter to the more complex higher-rank detectors
offering a superior performance in a wider variety of detec-
tion situations. In this paper, we optimize this complexity
versus performance tradeoff by characterizing TFR/TSR
detectors that optimize performance (based on the deflec-
tion criterion) for any given fixed rank. We also charac-
terize the gain in performance as a function of increasing
complexity thereby facilitating a judicious tradeoff. Our
experience with real data shows that, in many cases, rela-
tively low-rank optimal detectors can provide most of the
gain in performance relative to matched-filter processors.

1. INTRODUCTION

Spurred by the need for detection in nonstationary envi-
ronments, recently there has been substantial interest in the
use of time-frequency and time-scale representations (TFRs
and TSRs) for detection. For example, TFR/TSR-based
detection has been explored in mechanical diagnostics ap-
plications such as machine monitoring [1] and engine knock
detection [2]. More recently, a theoretical framework for
optimal time-frequency/time-scale detection has been de-
veloped that puts such primarily heuristic approaches on a
firm footing [3]; it characterizes the scenarios in which bi-
linear time-frequency/time-scale detectors are optimal and
derives the corresponding TFR/TSR-based processors.
The short-time Fourier transform (STFT), which can
be interpreted as a narrowband cross-ambiguity func-
tion (AF), is one of the simplest TFRs and has long
been used in radar/sonar detection: It efficiently imple-
ments the matched-filter detector corresponding to un-
known time (range) and frequency (Doppler) shifts.! Sim-
ilarly, the wideband AF is essentially the wavelet trans-
form (WT). Spectrograms/scalograms (squared magnitudes
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Derived from the generalized likelihood ratio test (GLRT)
for detecting an essentially deterministic signal with unknown
time-frequency shifts in white Gaussian noise.
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of STFT/WT) are used in noncoherent situations?, and pro-
vide simple and efficient detector structures.

The quadratic TFR/TSR-based detectors characterized
in [3], by virtue of their more general structure, facilitate
optimal detection in a broader variety of scenarios: Essen-
tially any second-order random signal with unknown or ran-
dom time-frequency/time-scale parameters, embedded in
arbitrary Gaussian noise, can be optimally detected. In-
terestingly, these more complex detectors can be realized
as a weighted sum of a bank of spectrogram/scalograms.
This fact is used in [3] to derive optimal detector struc-
tures based on partial signal information. In this pa-
per, we exploit this subspace-based formulation to opti-
mize the complezity versus performance tradeoff between
the simple spectrogram /scalogram-based matched filter de-
tectors applicable in specific scenarios, and the more com-
plex quadratic TFR/TSR detectors suitable in a wider va-
riety of situations.

More specifically, given a fixed level of complexity as de-
termined by the number, N, of spectrograms/scalograms
in the bank, we determine the optimal windows, and the
corresponding optimal combining weights, that character-
ize the N, processors. We use “deflection” as the optimal-
ity criterion,® since it is a measure of signal-to-noise ratio
(SNR) and hence reflects detection performance [4]. The
optimal combining weights satisfy a monotonicity property
which results in monotonically decreasing gain in perfor-
mance for each additional spectrogram/scalogram in the
bank. Thus, our results facilitate a judicious choice for the
size of the bank (and hence complexity), and determine the
optimal detector for that size.

In the next section, we provide a brief description of the
quadratic TFR/TSR detectors, and their subspace-based
formulation, as derived in [3]. Section 3 characterizes the
optimal reduced-rank TFR/TSR detectors and describes
some of their useful properties. Some concluding remarks
are presented in Section 4.

2. OPTIMAL QUADRATIC TFR/TSR-BASED
DETECTORS

It is shown in [3] that TFR/TSR-based detectors are opti-
mal for composite hypothesis testing scenarios of the form

Ho : z(t) =n(t)

2Unknown or random signal amplitude and phase
3Using the probability of error, or the Neyman-Pearson crite-
rion [4], as the performance measure is analytically intractable.

© IEEE 1996



Hi @ z(t)=s(t;e,f) +n(t), (a0 €R” (1)

where t € T, the observation interval, z is the observed sig-
nal, s(a, ) is an arbitrary zero-mean, second-order (pos-
sibly Gaussian) stochastic signal with unknown or random
parameters (o, 8), and n is arbitrary zero-mean Gaussian
noise independent of s(a, 3). The noise is characterized by
the correlation function Ry (t1,t2) = E[n(t1)n*(t2)], and
the signal is characterized (up to second-order statistics)
by the correlation function Ré"’/’ ). Based on the observed
signal, z, it is to be decided whether the signal s(a, ) is
present (H1) or not (Ho). The optimal decision is made by
comparing a real-valued test statistic, L(z), to a threshold.
The optimal test statistic, in all the scenarios discussed in
[3], is a quadratic function of the observations. As explained
next, the parameters («, 3) correspond to time-frequency or
time-scale for TFR, or TSR detectors, respectively.

2.1. Signal Models

The appropriate signal models in (1) for which quadratic
TFRs and TSRs form canonical detectors are characterized

by [3]

TFRs: (a,8) +— (r,v) €R’

R{T(t1,t2) = Rpp(ty—7,t2 —7)el ™ 1712 (2)
TSRs: (a,8) «— (7,¢) € R x (0,00)

R{(ti,t2) = cRpg(e(ts —7),c(t2 — 7)) 3)

for some correlation functions R,, and R,;, where
(t1,t2) € TxT. The correlation functions R, and R,g
are fundamental to the structure of TFR/TSR detectors
[3]-

2.2. Characterization of TSR/TSR Detectors

For the above signal models in (1), the corresponding op-
timal TFR/TSR-based detectors* for a variety of scenarios
are of the form [3]

Lyg (.’E) = maXx [(Py)(Ta v, (I)) + Frp (Ta V)] ) (4)

(msv)

Lrs(z) = max[(Cy)(r,1/e1D) + Frs ()], (5)

for some functions F,, and F,.; independent of z, where
P(®) is a bilinear TFR from Cohen’s class characterized
by the kernel @ [5], and C(II) is a bilinear TSR from the
affine class characterized by the kernel II [6]. In (4) and (5),
y = R, 'z, where R, is the operator defined by the noise
correlation function as

(Rez)(t) = /Rn(t,u):v(u)du, (6)

and we assume that R’ exists.® Moreover, the charac-
terizing kernels ® and II are completely characterized by
{Rn,R;} and {Rn, R}, respectively.

4Based on a GLRT using maximum likelihood estimates of the
parameters in the case of unknown parameters, and maximum a
posteriori probability estimates for random parameters [3].

5The presence of a white noise component guarantees the ex-
istence of R, L

2.3. Subspace-Based Formulation
The STFT with respect to a window h is defined as [5]

STFTy(t, f;h) = /.’c(u)h* (w—t)e ¥ du (1)
and the WT is defined as [7]

WTy(t,a;9) = % /m(u)g* (UT_t) du , (8)

where g is called the analysis or mother wavelet. The
TFRs/TSRs in the detectors (4)/(5) can equivalently be
expressed in terms of STFTs and WTs, respectively, as [3]

LT(@) = (Py)(r,v;®)
NTF‘
= Zak|STFTy(T,V;Uk)|2 (9)
k=1
LT (@) = (Cy)(r,1/c;I0)
NTS
= > blWTy(r, 1/c;00)|* (10)
k=1

where y = R !z, the u’s and the vg’s are the eigenfunc-
tions of R, and R, respectively, the az’s and the by’s
are positive coefficients that depend on the correspond-
ing eigenvalues, and N, and N, are the ranks of R,
and R,¢.5 This yields a subspace-based formulation of the
TFR/TSR detectors: The detection of the random signal
with unknown or random time-frequency/time-scale shifts
is accomplished via a weighted combination of the squared-
magnitudes of the projections onto the subspaces spanned
by the signal eigenfunctions. Note that if the signal correla-
tion functions R, /R, are rank-1, the above expansions
reduce to the conventional matched-filter detectors. This
representation of the detectors in terms of a bank of spec-
trograms/scalograms (rank-1 detectors) is exploited in the
next section to derive optimal reduced-rank TFR /TSR de-
tectors.

3. OPTIMAL REDUCED-RANK TFR/TSR
DETECTORS

The number N, /N, of spectrograms/scalograms in the
expansions (9)/(10) can be arbitrarily large depending on
the complexity of the random signal to be detected. How-
ever, our experience with real data has indicated that in
many cases the effective rank of the signal correlation func-
tion is relatively low. Thus, reduced-rank detectors, with
substantially smaller number of spectrograms/scalograms
in the bank, may be employed without any significant degra-
dation in performance. In this section, we derive such opti-
mal TFR/TSR detectors which yield the best performance
for a given level of complexity (number of rank-1 spectro-
grams/scalograms).

SRank is the number of nonzero eigenvalues in the eigenex-
pansion of the operators defined by these correlation functions
as in (6).



Defining the unitary time-frequency shift operator as
(Ur,y))(t) = e?*™*s(t — ) and the time-scale shift opera-
tor as (U¢,,0yz)(t) = ex(c(t—7)), the TFR/TSR detectors
(9) and (10) have the general quadratic form [3]

L&@) = (QneUG.,Ri'e, UG, Ry'z)
= i e [(Urappe, Ry ) | (11)
LT (@) z(_QlTSU(‘,fC)R;Im, Ul Ry'z)
= i/"k (U a6, R ) (12)
paset

for some positive definite operators Q,, and Q,g, where
the expansions are in terms of the eigenfunctions (px, qx)
and eigenvalues (\g, pux) of the operators.

Given the knowledge of signal and noise correlation func-
tions (R, ., R,s and R,), we are interested in finding rank-
N, (N, < NTF,N s ) detectors that yield the best per-
formance with respect to the deflection criterion (defined
shortly) at the correct value of the parameters. Math-
ematically, this is equivalent to finding the best rank-N,
quadratic detector for the simple hypothesis testing prob-
lem

Ho : z(t)
H1 H l‘(t)

n(t)
s(t) +n(t) , (13)

where s has correlation function Rs, and n is Gaussian with
correlation function R,. In the context of composite hy-
pothesis testing problem (1), R = R, or R, and such
a reduced-rank detector maximizes deflection at the correct
value of the parameters (a, 8) (more will be said about this
in Section 3.2).

3.1. Optimal Reduced-Rank Quadratic Detectors
A quadratic detector is completely characterized as

La(z) =(Qz,z) , (14)

for some linear (Hermitian) operator Q. For a quadratic
detector Lq, the deflection is defined as [4, 3]

(E1[Lq(z)] — Eo[Lq (-T)])z (15)

Q)= Varo (g (x)]

where F; denotes the expectation under the hypothesis i,
and Varp denotes the variance under Hy. Deflection is a
measure of SNR, and the deflection-optimal detector’, Q,,,
for the detection problem (13), is given by [4, 3]

Q, =R,'R.R;'. (16)

Now, consider a rank-N, detector of the form

(Qy, o) =Y wl(ws,2)|” (17)

7"The detector that maximizes deflection.

where v € IR and the wg’s are linearly independent but
not necessarily orthogonal to each other. The ws’s cor-
respond to the “window functions” for the various spec-
trograms/scalograms in the TFR/TSR-detector expansions
(9)/(10). The following result characterizes the best rank-
N, detector with respect to deflection.?

Theorem. The N, optimal window functions wg’s in (17),
which maximize deflection for the hypothesis testing prob-
lem (13), are

w?P =R,z , k=1,2--- Ny, (18)

where the z;’s are the N, dominant eigenfunctions, corre-

sponding to the N, largest eigenvalues 1 > d2--- > én,., of
the nonnegative definite SNR, matrix [9]°
S=R,’R.R,Y?. (19)

The corresponding optimal weights ~y,’s in (17) are propor-
tional to the eigenvalues; that is,

Y =ady , k=1,2---N,, (20)

for some a > 0, and the deflection of the corresponding
optimal rank-N, detector is given by

QP = Z 62, (21)

Proof (sketch). It can be shown that, within a constant
factor, the deflection H(Q) for the hypotheses (13) is given
by [4]%

Trace?(QR.)
Trace(QR..QR.,)

Making the change of variables Q= Ry 2QR1/~2 and rep-
resenting Q in terms of its eigenexpansion, Q(t1,t2) =
>k ek (t1)gx(t2), (22) reduces to

| crdi|?

H(Q) = (22)

Trace’(QS)

O~ Tace@@ ~

where dr, = (Sgk, gx) and the last inequality follows from
the Cauchy-Schwarz inequality, with equality holding if
¢t = adp, a > 0, for all k. We note that Q and Q have
the same rank since R, is assumed to be invertible. It fol-
lows that in order to maximize H(Q) for a rank-N, Q, the
gx’s should be chosen to be the N, dominant eigenfunctions,
zr’s, of S, and the ¢ ’s to be proportional to the correspond-
ing eigenvalues dx’s. The relation between Q and Q then
implies that the w;’s and the 7;’s in the expansion for Q
are given by (18) and (20). Moreover, (21) follows from (23)
since dr = Jy, for the optimal choice of the gi’s O.

8 A similar result is derived in [8] in the context of quadratic
beamformers.

°In [9], in a related but different problem, divergence-
optimal reduced-rank approximations to optimal detectors are

coPsidered. ) i
OFor both complex and real Gaussian noise.



Note that for N, = rank(S) = rank(R.y), Q;’V’:t =Q,.
Moreover, from (21) we note that the gain in performance
due to the addition of a new rank-1 processor in the bank

is
HQY', ) -HQY) 512%“
. =
H(QY) o8
which shows that the gain is monotonically decreasing as a
function of increasing rank (since &y > dx4+1 for all k).

3.2. Optimal Reduced-Rank TFR/TSR Detectors

From (11) and (12), we note that the underlying operators
of the TFR/TSR detectors are of the form R;!Q@AR;?!
where (a, 3) = (1,v) or (1,¢). The TFR/TSR-based struc-
ture of such quadratic detectors crucially depends on the
appropriate dependence of Q®?) on the parameters (see
the signal models in Section 2.1) [3], and the fact that
R, ' can be incorporated into preprocessing of the signal.
Thus, to preserve the TFR/TSR structure, we effectively
need optimal reduced-rank approximation to the operator
Q®#). By choosing Rs = Ry, or Ry in (13), and finding
the corresponding deﬂection optimal Q for detectors (14)
of the form Q = R, QR , we effectively design optimal
reduced-rank TFR/TSR detectors that maximize deflection
at the correct value of the parameters (7, v)/(7,c). It can be
easily shown that Q"pt =R, Q"ptRn, where Q‘)pt is derived
in the Theorem. Thus the N, optlmal window functions
for the spectrograms/scalograms in (9)/(10) can be deter-
mined by replacing Rs with R, /R, in the Theorem and
using the relations

; (24)

W = Rawi” =R’z , (Rs=R,.) (25
v = Raud” =Rz, (Ra=R,5)  (26)
for kK = 1,2---N,, in conjunction with the preprocess-
ing y = R, 'z. Moreover, the optimal combining weights
a3 /3P are the same as the 7;""’s determined in the The-

orem for Rs = R, /R,s.

3.3. Discussion

We first note that the optimal reduced-rank TFR/TSR de-
tectors are not determined by the dominant eigenvectors
of the signal correlation functions R,./R,s. Instead, the
dominant eigenvectors of the SNR matrix S, defined in (19),
determine the optimal structure.!! Moreover, the optimal
windows w;?"’s (or the u;?"’s) are not orthogonal in gen-
eral. However, they decorrelate the data under both hy-
potheses: If we define z; = (z,w("), then Eo[|zx|?] =
and Ei[|zg|?] = (14 8%) for all k, and E[zz]] =0 for k #1
under both hypotheses.

The expression (21) for the deflection of the optimal N,-
rank detector provides a direct method for choosing the
smallest N, for a prescribed loss in performance; the deflec-
tion of the full-rank detector is given by (21) by replacing
N, with the rank N, /N, of the underlying signal cor-
relation function R,./R,. Moreover, (24) quantifies the
relative gain in performance for each additional rank-1 pro-
cessor in the optimal reduced-rank detector.

11t is worth noting that in TFR/TSR detectors, the prepro-

cessing by R, !is different from the usual prewhitening trans-
formation R, 12,

4. CONCLUSIONS

The subspace-based formulation of optimal quadratic
TFR/TSR detectors yields a class of detectors governed
by a complexity versus performance tradeoff: Rank-1 spec-
trograms/scalograms are simple and efficient, whereas the
more complex higher-rank detectors can yield a superior
performance in a wide variety of detection scenarios. The
results of this paper optimize this tradeoff by characteriz-
ing TFR/TSR detectors of any given fixed rank that yield
optimal performance with respect to the deflection crite-
rion. Qur formulation also yields an explicit expression for
the performance gain achieved by the addition of a new
spectrogram /scalogram in the bank, which may be used to
determine the lowest complexity (rank) for a prescribed tol-
erance for degradation in performance. Experiments with
real data indicate that the effective rank of typical sig-
nals is indeed relatively small, making the general quadratic
TFR/TSR detectors viable in practice by virtue of the op-
timal reduced-rank structures presented in this paper.

Finally, we note that similar reduced-rank structures can
be derived for optimal detectors based on generalized joint
signal representations that may be useful in situations in
which signal parameters other than time, frequency or scale
are more appropriate [10].
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