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Abstract

We develop a simple multiscale model for the analysis and synthesis of nonGaus-
sian, long-range-dependent (LRD) network traffic loads. The wavelet transform effec-
tively decorrelates LRD signals and hence is well-suited to model such data. However,
traditional wavelet-based models are Gaussian in nature and so can at best match
second-order statistics of inherently nonGaussian traffic loads. Using a multiplicative
superstructure atop the Haar wavelet tree, we retain the decorrelating properties of
wavelets while simultaneously capturing the positivity and “spikiness” of nonGaus-
sian traffic. This leads to a swift O(IN) algorithm for fitting and synthesizing N-point
data sets. The resulting model belongs to the class of multifractal cascades. Cascades
are endowed with rich scaling properties that are better suited than LRD to capture
burstiness. We elucidate our model’s ability to capture the covariance structure of real
data and then fit it to real traffic traces. We derive approximate analytical queuing
formulas for our model, also applicable to other multiscale models, by exploiting its
multiscale construction scheme. Queuing experiments demonstrate the accuracy of the
model for matching real data and the precision of our theoretical queuing results, thus
revealing the potential use of the model for numerous networking applications. Qur
results indicate that a Gaussian assumption can lead to over-optimistic predictions of
tail queue probability even when taking LRD into account.

! This work was supported by the National Science Foundation, grant no. MIP-9457438, by ONR, grant
no. N00014-99-10813, by DARPA/AFOSR, grant no. F49620-97-1-0513, and by Texas Instruments.



1 Introduction

Traffic models play a significant role in the analysis and characterization of network traffic
and network performance. Accurate models capture important characteristics of traffic and
enhance our understanding of these complicated signals and systems by allowing us to study
the effect of various model parameters on network performance through both analysis and
simulation.

One key property of modern network traffic is the presence of long-range dependence
(LRD) which was demonstrated convincingly in the landmark paper of Leland et. al. [1].
There, measurements of traffic load on an Ethernet were attributed to fractal behavior or
self-similarity, i.e., to the fact that the data “looked statistically similar” (highly variable)
on all time-scales. These features are inadequately described by classical traffic models such
as Markov or Poisson models. In particular, the LRD of data traffic can lead to higher packet
losses than that predicted by classical queuing analysis [1, 2.

These findings were immediately followed by the development of new fractal traffic models
[3-5]. Fractional Brownian motion (fBm), the most broadly applied fractal model, is the

unique Gaussian process with stationary increments and the scaling property:
B(at) £ a" B(2), (1)

for all @ > 0 with equality in the sense of finite-dimensional distributions. The parameter
H, 0 < H < 1, is known as the Hurst parameter. The discrete increment process G(k) :=
B ((k+1)A)—B (kA), called fractional Gaussian noise (fGn), has an autocorrelation of the
form

2
o
ralk] = APk + 1P = 2k + [k — 117, (2)

where A is a constant. Gaussianity and the strong scaling (1) enable rigorous analytical
studies of queueing behavior [6-10], thus increasing the popularity of the fBm/fGn models.

Though fGn is an appropriate traffic model in some cases [11,12], it cannot model real-
world traces with a correlation structure which is poorly matched by the rigid, restrictive
(2). Indeed, convincing evidence has been produced establishing the importance of short-
term correlations for buffering [13-15] and so-called relevant time scales have been discovered
(14,16, 17].

Generalizations of fBm/fGn with a more flexible correlation structure than (2) can be
synthesized almost effortlessly using the amazing decorrelating capability of the wavelet
transform [18-21]. There, independent Gaussian wavelet coefficients with variance decaying
appropriately with scale form the building blocks for modeling both the long and short-term
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correlations of a target data set. Efficient O(N) algorithms based on the tree structure of
wavelet coefficients are available to synthesize N-point data sets [22,23]. We will call such
models wavelet-domain independent Gaussian (WIG) models.

As a consequence of their Gaussian nature, the fBm/fGn/WIG models can produce
unrealistic synthetic traffic traces in certain situations. In many networking applications,
for instance, we are nowhere near the Gaussian limit, in particular on small time scales.
Indeed, various authors have observed heavy-tailed marginals in traffic [24, p. 364], [25].
More practically speaking, when the standard deviation of the data approaches or exceeds

the mean, considerable parts of the fBm/fGn/WIG output are negative (see Figure 1(a) and

(b))-
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Figure 1: Bytes-per-time arrival process at different aggregation levels for (a) wide-area TCP
traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-3) [26], (b) one realization of the
state-of-the-art wavelet-domain independent Gaussian (WIG) model [22], and (c) one realization of
the multifractal wavelet model (MWM) synthesis. The top, middle and bottom plots correspond to
bytes arriving in intervals of 6ms, 12ms and 24ms respectively. The top and middle plots correspond
to the second half of the middle and bottom plots, respectively, as indicated by the vertical dotted
lines. The MWM traces closely resemble the real data closely, while the WIG traces (with their
large number of negative values) do not.



This paper has two main contributions. The first is a model for network traffic, the
multifractal wavelet model (MWM), based on a multiplicative cascade in the wavelet domain
that by design guarantees a positive output [27]. In its simplest form, the MWM is closely
related to the wavelet-based construction of fBm/fGn, having the same short list of param-
eters (mean, variance, H). However, the MWM framework boasts the flexibility, if desired,
to additionally match the short-term correlations like the WIG model. Each sample of the
MWM process is obtained as a product of several positive independent random variables.
The result is a positive nonGaussian, LRD process with multifractal properties. The MWM
is, thus, a more natural fit for positive arrival processes than the WIG. Indeed, multifractal
properties of TCP traffic have been observed first in [28] and and have since shown great
potential for advancing the understanding of modern networks [29, 30].

Fitting the MWM to real traffic traces results in an excellent match, far better than the
WIG model, visually (see Figure 1(c)) and, as we will see, in the burstiness as measured
by the multifractal spectrum, in the marginals and in the queueing behavior [27,31]. It
thus appears that the multiplicative MWM approach is more appropriate than an additive
Gaussian one.

The second main contribution of this paper is a novel multiscale queuing analysis of
the MWM, applicable to multiscale models in general including tree-based models like the
WIG. By restricting our analysis to data at time scales of powers of two, we exploit the
inherent binary tree structure of the MWM in deriving an easy-to-use and — as numerous
experiments verify — close approximation to the tail queue probability, valid for any given
buffer size. As a consequence, the MWM becomes viable for applications like call admission
control.

After introducing wavelets and explaining the WIG model in Section 2, we describe the
MWM and demonstate the importance of the nonGaussian nature of traffic on queuing in
Section 3. We then introduce the novel multiscale queuing analysis, which we apply to the
WIG and MWM. We provide empirical evidence for the accuracy of our theoretical queueing
formulas in Section 4. A tutorial introduction to multifractal cascades is found in Section 5.

The proof of an instrumental lemma appears in the Appendix.

2 Classical Wavelet Models for LRD Processes

2.1 Long-range dependence

Consider a discrete-time, wide-sense stationary random process {X;, t € Z} with auto-

covariance function rx[k] = cov(X;, X;1x). A change in time scale can be represented by
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forming the aggregate process Xt(m), which is obtained by averaging X; over non-overlapping

blocks of length m and replacing each block by its mean

Xtmfmql—l +---+ Xtm
m .

X =

(3)

Denote the auto-covariance of X\™ by r{™[k]. The process X is said to exhibit LRD if
its auto-covariance decays slowly enough to render Y32 rx[k] infinite [32]. Equivalently,
m " [O] — oo asm — oo, and the power spectrum Sx(f) is singular near f = 0.

An important class of LRD processes are the asymptotically second-order self-similar
processes, which are defined by the property ryx[k] ~ k?*?~2 for some H € (1/2,1) or,

equivalently [32],

[0]

k] = S5 (k1P = 2k k- 1) (4)

as m — 00. In words, these processes “look similar” on all scales, at least from the point-
of-view of second-order statistics. An example of such a process is the f{Gn, where the Hurst
parameter H in (1) is exactly the scaling parameter in (4).

To estimate H by the variance-time plot method, we fit a straight line through the plot
of an estimate of logvar(X (™)) against log(m). More reliable estimators of H have been

devised [33], in particular an unbiased one based on wavelets (see [34] and also [35]).

2.2 Wavelet transform

The discrete wavelet transform provides a multiscale signal representation of a one-dimensional
random signal C'(¢) in terms of shifted and dilated versions of a prototype bandpass wavelet
function ¢ (¢) and shifted versions of a lowpass scaling function ¢(t) [36,37]. For special

choices of the wavelet and scaling functions, the atoms
Yin(t) =207 (Pt — k), ¢ul(t) =27 ¢(2t—k), jkeZ (5)

form an orthonormal basis, and we have the signal representation [37]

Z Usok Baok(t) + Z Z Wik b (t (6)

j=Jo

Here the wavelet coefficients W;;, and the scaling coefficients Uj, are given by

= [COU®A, U = [C@) o) dt ™)

Without loss of generality, we will assume Jy = 0.
In this representation, k£ indexes the spatial location of analysis and j indexes the scale

or resolution of the wavelet analysis — larger j corresponds to higher resolution and j = 0
4



indicates the coarsest scale or lowest resolution of analysis. In practice, we work with a
sampled or finite-resolution representation of C(t), replacing the semi-infinite sum in (6)
with a sum over a finite number of scales 0 < j7<n—-1, n€Z,.
In this paper, we restrict our attention to the simplest wavelet system, the Haar. The
Haar scaling and wavelet functions are given by (see Figure 2(a))
1 < 1/2
é(t) = { (1) glfe E<l and v =1 -1, (1)/5 t§<t </1 (8)
0, else.
Since ¢, x(t) is a rectangular function, the Haar scaling coefficients U; ;, (7) represent the local
mean values of the signal in the time intervals [k277, (k + 1)277] and thus form a discrete-
time approximation of c(t) at resolution j. By design the support of ¢;(¢) are nested
within each other. This makes it natural to use a binary tree (Figure 2(b)) to display the
relationship between coefficients U; ;. Nodes at lower horizontal levels in the tree correspond
to representations of the signal at finer resolutions.
The Haar wavelet transform of a signal can be computed recursively starting from its

finest-scale scaling coefficients via [37]
Uiiip =27 2Usor + Ujors1), Wit =272 (Ujor — Ujoks)- 9)

This corresponds to moving up the binary tree and storing in the Haar wavelet coefficients
W; 1 the detail information lost while going from fine to coarse resolutions (Figure 2(b)).

The inverse Haar wavelet transform is computed via
Ujar = 272 (Ujr + Ujoa) and Ujopyr =272 (Usor g — Wyiay) (10)

and is equivalent to moving down the scaling coefficient tree to get finer representations of
the signal. It is easily shown that the forward and inverse Haar wavelet transforms of an
N-point signal can be computed in O(N) operations, using (9) and (10) respectively.

We introduce three different processes: the continuous-time signal C(t), its integral D(t),

and a discrete-time approximation C™[k] to C(¢). These three signals are related by

CMk] = / (k+1)2_6n*(t) dt=D((k+1)2") - D (k2™). (11)

k2—m

In this paper, C™[k] and D(t) will play roles analogous to fGn and fBm, respectively.
For notational simplicity, we will assume that both C(¢) and D(t) live on [0, 1] and that
C™[k] is a length-2" discrete-time signal. Thus, there is only one scaling coefficient Up, in

(6), that is, a single tree of scaling coefficients. (A more general case with multiple scaling
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Figure 2: (a) The Haar scaling and wavelet functions ¢;x(t) and 1;(t). (b) Binary tree of scaling
coefficients or local mean values of the signal. Nodes at each horizontal level in the tree are coarse
representation of the signal with lower levels corresponding to finer resolutions of the signal. (c)
Recursive scheme for calculating the Haar scaling coefficients Uj1 o, and Ujy1 2541 at scale j + 1
as sums and differences (normalized by 1/+/2) of the scaling and wavelet coefficients U, j, and W i
at scale j. For the WIG model, the W} ;’s are mutually independent and identically distributed
within scale according to W ~ N (0, 032-).

Q]

coefficients at the coarsest scale is treated in [27].) C™[k] relates directly to the finest-scale

scaling coefficients:
CMk] = 27U, k=0,1,...2" — 1. (12)
We will focus on modeling C™[k] in this paper.

2.3 Wavelet-domain Independent Gaussian (WIG) model

Wavelets serve as an approximate Karhunen-Loeéve or decorrelating transform for fBm [18],
fGn, and more general LRD signals [23]. Hence, the difficult task of modeling these highly
correlated signals in the time domain reduces to a simple one of modeling them approximately
by an uncorrelated process in the wavelet domain.

The WIG model synthesizes a Gaussian LRD process by generating the parent node
Up of the scaling coefficient tree as a Gaussian random variable with mean equal to the
sample mean of the process, and by generating the wavelet coefficients as independent, i.e.
uncorrelated, zero-mean Gaussian random variables which are identically distributed within
scale according to W, ~ N(0,07), with o7 the wavelet-coefficient variance at scale j [18-22].
Scaling coefficients at finer scales on the tree are then recursively computed through (10) until
the finest scale scaling coefficients U, , and hence the required signal C\(,yl)g[k] are obtained.
The result is a fast O(N) algorithm for generating a length-N signal (see Figure 2(c)).

An attractive feature of the WIG model is its flexibility in matching different correlation
structures of LRD processes. A power-law decay for the 0]2-’5 leads to approximate wavelet

synthesis of fBm or fGn [18,20]. However, while network traffic may exhibit correlations
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consistent with fBm or fGn asymptotically at large scale, it may have short-term correlations
that vary considerably from pure fBm or fGn scaling. Such LRD processes can be modeled
by setting 032- to match the measured or theoretical variances of the wavelet coefficients of the
desired process [22]. Thus, for a length-N signal, the WIG is characterized by approximately
log,(N) (the number of time scales) parameters.

The WIG is an additive model, because we can express the signal C\s&)g[k] directly as a
sum of independent random variables. First, we need some notation. Each shift £ at scale n
has a unique binary representation k = Y7/ k!2" 1~ where each k! € {0,1}. Letting k, = k
and k;_y = k; div 2 we have k; = 2-k;_ + k|_, = Z;-;% k;-Zi_l_j. The shifts k; correspond to

the ancestors of k£ at scale 7 and so we can write
n—1
CkLlk] = 27U, = 27" <U0,0 + Z(—l)k@mWi,ki) ’ (13)
i=0

This result can be derived by iteratively applying (10).

The WIG model is Gaussian by construction, but network traffic signals (such as loads
and interarrival times) can be highly nonGaussian (Figure 1). Not only are these signals
strictly non-negative, but also they exhibit “spiky” behavior corresponding to marginals
with tails that are somewhat heavier than the Gaussian. Moreover, this spikyness is poorly
captured by LRD. We seek a more accurate marginal characterization for these spiky, non-
negative LRD processes, yet wish to retain the decorrelating properties of wavelets and the
simplicity of the WIG model. This leads us to introduce our multiplicative model and the

concept of multifractals in the following sections.

3 Multifractal Wavelet Model

3.1 Haar wavelet transform and positive signals

In order to model non-negative signals using the Haar wavelet transform, we must constrain
the scaling and wavelet coefficient values to ensure that C(t) in (6) is non-negative. While
cumbersome for a general wavelet system,? these conditions are simple for the Haar system.
Since the Haar scaling coefficients Uj;, represent the local mean of the signal at different
scales and shifts, they are non-negative if and only if the signal itself is non-negative, that
is, C(t) > 0 < U, > 0, V j,k. This condition leads us directly to a set of constraints on
the Haar wavelet coefficients. Combining (10) with the constraint U,; > 0, we obtain the

condition
Ct)>0 & Wil < U, Vi, k. (14)

2The conditions are straightforward also for certain biorthogonal wavelet systems.
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3.2 MWM model

The positivity constraints (14) inspire a very simple multiscale, multiplicative signal model
for positive processes. In the multifractal wavelet model (MWM) [27] we compute the wavelet
coefficients recursively by

Wik =Ajr Uk, (15)

where the A, ;’s are independent random variables supported on the interval [—1, 1].

The MWM synthesizes a data trace in a manner similar to the WIG. After generating the
coarsest scale scaling coefficient Uy and the multipliers A;;, the MWM generates scaling
coefficients at finer scales of the scaling coefficient tree recursively using (10) and (15), that

is (see Figure 3)
Ujok =2 P14+ Ajir) Ujrg, Ujorer = 2721 = Ajiag) Ujoa, (16)

until the finest scale has been reached. The MWM is a multiplicative model because we
can express the signal C{y, [k] directly as a product (or cascade) of independent random

multipliers 1 + A, ;. Using the notation introduced in Section 2.3, we have

n—1
Clmulk] = 27U = 27" Upo [T (1 + (—1)% Aig,), (17)
1=0

which should be compared with (13).3

It is easily shown that the total cost for computing N MWM signal samples is O(N).
In fact, synthesis of a trace of length 2'® data points takes just seconds of workstation cpu
time. See [38] for a similar model to the MWM used as an intensity prior for wavelet-based

image estimation.

3.3 Model parameters

We choose the multipliers A;; to be symmetric about 0 and identically distributed within
scale; it is easily shown that these two conditions are necessary for the C'ISR;)VM process to
be first-order stationary [27]. Due to its flexible shape (see Figure 3(b)), compact support
and tractability to closed-form calculations, we choose the symmetric beta distribution® [39)],

B-11(pj,p;) (see Figure 3(b)) for the A;,’s, with p; the beta parameter at scale j.

3Tt is tempting to exponentiate (13) in order to obtain a process with a multiplicative structure as (17).
However, it should be noted that such an approach has various difficulties. First, the exponential of a zero
mean variable (W} ) is not of mean one (1+ A; ;). Second, it is hard to control correlation structure under
exponentiation.

“We denote a beta random variable with support [a, b] by Bas
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Figure 3: (a) Multifractal wavelet model (MWM) construction: At scale j, generate the multiplier
Ajr ~ B-1,1(pj,p;), and then form the wavelet coefficient as the product Wj = A; U . At scale
j + 1, form the scaling coefficients in the same manner as the WIG model in Figure 2(c). (b)
Probability density function of a 5_; 1 (p,p) random variable A. For p = 0.2, 5_11(p,p) resembles
a binomial distribution, and for p = 1 it has a uniform density. For p > 1 the density is close to a
truncated Gaussian density with increasing resemblance as p increases.

A precise model of Uy, requires a strictly non-negative probability density function to
ensure the non-negativity of the MWM output. In our simulation experiments we choose
Us,o ~ Bo,m(p-1,p—1) with M > 0.

3.4 Model training

Since the variance of a random variable A ~ _1 ;(p,p) is
var[A] = 1/(2p+ 1), (18)

we obtain from (15)

V&I‘(Wj_l,k) . 2 var [Aj—l,k] o ij +1
var(W; ) var [A;x] (1+var[Aj_1k]) pjo1+1

(19)

Thus, to model a target process with the MWM, we select the p;’s to match the sig-
nal’s theoretical wavelet-domain energy decay. Or, given training data, we can select the
parameters to match the sample variances of the wavelet coefficients as a function of scale.
With one beta parameter per wavelet scale, the MWM has approximately log, N parameters
for a trace of length N. Distributions with more parameters (e.g., discrete distributions or
mixtures of betas) could be used to capture high-order data moments at a cost of increased
model complexity [27]. See Table 1 for a comparison of the WIG and MWM properties.

To complete the modeling, we must choose the parameters py, p_; and M of the model.
From (15) and (18) we obtain (2py + 1)var(Wy) = IE[U§ ], which allows us to calculate po
from estimates of IE[Ug ] and var(Wj,). The parameters p_; and M of U are chosen using

estimates of IE(Up) and var(Upy).



Table 1: Comparison of the tree-based WIG and MWM models. For approximating a signal with
a strict fGn covariance structure, both the WIG and MWM require only three parameters (mean,
variance, and H ).

| WIG | MWM |
Additive Multiplicative
Gaussian Asymptotically Lognormal

LRD matched LRD matched

Independent wavelet coefficients | Independent multipliers

Monofractal Multifractal

log, N + 2 parameters log, N + 2 parameters

O(N) synthesis O(N) synthesis

3.5 Experimental results

The capability of both models, the WIG and the MWM, were tested using two real data
traces which are well studied in the literature. The first trace (LBL-TCP-3) contains two
hours wide-area TCP traffic between the Lawrence Berkeley Laboratory and the rest of the
world in 1994 [26] and the second trace (BC-pAug89) is one of the celebrated Ethernet data
traces collected at Bellcore Morristown Research and Engineering facility in 1989 [1]. The
LBL-TCP-3 trace that we use is of bytes arriving in time intervals of 6ms and the BC-pAug89
trace is of bytes per 2.6ms. To model the data, we use estimates of the 0]2- at the 15 finest
dyadic scales where there is sufficient data to obtain good estimates.

Figure 1(c) demonstrates that the MWM produces positive “spiky” data akin to the real
traffic, contrary to the WIG model. Also the marginals of the MWM traces are a much better
match to the LBL-TCP-3 trace than those of the WIG. Figure 4 displays a comparison at
three different aggregation levels

As expected the correlation structure is well matched by both, the WIG and the MWM,
since these models are both designed to do so.® For evidence we refer to the variance-time
plots of Figure 5 which were obtained by averaging the empirical variance-time plots of 32
independent realizations of the models.

To study the impact of the nonGaussian nature of the real data on queuing, we conduct
queuing experiments. We consider an infinite-length single-server queue with link capacity
800 bytes/unit time. In Figure 6, observe that the MWM traces closely match the queuing
behavior of the real data traces while the WIG traces do not®. We conclude that a Gaussian

assumption for spiky nonGaussian traffic can lead to over-optimistic predictions of tail queue

5To reduce the parameters of both, the WIG and the MWM, we could fit the variance-time plot of the
real data with say a cubic polynomial. Then, we would express the variances a']z- in terms of the 4 polynomial
coeflicients instead of matching teh variance exactly on all scales.

6In all experiments in this paper, confidence intervals plotted correspond to a confidence level of 95%.
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Figure 4: Histograms of the bytes-per-times process at different aggregation levels for (a) wide-
area TCP traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-3) [26], (b) one realization
of the WIG model, and (c) one realization of the MWM synthesis. The top, middle and bottom
plots correspond to bytes arriving in intervals of 6ms, 12ms and 24ms respectively. Note the large
probability mass over negative values for the WIG model.

probabilities. To gain further insight as to why this is the case, we are motivated to perform

a theoretical queuing analysis of the WIG and MWM.

4 Multiscale Queuing Analysis

Queuing analysis is fundamental to network engineering. Buffer dimensioning in routers and
call admission control are but two of the many crucial areas in networking research that rely
on an accurate characterization of the queuing behavior of data traffic.

The discovery of LRD in traffic has created a challenging new area of research in queuing
theory. Analytical studies prove that an infinite-length buffer with constant service rate
fed with traffic loads from fGn-based models has a tail queue distribution which decays
asymptotically like a Weibullian law

P[Q > b] ~ exp(—db*~>"). (20)
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Figure 5: Variance-time plot of a real data trace (LBL-TCP-3) and one realization of each, the
WIG and the MWM synthesis. Both, the MWM and WIG model, capture the correlation structure
of the real data.

Here, § is a positive constant that depends on the service rate of the queue [7,8]. Clearly,
(20) reveals that the decay of the tail queue distribution for fGn with H > 1/2 is much slower
than the exponential decay predicted by SRD classical models [2] which correspond to the
case H = 1/2. In spite of this result, there is still an ongoing discussion on the effect of LRD
on queuing, with researchers arguing both for and against its importance [14-17,40,41].

In this section, we present an approach to queuing analysis which is particularly adapted
to multiscale representations of signals and processes. More precisely, exploiting the inherent
binary tree structure of the Haar scaling coefficients of both traffic models, the WIG and
the MWM, we derive approximate formulas for their tail queue probability. Doing so, our

queuing formulas

are applicable to tree-based / multiresolution models in general,
e they are valid for any queue size, unlike (20) which is an asymptotic result,

e they capture more complicated correlation structures than the mere asymptotic LRD

exponent H,

e and moreover, they involve the entire distributions of data at multiple time resolutions

and not only the second order statistics.

Finally, we demonstrate experimentally that our theoretical results — which involve some
approximations — are in good agreement with the empirical tail queue behavior of both the
WIG and the MWM.
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Figure 6: Comparison of the queuing performance of real data traces with those of synthetic WIG
and MWM traces. In (a), we observe that the MWM synthesis matches the queuing behavior of
the LBL-TCP-3 data closely, while in (b) the WIG synthesis does not. In (c) and (d), we observe a
similar behavior with the BC-pAug89 data. We also observe that the MSQ is a close approximation
to the empirical queuing behavior for both synthetic traffic loads, the WIG and MWM and that it
is closer than the CDTSQ.

4.1 Queue size and multiple time scales

Consider a discrete time random process, the traffic load L;, i € Z which we think of as
entering an infinite buffer single server queue with constant link capacity c. Let (); represent
the queue size at time instant 7. Denote by K, the aggregate traffic arriving between time

instants —r + 1 and 0
0

t=—r+1
In the sequel, we refer to K, as representing the data at time-scale r. We set K := 0. Using

Lindley’s equation [42], it is easily shown that
Qo =max(Q_, + K, —r¢e, K,y — (r — 1), - - -, Ky). (22)

Since Q-, > 0 for all r, we must have Qo > sup,cz., (K, — rc). Denoting by —t the last

instant the queue was empty before time instant 0 (we set —t = 0 if Qg = 0), we obtain
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Qo = K; —tc <sup,ez, (K —rc). Thus if the queue was empty at some time in the past,

Qo = sup (K, —rc). (23)

reEZ 4

We will study the quantity Qo which is obtained by restricting the supremum in (23) to
time scales which appear naturally in a multiscale representation, i.e. the dyadic time scales:
Qo= sup (Kym —c2™). (24)

mE{O,,n}

Clearly, G < Qo and P(Qo > b) > P(Qo > b).
The first approximation of our analysis is:” P(Qq > b) ~ P(Qo > b). To justify this, we

require the notion of a critical time scale (CTS) [14,16,17]. The CTS is defined as
r* =arg sup P(K, —cr >b) (25)
'I‘EZ+

and the critical time-scale queue (CTSQ) as
CTSQ(b) :== P(K,« — cr* > b). (26)

It has been shown that CTSQ(b) ~ P(Qo > b) [14,16,17].
Similarly, we introduce now the critical dyadic time-scale (CDTS) as
Ty = arg sup P(K,—cr>b) (27)
re{2m:me{0,---,n}}

and the critical dyadic time-scale queue (CDTSQ) as
CDTSQ(b) := P(K,; — cr > b). (28)

Clearly, CDTSQ(b) < P(Qy > b) < P(Qy > b).

With the following two points we argue that an estimate of queue length distribution
by critical time scales does not change much if we taken into account only the distributions
at dyadic time scales (CDTSQ) instead of all time scales (CTSQ). The arguments are as

follows:

1. The CTS takes all time scales into account (25) while the CDTS considers time scales
less than and including 2" (27). However, for a given buffer size b, if n is chosen large

enough r* < 2™.

2. Dyadic time scales form only a small subset of Z, and so, (23) and (24) could be very
different. However, our queuing experiments demonstrate that CDTSQ and CTSQ are
almost indistinguishable for synthetic fGn traces (see Figure 7). Thus, the CDTSQ
appears to be a good substitute for CTSQ in real applications.

"Here, ~ denotes that two quantities are approximately equal.
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Figure 7: Justification for limiting the queuing analysis to dyadic time scales through comparison
of the critical time scale queue (CTSQ) and the critical dyadic time scale queue (CDTSQ) for the
WIG. Experiments used synthetic WIG traces corresponding to an fGn correlation structure for
different values of Hurst parameter H. In (a) H = 0.6, in (b) H = 0.7 and in (c) H = 0.8. In all
cases, the mean, standard deviation and link capacity were 7, 7 and 10 units respectively. Observe
that in all cases the CDTSQ and CTSQ are almost identical.

Ironically, Figure 7 also shows that CTSQ and CDTSQ, while being almost identical,
underestimate the actual empirical tail queue probability of the WIG trace. A better match
is found with our approximation, the multiscale queue (MSQ), which we introduce in the

next section.

4.2 Queuing analysis

4.2.1 Queuing formula for tree-based multiscale models

In this section, we develop a new multiscale approach to queuing analysis. We derive an ap-
proximate formula for the tail queue probability of tree-based multiscale models in general,®
including the WIG and MWM.

Performing an exact queuing analysis of tree-based models like the WIG and MWM is
very complicated because their binary tree naturally produces a process that is not strictly
stationary [27]. We would thus expect the distribution of the queue size to vary with time.
For an illustration notice that in Figure 2(b) the neighboring nodes Ujio4x and Ujyoag+1
share a parent node U, o, at scale j + 1 while the nodes Uj 9 4¢4+1 and Uj g 442 do not.

The second approximatition in our analysis is to equate the tail queue probability of the
models at the last instant 2" — 1 to the empirical tail queue probability. In other words, we
choose L; = C[2" — 1 +14] (i = —1,—2,...,—2" 4+ 1). The Haar scaling coefficients on the
branch linking Uy and U, o»_1, in other words, the right edge of the tree of Figure 2(b), are
then related to the quantities Kom (21) by

Ky = 272U, 5y, fori=0,---,n. (29)

8The analysis can be used for models not based on trees, but with an explicit relationship between data
at different time scales
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We will later demonstrate through experiments that this approximation results in a queuing
formula that closely matches the empirical tail queue probability (Section 4.3).

For the ease of notation let us denote Qo and @ of Section 4.1 by Q and Q respectively.

Let us now formulate a queuing analysis where we assume knowledge of only the mutireso-
lution representation of the arriving workload L;. Let E; denote the event { Kon—s < b+c2""%}.
The following Lemma simplifies our analysis, the proof of which is given in the Appendix.
Lemma: Assume that the events E; are of the form E; = {S; < b;}, where S; = Xy +
oo+ Xioq for 1 <1 < n and where Xy, -+, X,, are independent, otherwise arbitrary random

variables. Then for 1 <i<n
P(E;|Ei_1, -+, Ey) > P(E;).
Given the Lemma we have

P(Q>0) = 1-P(Q<b) = 1-P(N,E;) from (24)
= 1 —_— P(E()) ﬁ P(Ei|Ei_1, Tty E())

=1

< 1- ﬁP(E,-). (30)

We thus arrive at an upper bound approximation of P(Q > b) which would be exact if the
events E; were independent. We call this approximation the multiscale queue (MSQ), that
is,
MSQ(b) :=1— H P(E;). (31)
i=0
Thus, intuitively, the MS(Q assumes that dyadic time scales
e capture the effect of all time scales on the queue size and that

e they are sufficiently “far” apart for the events F; to be considered independent.

Recall from Section 4.1 that Q < Q. This implies that P(Q > b) < P(Q > b), which
means that MSQ is an upper bound of a lower bound on P(Q > b). Our queuing approxi-

mation is thus

P(Q > b) ~ MSQ(b) = 1 —[T7y P(Kon-s < b+ c2n). (32)

Note that only multiscale marginals enter in (32).
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4.2.2 Queuing analysis of the WIG
For the WIG, on choosing X := Upg and X; := —2/2W, ,i_; we obtain from (29)
. iil .
Kgn—i = 2_Z U0,0 + Z X] = 2_ZSZ'. (33)
j=0

Setting b; = b2° + ¢2", we observe that the WIG satisfies the conditions of the Lemma.
Since for the WIG Ky.-i is Gaussian, the probability P(E;) can be computed from the

cumulative distribution of a Gaussian distribution [39].

4.2.3 Queuing analysis of the MWM

Denoting A, 51 by A;, (29) reduces to

i—1

KQn—i = U()y() H(l - AJ)/Q (34)
=0
The event E; is thus
i—1
Ei = {Kp-i <b+c2""}={U [[(1 - 4;) < b2" + 2"}
j=0
i1 .
= <log(Up) + > log(l — A;) <log(b2" +c2") ¢ . (35)
j=0

By setting X, := log(Uy), X; := log(1 — A;) and b; := log(b2¢ + ¢2™) we see that the lemma
applies to the MWM. Consequently, we use (32) to approximate P(Q > b) for the MWM.

For the MWM, obtaining P(E;) is not as straightforward as for the WIG. If Uy is equal
to a constant M times the random variable (g 1(p—-1,¢—1), then from (34) Kan.-i is M times
several independent f3;; random variables. We approximate Ks.-i/M by a beta random
variable, (3 1(d;,e;), using Fan’s approximation [39,43]. Thus, if (1 — A;)/2 ~ Bo1(pj,q;)
then

di=S(T - S*)7(S—=T) and e =(1-S)(T -85 (S-T), (36)
where - . ( )
o D p pi(pj+1

S = —— and T = ) 37

jgl pj+4; jy_l (pj +45)(pj + 45 +1) (37)

This approximation matches the mean and variance of the actual distribution of Ky.—: exactly
and closely approximates the first 10 moments [43]. We thus use the cumulative distribution

of a f random variable to calculate P(E;), for which several approximations are available [39].
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Figure 8: Validation of the theoretical formula (32) for the tail queue probability of the MWM and
WIG models. These experiments used synthetic MWM traces corresponding to an fGn correlation
structure for different values of Hurst parameter H. In (a) H = 0.6, in (b) H = 0.7 and in (c)
H = 0.8. In all cases, mean, standard deviation and link capacity were 7, 7 and 10 units respectively.
Observe that in all cases the MSQ formula gives a good approximation to the empirical queuing
behavior.

4.3 Validation of the MSQ and influence of marginals

From Figure 6 we observe that the MSQ gives a close approximation to the empirical tail
queue probability of the WIG and MWM and is closer than the CDTSQ. Further experiments
with synthetic traces with an fGn correlation structure confirm this result (Figures 7 and 8).

Since the MSQ uses not just the variance (or even only the LRD parameter H), but the
entire distribution of data at multiple time scales, it is a tool fit to assess the influence of
marginals on queuing. Our results allow to conclude that matching only the variance-time
plot of heavy-tailed spiky data with a Gaussian model can lead to optimistic predictions of

tail queue probability.

5 MWM is a Cascade

The MWM is closely related to the theory of multiplicative cascades. Cascades provide
a natural framework for producing positive “bursty” processes and offer greater flexibility
and richer scaling properties than fractal models such as fGn and fBm. Closely related to
cascades is the powerful theory of multifractals, a statistical tool for measuring “burstiness”

superior to LRD which merely measures “high variability”.

5.1 Cascades

The backbone of a cascade is a construction where one starts at a coarse scale and develops

details of the process on finer scales iteratively in a multiplicative fashion. The MWM, e.g.,
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is a multiplicative cascade: as (16) and (17) reveal we may write (see Figure 9(a))

n (14 (=1)kr Ay,
CE k] = 27" MY [ Miy,,  with M}, = (1+(=1) 5 1”“-1). (38)
=1

This construction procedure naturally results in a process that “sits” just above the
zero line and emits occasional positive jumps or spikes. In contrast, additive self-similar
models such as fGn and the WIG “hover” around the mean with occasional outbursts in

both positive and negative directions.

5.2 Multifractal analysis

Intuitively, multifractal analysis measures the frequency with which bursts of different strengths
occur in a signal. Consider a positive process Y (¢). The strength of the burst of YV at time

t, also called the degree of Holder continuity, can be characterized by

1
a(t)= lim ap where o) := - log, ‘Y((kn +1)27") — Y(an_")‘ (39)

kn2—m—t
where k,2”" — t means that ¢ € [k,27", (k,+1)27") and n — oco. The smaller the (%), the
larger the increments of Y around time ¢, and the “burstier” it is at time ¢. The frequency

of occurrence of a given strength «, can be measured by the multifractal spectrum:

1
f(a) :=1lim lim —log, #{k, =0,...,2" —1:0} € (a—¢c,a+e)}. (40)

0 n—00 1,

By definition, f takes values between 0 and 1 and is often shaped like a N and concave.
The smaller the f(«), the “fewer” points ¢ will exhibit «(t) ~ a. If @ denotes the value «(t)
assumed by “most” points ¢, then f(@) = 1. See Figure 9 for the multifractal spectrum of
the LBL-TCP-3 data set and of synthetic MWM data. We observe that the MWM captures
the spectrum of the real data except for large values of «. This means that the MWM does

not generate as many small values as the signal possesses.

5.3 Multifractal spectrum and higher-order moments

Though (40) gives us a simple measure of burstiness in data, in practice it is impossible to
compute the right side of (40). However, f(a) can be obtained through the use of high and
low-order moments of the signal Y'(¢).

Define the partition function that captures the scaling of different moments of Y as

) 1
T(q) := lim —log, B [Sa(q)], (41)
with
2m—1 q 2n—1 e
Su(g) = 3 [V((ka +1)27") = Y (ka2™")[" = 32 27%. (42)
kn=0 kn=0
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Figure 9: (a): The MWM translates immediately into a multiplicative cascade in the time domain
(cf. (38)). (b) Multifractal spectra of the LBL-TCP-3 data and one realization of the MWM
synthesis. The MWM spectrum matches that of the real data closely except for large values of «
or small values of the signal.

The multifractal spectrum f(«) and T'(g) are closely related, as the following hand-waving
argument shows. Grouping in the sum S, (¢) of (42) the terms behaving as of =~ «, and

using (40) we get
Sn(q) — Ea Zanwa (2—na)q ~ Ea 2nf(a)2—nqa ~ 2—ninfa(qa—f(a))‘ (43)

We conclude that we must “expect” T'(¢) to equal inf,(qo — f(«)), the so-called Legendre
transform of f(a). For the special case of an MWM process, i.e., Y = D (see Section 2.2
for the definition of D), it can be shown (see [44]) that the inverse relation holds, called the

multifractal formalism
fle) =T"(e) := inf (qa = T(q)) - (44)
In order to estimate T'(q) from a data set, it is customary to use the approximation
270 ~ S, (q). For the MWM this is equivalent to

27 -1
27T x5 §™ 12792y, 14 (45)

k=0
The slope of a linear fit of log S(;)(¢) against j will give T'(g).
For the MWM, assuming the moments of the multipliers M; ;, converge to a limiting

random variable M ~ [y (p,p), we find

1 — Clp+q)T(2p) _
To(q) = —1 — log, E[M?] = { 1 —log, tigprarm 10> P (46)
—00 if ¢ < —p.
For the self-similar fBm,
) gH -1 forg> -1,
T = { 70 2] )
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On taking the Legendre transform of 7tg,, we observe that fBm possesses only one degree of
“burstiness” («(t) = H) which is omnipresent. Consequently, fBm (or its increments process
fGn) cannot capture the complicated multifractal behavior or “burstiness” of real data like
the LBL-TCP-3 trace (Figure 9).

6 Conclusions

The importance of capturing scaling properties when modeling traffic loads has now been
well recognized [1,27]. In our work, we rely then on multiscale models such as the Gaussian
WIG and nonGaussian MWM models. Both models are built on binary trees which allow fast
O(N) algorithms. By matching the variance of a given traffic trace on all dyadic scales, both
models are capable of capturing the correlation structure with only about log N parameters.

The main contribution of this paper is a multiscale queuing (MSQ) approach, which
provides a closed form queuing formula for tree-based models. Unlike earlier work on queuing
of LRD traffic [8,9], our formula takes into account the entire cumulative distribution of the
traffic at different time scales and not just their variances.

The implications are manifold. First, the MSQ is applicable to multiscale models such
as the WIG and the MWM. As a consequence, the versatile MWM model is now viable for
numerous networking applications, including call admission control.

Second and most importantly, the MSQ is to our knowledge the first tool for assessing the
impact of marginals on queuing. Earlier queuing experiments with synthetic traffic produced
using the WIG and the MWM had already suggested that marginals have an influence on the
queue length distributions of LRD traffic [31]. Confirming these findings with the marginal-
sensitive MS(Q, we are now able to conclude that indeed modeling heavy-tailed spiky data
with Gaussian models can lead to over-optimistic predictions of tail queue probability.

Future research will aim at making the MWM practicable for prediction. The parameters
of the MWM could also be used to capture the effect of different protocols on shaping data
flow. In short, the use of the MWM in real-time network protocols and control algorithms

seems very promising.

Appendix

Lemma: Assume that X; (i = 0,...,n) are independent, but otherwise arbitrary random

variables and let S; = Xo + ...+ X;. Let b; be arbitrary numbers. Then

P(Si<bi‘sl<bl,l:O,...,i—l) ZP(S,<bZ)
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Proof
Let us first spell out some notation. By f; and F; we denote the probability density function
and cumulative density function, respectively, of a random variable Z. Furthermore, we
denote by Fy g(z) the cumulative density function of Z knowing the event E.

For convenience, let us write F; := {S; < b;} for short, and let us introduce the auxiliary

random variables Y, := Z;, := Sy = X, and

Y; = Si‘Eifla"'aEO and ZZ = Sz‘EZ::EO (7,> 1)

To prove the lemma it is enough to show that
Fy,(z) = Fs,(z) (48)

for all z € IR and Vi, and then setting x = b;.

To give a proof of (48) by induction, we note first that Fy,(x) > Fg,(z) is trivial. Next,
we assume that (48) holds for ¢ and show that it holds also for ¢ + 1. To this end, we note
first that Bayes’ rule [45] implies that

Fy((E) .
Fr(z) = { ™6 D02 s ), (49)
1 otherwise

The key to the proof, however, is to note is that Y;,1 = Z; + X;11 where X;,; is independent
of S;, and hence of E; for j <i. In short, X;,; is independent of Z;. This allows to write

Fy, (z) = P(Zi+ Xi1 <7)
00 fT—Tit1
= [ [ fZi(Zi)fXH_l (LEZ'_H) de dxi—H
- /— Fz.(z ~ xi"‘l)inH(xi-i-l) dwip

> [ Ru@ - wi) fren (@) doi from (49)

> [ Fa(e- o) (@i) dogy from (48)

= P(SZ + Xi+1 < $)

= Fs.(2) (50)
This proves the claim by induction. &
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