Tensor Product Basis Approximations for Volterra Filters

Robert D. Nowak*, Student Member, IEEE, Barry D. Van Veen!, Member, IEEE,

Department of Electrical and Computer Engineering
University of Wisconsin-Madison, WI 53706 USA

Abstract — This paper studies approximations for a class of nonlinear filters known as Volterra filters.
Although the Volterra filter provides a relatively simple and general representation for nonlinear filtering,
often it is highly over-parameterized. Due to the large number of parameters, the utility of the Volterra
filter is limited. The over-parameterization problem is addressed in this paper using a tensor product basis
approximation (TPBA). In many cases a Volterra filter may be well approximated using the TPBA with
far fewer parameters. Hence, the TPBA offers considerable advantages over the original Volterra filter in
terms of both implementation and estimation complexity. Furthermore, the TPBA provides useful insight
into the filter response. This paper studies the crucial issue of choosing the approximation basis. Several
methods for designing an appropriate approximation basis and error bounds on the resulting mean-square

output approximation error are derived. Certain methods are shown to be nearly optimal.

I. INTRODUCTION

Volterra filters have received increasing attention in the recent signal processing literature and
have been applied to many signal processing problems such as signal detection [17, 19], estimation [2,
17], adaptive filtering [12], and system identification [6, 8, 10, 11, 14]. The Volterra filter is motivated
by Weierstrauss’” Theorem, which shows that a Volterra filter provides an arbitrarily accurate
approximation to a given continuous function on a compact set. One of the major drawbacks of
Volterra filters is the large number of parameters associated with such structures. In this paper, it
is shown how the Volterra filter can be approximated to yield parsimonious filter structures that
are adequately flexible for large classes of problems. The general nth order Volterra filter is a
degree n polynomial mapping from IR™ — IR. To simplify the presentation, this paper focuses on
the homogeneous nth order Volterra filter. The homogeneous nth order Volterra filter is a linear
combination of n-fold products of the inputs. Since the general nth order Volterra filter is the sum
of linear (1st order) through homogeneous nth order Volterra filters, extensions to the general case

are straightforward.
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Let {X;}"7., be real-valued random variables. The output of an nth order homogeneous Volterra
filter applied to {X;}7., is a random variable

m

Y = Z h(kl,...,kn)Xkl"'Aan7 (1)
k1yeenskn=1

where h, referred to as an mth order Volterra kernel, is deterministic and is real-valued. If
E[XJQ”] < 00,j=1,...,m, then it follows from Hélder’s inequality that E[Y?] < co. Throughout
this paper, such moment conditions are assumed whenever necessary. Without loss of generality A
is assumed to be symmetric. That is, for every set of indices k1, ..., k, and for every permutation
(m(1),...,7(n)) of (1,...,n), M(kr(1y, .-, kn(ny) = B(K1,...,ky), and hence there are ("*7:~1) de-
grees of freedom or parameters in A, where ("*7~1) is the binomial coefficient.

The large number of parameters associated with the Volterra filter limit its practical utility to
problems involving only modest values of m and n. Therefore, it is desirable to reduce the number
of free parameters in the Volterra filter in situations when m and/or n is large. Efforts to reduce
Volterra filter complexity are proposed in [1, 4, 6, 9, 10, 11, 14, 20]. Each of these references adopt
one of two basic approaches.

In the first approach [6, 9], the Volterra filter is approximated using a cascade structure composed
of linear filters in series with memoryless nonlinearities. The output of such cascade models is not
linear with respect to the parameters and therefore identifying the globally optimal model parame-
ters is a nonlinear estimation problem. Both [6, 9] suggest algorithms for estimating cascade model
parameters, however neither method guarantees globally optimal solutions. This is a drawback of
the cascade structure.

The second approach, which is the focus of this paper, is termed the tensor product basis ap-
prozimalion TPBA method. The TPBA represents the Volterra filter as a linear combination of
tensor products of simple basis vectors. In contrast to the cascade methods, the output of the
TPBA is linear in the parameters. Therefore, estimation of the TPBA parameters is a linear es-
timation problem and hence conditions for global optimality and uniqueness of the estimate are

easily established. There are several motivations for the TPBA.

1. Tensor product arises naturally in Volterra filters
2. Provides efficient implementation
3. Reduced parameterization for adaptive filtering and identification problems

4. Provides useful insight into filter behavior



The use of such approximations is not new. Originally, Wiener [20] proposed using a tensor
product of the Laguerre functions as a multidimensional basis for representation of the Wiener ker-
nels of a nonlinear system. Implementations and representations of discrete Volterra kernels using
the discrete Laguerre basis has been recently examined in [1, 10, 11]. Although the Laguerre basis
has many desirable properties, other basis choices are possible. Hence, it is of interest to determine
appropriate bases for different nonlinear filtering problems. Choosing a basis for the TPBA is
analogous to choosing a filter structure and hence the choice of basis and parameter estimation are
separate issues. The focus of this paper is choosing a basis. Methods to determine optimal bases
for quadratic filters are given in [4, 11]. In [4] an SV-LU quadratic kernel decomposition is used to
implement quadratic filters in an efficient fashion. The notion of the “principal dynamic modes”
of a quadratic system is introduced in [11]. The principal dynamic modes are obtained from the
eigendecomposition of a matrix composed of the first and second order kernels. Both methods
[4, 11] apply only to quadratic Volterra filters.

The basis design methods of this paper are not restricted to quadratic filters and hence extend
existing results. They are based on complete or partial characterization of the filter or input and
are related to two distinct nonlinear optimization problems. The use of input information in the
design process appears to be a new contribution. The design methods are based on suboptimal
procedures aimed at solving the two optimization problems. Bounds on the approximation error are
derived for each method. Two of the design methods are shown to be nearly optimal in the sense
that the resulting approximation error is within a factor of the global minimum and conditions that
guarantee global optimality are given. The TPBA also provides a practical framework in which to
address the trade-off between model complexity and performance. The error performance of the
TPBA can be bounded for a specified model complexity (basis dimension) using the approximation
error bounds. Alternatively, given a desired error performance, the the required complexity of the
TPBA can be deduced.

The paper is organized as follows. The TPBA is introduced in section II and two design criteria
for determining an appropriate basis, based on a filter or input error, are proposed. In section III,
the filter error criterion is examined. Two basis design methods aimed at minimizing the filter error
are developed and the approximation error is bounded for each case. One method is shown to be
nearly optimal. The input error criterion is studied in section IV. Two methods are proposed that
attempt to minimize the input error and error bounds are derived. One of the input error methods

is also shown to be nearly optimal. The implementational complexity of the TPBA is compared to



the homogeneous nth order Volterra filter in section V. In section VI, some illustrative examples

of the proposed methods are given.

II. VOLTERRA FILTER APPROXIMATION VIA TENSOR PRODUCT BASES

The following convenient notation is employed. If A € IR?*P, then define A = A and re-
cursively define AW = A»1) @ A for n > 1, where @ is the Kronecker (tensor) product [3]. If
A; e RT*P 4 =1,...,n,then @, A; = A; ®---® A,,. Next let h be an m"-vector composed of
the elements in the kernel A and X = (X1,..., X,,)" so that (1) is re-written as Y = hTX ),

Now let P denote the orthogonal projection matrix corresponding to an r < m dimensional “ap-

proximation” subspace 4 C IR™ and consider approximating h by h = P(Yh. This approximation

is called a rank ™ TPBA to h. Note that

Y = hTX™ = pTpx ™ = hT(pX)(. (2)
Hence, the output of the approximated Volterra filter is equivalent to the output of the original
filter driven by the approximation PX of the input. This interpretation of the TPBA is useful in
designing the basis using knowledge of the input.

Expressing P as P = UU”, where U is m x r, shows that

T

Y = (hTU™)u™ x) = nTx5, (3)

where hy = (U)Th and Xy, = UTX is 7 x 1. Also note that h is constrained to lie in the space
spanned by the columns of U, Both the vector hy and Xgn) possess the same types of symmetry
as h and X, Therefore, the Volterra filter thgn) may be implemented in an efficient fashion
that accounts for these symmetries. The key point is that h has only ("*7=1) degrees of freedom,
far fewer degrees of freedom than h. The degrees of freedom a measure of filter complexity. This

complexity affects filter estimation as well as filter implementation. In section V (15), it is shown

that, for m,r > n, the ratio of degrees of freedom in h to degrees of freedom in h

" ~ (L n
("t T vm

Clearly, the reduction in complexity can be dramatic. Several possible applications of the TPBA

are outlined next.

Filter Implementation



From an implementation perspective, the cost of computing the transformation Xy = UTX,
forming the products in X&”), and computing thgn) is often much less than the cost of forming
the products in X and computing hYX (), Note that both filters, hYX () and thgn), possess

the symmetries discussed previously and therefore may be computed in an efficient fashion that

accounts for these symmetries. The implementation complexity is examined in section V.

Adaptive Filtering and System Identification

If U is determined from prior knowledge, the TPBA is useful for adaptive filtering and identifi-
cation problems. In adaptive filtering applications, the TPBA provides an flexible filter structure
with far fewer adaptive degrees of freedom than the original Volterra filter. In nonlinear system
identification problems, the TPBA has fewer parameters than the original Volterra filter structure
and hence more reliable parameter estimates are obtained from finite, noisy data records. Methods
for determining an appropriate basis based on incomplete prior knowledge of the filter or input are
discussed in sections III and IV respectively. The application of the TPBA to system identification

is discussed in the examples of section VI.

Filter Analysis

Note that U also determines a null space of the TPBA filter. That is, any input X lying in
the linear subspace that is orthogonal to the columns of U produces zero output. Hence, given a
filter h, a good approximating basis U provides information about the filter response and thus the
TPBA is also a useful analysis tool. For example, if the basis U spans a bandpass subspace in the
frequency domain, then it may be inferred that h only responds to the input component in the
passband and hence is bandlimited. Another interesting application is demonstrated in Example 1
of section VI of this paper where it is shown that if the basis U consists of a single vector, then h

has a cascade structure.

The main goal of this paper is to suggest several methods for choosing an appropriate basis
for the TPBA and to bound the corresponding approximation errors. Several design methods are
studied. The methods are based on complete or partial knowledge of either the filter or the input

process. Specifically, the design methods for the basis U attempt to minimize the filter error:

es = |lh = hl}z = |(1®) = PU)h];, (4)



where || - |2 denotes the I3 vector norm, or the input error:
ei 2 [1X) — (PX)™]| = tr(E[(X — (PX)M) (X — (PX)) )12, (5)

where E is the expectation operator and tr is the trace operator. The input error arises naturally
from the input interpretation (2) of the TPBA. It is easily verified that the mean square output

error is bounded by

E[(Y - Y)] < efef. (6)

Hence, minimizing either error reduces the bound on the mean-square output error of the filter
approximation.

From (6) it is easily seen that if null(I" — P(")) denotes the null space of I — P(") then the
error is zero if either of the following conditions hold:

Al. h e null(IM — p(™)

A2. range(X) € null(1®) — P(Y)) w.p.1.
Of course, in practical situations Al and A2 may not be exactly satisfied. Deviations in both
conditions result in a non-zero output error that is characterized by h, P, and the 2nth order
moments of the input process.

The next two sections consider the following two optimizations problems:

1) Find P to minimize e; = ||(I") — P()h||; subject to rankP < r < m.

2) Find P to minimize ¢; = || X" — (PX)(")|| subject to rankP < r < m.
One could try to solve both optimization problems and then choose a final basis for the TPBA by
combining these results, however this approach is not pursued in the present work.

Can an optimal projection matrix be found in either case? Since the set of rank < r orthogonal
projection operators on IR™ is compact and because the errors are continuous functions of the
projection matrix there is no problem with the existence of a minimizer (see Appendix B, proof
of Theorem 1). However, both optimizations are nonlinear and a closed form expression for a
minimizer is not known to exist. The optimizations may be approached numerically; however, in
general the problems are non-convex. Hence, finding a globally optimal solution may not be feasible.
In this paper, several suboptimal approaches are considered. The methods vary in computational
complexity and required prior knowledge. Bounds are obtained on the approximation error in each

case and two methods are shown to be nearly optimal.



III. FiLTErR ERROR DESIGNS

In this section, two approaches to designing the tensor product basis based on the filter error are
examined. The first approach is in general suboptimal and only requires prior knowledge of the
filter’s support in the Fourier domain. The second approach requires complete knowledge of the
filter and is shown to be nearly optimal in the sense that the resulting filter error ||(I™ — P(*))h|,
is within a factor of \/n of the global minimum.

A. Method I: Frequency Domain Filter Error Design

Let H denote the n-dimensional Fourier transform of the kernel  and H denote the Fourier

transform of the kernel approximation h (corresponding to h= P(”)h). Let
B = [—wsz, —wi] U [wy, wa],

denote the frequency range of interest, where 0 < w; < wy < 1/2. Consider approximating H on

A
B"=Bx---xX B.
(AR —
n times

Define w(f) = (1,¢e7/, ..., elm=1)2n/)H

w2 [ winwn)a. (7)

and let f = (f1,..., fan)

Proposition 1.

/ |H(f) - H(E)2df = hT[W) 4 pIw @ pt) — p)w) _ w)p)] h,

The proof of Proposition 1 involves some simple Kronecker product manipulations and is not given

here. A complete proof of the proposition is found in [15]. Proposition 1 leads to the bound,
[ ()~ () < B [WE) 4 POWRE) _pOWE) WORO,, (s)

where the second norm on the right hand side of (8) is the matrix 2-norm. Thus, for this approxi-

mation a logical choice for P is an orthogonal projection matrix that minimizes

Hw(n) + p@w pn) _ plr)y(n) _ W(”)P(”)Hg.

Theorem 1: The orthogonal projection matrix P, w corresponding to the subspace spanned by r



eigenvectors associated with the r largest eigenvalues of W minimizes
W 4 pIwp) _ plrw(n) _ W p()|,
over all orthogonal projection matrices of rank < r. Furthermore,

(W 4 P W pl) — pUY W) — WPl = [WIE W = WP, o

) )

A proof is given in Appendix B. If w; = 0, then the eigenvectors of W are the discrete prolate
spheroidal sequences [18] and it can be shown that for large m the first 2mw, eigenvalues of W
are close to unity and the remainder are approximately zero. Hence, in such cases a rank r”,
r = 2mwy, TPBA is possible with negligible error. In general, the rank of W is proportional to
the time-bandwidth product 2m(w; — wq). Note that the results easily extend to more general sets
than those with the form of B. The following corollary summarizes the results. The proof follows
in a straightforward manner using Parseval’s Theorem and Theorem 1. The details of the proof
are given in [15].

Corollary 1: Tf h = P%h and |H|? < € off B™, then
b =R < [Ih[227 7 A + €,

where A\y > - > A, > Apy1 > --- > Ay, > 0 are the eigenvalues of W.

B. Method II: SVD Based Filter Error Design

This design method is based on the singular value decomposition and directly utilizes the filter

h. The following theorem suggests a nearly optimal choice of P.

1

Theorem 2: Let m,n > 1 and let h be an nth order symmetric kernel. Define the m™™" x m
matrix
HE2H],.. . 1],
where i i
h(i,1,...,1,1) h(i,1,...,1,m)
hix,1,...,2,1 h(v,1,...,2,m
Hz = ( ) ( ) ) 1= 17 >, I
| h(i,m,...,m,1) h(t,m,...,m) |




Let 09 > --+ > 0, > 0 denote the singular values of H and let vq,...,v,;, be the associated
right singular vectors. Furthermore, for r < m, let ¥, denote the compact set of all m x m
orthogonal projection matrices with rank < r, and let P,y € £, be the orthogonal projector onto

Span(vy,...,v,). Then

S o< min [(@Q)h -k} < PR -k <n Y ok
i=r+1 Ql""7Qne r =1 i=r+1

Theorem 2 is proved in Appendix C and is an extension of the SV-LU quadratic filter decom-
position of [4] to the general Volterra filter case. Note that choosing P,y in this fashion results in
an approximation error || Pﬁfﬁh — h||; that is within a factor of \/n of the global minimum. The
following three corollaries summarize some important properties of the approximation Pg,?)h.

Corollary 2.1: There exists a rank r orthogonal projection matrix P such that P™h = hif and
only if rankH < r. Moreover, if rankH < r, then Pgﬁ%h = h.

Proof: IfrankH < r,then Y. ., 0 = 0. Hence, by Theorem 2 this implies that || h — quTLH)h |3 =
0. On the other hand, if rankH > r, then for every rank r orthogonal projection matrix P,
|h — PWh|2 = |H — PO"YHP|2 > ||H — HP|2 > 0. The identity |h — P™Wh]|2 =
|H — PO~YHP |2 follows from Kronecker product identity (P6) in Appendix A and the defi-

nition of the Frobenius matrix norm || - [|g. a

The next result is immediately obvious from the previous corollary and shows that H can be
used to test if h is factorable.

Corollary 2.2: There exists a g € IR™ such that h = g(®) if and only if rankH = 1.

If rankH > r, then in general the lower bound in Theorem 2 is not achieved by the approxi-
(n)

mation P; yh except in the following special cases examined in Corollary 2.3.

Corollary 2.3: Partition H into m X m symmetric matrices Gy, ..., G,,»-2 so that
H=[Gy,...,Gn-2]".

|h — Pﬁgh I3 = >1, .1 07, the lower bound in Theorem 2, if and only if P,z and G; commute

N n—2
for every e = 1,...,m" 4.

The proof of Corollary 2.3 involves some Kronecker product identities and is given in [15]. Notice



that because the quadratic kernel is a symmetric matrix, Corollary 2.3 implies that in the quadratic
(2)

case Py zh is always a best approximation. The special case of a quadratic filter was previously

treated in [4, 11].

C. Discussion of Methods I and I1

Method I (frequency domain design) only requires knowledge of the filter’s support in the Fourier
domain. In some applications, this prior information may be available without complete knowledge
of the filter. Hence, in such cases, this approximation may be used prior to an identification exper-
iment (see Example 1 in section VI). In general, Method I is suboptimal. In contrast, Method II
(SVD design) requires complete knowledge of the filter. Method II also has the desirable character-
ization of near optimality in the sense of Theorem 2. It should be noted that Method II can be also
applied in practice to initial kernel estimates obtained using other methods. This may improve the
accuracy of the initial estimates by removing basis vectors corresponding to small singular values
that may reflect errors in the estimate. Also notice that the use of such initial estimates obviates
the need for “exact” knowledge of the filter.

The two filter error methods in this section are easily extended to a non-homogeneous nth or-
der Volterra filter composed of n homogeneous filters (linear through nth order homogeneous). In
terms of Method I (frequency domain design), the error bound given in Corollary 1 is extended
by computing the error for each homogeneous component separately and using the sum of these
bounds as a bound for the error for the complete non-homogeneous Volterra filter. Method 2 (SVD
design) has an elegant generalization to the non-homogeneous case. Separately form the H matrix
for each homogeneous kernel (e.g., linear is a 1 x m vector, nth order is an m™~! x m matrix) and
stack them to obtain a single (3_%, m~!) x m matrix. The dominant right singular vectors of this

matrix form a single basis for the complete nth order non-homogeneous Volterra filter.

IV. INpUuT ERROR DESIGNS

Define the norm of any ¢ x 1 real-valued random vector Z, ¢ > 1, as |Z|| = tr(E[ZZ7])!/2. Recall

that the input error is defined as
ei = XU = (PX)| = tr(E[(X™ - (PX)) (XM — (PX)) )12, (9)

The objective of this section is to find a rank r orthogonal projector P so that PX is a good ap-
proximator of X in the sense of (9). Two suboptimal approaches are considered. The first approach

utilizes the optimal mean-square rank r approximation of X. That is, the rank r orthogonal projec-

10



tion matrix P, 5 that minimizes || X — PX]|| over all orthogonal projection matrices P of rank < r is
computed to obtain the approximation (PERX)(”) to X (™. This method is particularly appropriate
when X has a linear correlation structure (i.e., X is a linear transformation of independent random
variables). The second approach is based on the singular value decomposition and is closely related
to Method II in the filter error section. The second design is also shown to be nearly optimal in

the sense of (9).

A. Method III: Correlation Matriz Based Input FError Design
Theorem 3: Let P be an orthogonal projection matrix on IR™. If X is an m-dimensional random
vector with finite 2nth order moments, then there exists a constant 0 < a,, < oo such that

1) = (PX) O < [ XX - X,

and
X — (PX)™))2 < X - PX]?
no, —————
X ()]|2 - 112

Theorem 3, which is proved in Appendix D, suggests the choice of P that minimizes || X —PX||? =
trf(R — PR — RP 4+ PRP), where R = E[XX”] is the autocorrelation matrix of X. Using the
eigendecomposition R = UDU? and defining C = UDY2UT write

tr(R — PR — RP + PRP) = t1((C — CP)T(C — PC)) = ||C - CP||2, (10)

where || - || is the Frobenius matrix norm. It is easily established (using Theorem A1l in Appendix
A) that a rank r orthogonal projection matrix minimizing (10) is the projection matrix P, » onto the
subspace spanned by the eigenvectors associated with the r largest eigenvalues of C or equivalently
R. Theorem 3 implies that if P,z X is a good approximation to X, in the mean-square sense, then
(PERX)(”) may be a good approximation of X (") in the same sense. Of course, “how good” depends
on a, and ||X]||. In general, to determine a,,, knowledge of the 2nd and 2nth order moment of
the each individual random variable in the vectors X and (I — P, )X is necessary. However, if
X is a linear transformation of independent, symmetric random variables, then «,, is determined
independent of P, 5.

Theorem 4: If X is a linear transformation of a vector U of independent r.v.’s Uy, ..., U, with
symmetric distributions £, ..., F,, then a constant satisfying the inequality in Theorem 3 is given

by a, 2 max;=1,..q On,Fj where ap F; is a positive number satisfying
E[U7"] < anp B[U", j=1,...,q. (11)

11



The proof of Theorem 4 is also in Appendix D. Notice that under the assumptions of Theorem 4,
the bounds in Theorem 3 are computed using only the second order moments of X and the bounds
(11) relating the 2nd and 2nth order moments of the independent U process. The next corollaries
illustrate three important applications.

Corollary 4.1: If X is jointly Gaussian mean-zero, then

2n)!
a, = (n!QBL . (12)

Proof: If X is jointly Gaussian mean-zero, then there exists a matrix C such that X = CU, where

U is a vector of independent zero-mean Gaussian r.v.s. For a zero-mean Gaussian distribution F,
(2n)!

irrespective of the variance, it is well known that a, 7 = 55 . O

Corollary 4.2: Let {Xj;}rez be a stationary sinusoidal process

g
Xy = Z c;eos(wik — ¢;5),
i=1
where {qﬁj}gzl areii.d. uniform on [-7,7],¢1,...,¢, € Randwy,...,w, € R. I X = (Xg, ..o, Xp—my1) 7T,
then
2" -1
o = (2n —1) 7
(2n)!!

where (2n — 1)'=1-3---2n— 1L and (20)!! £ 2-4-..2n.

The proof is straightforward and is found in [15].

Corollary 4.3: If Uy, ...,U, areindependent, symmetric, uniformly distributed random variables,
then

3TL
oy = .
2n + 1
2n

Proof: 1f U; is uniformly distributed on [—b;,b;], where b; > 0, then E[U?"] = 217);4—1' Hence,

E[U?"] = QSLE[UE]”. O

B. Method IV: SVD Based Inpul Error Design

This nearly optimal design method requires complete knowledge of the 2nth order moments of
X and does not make any assumptions regarding the correlation structure. The following theorem
is proved in Appendix E. Recall that the vec operator applied to a matrix stacks the columns of
the matrix into a vector.

Theorem 5: Let R, = E[X(”)X(”)T] and let C,, be a matrix square root satisfying C2 = R,,. Let C

12



be an m(27—1)

xm matrix of the m?" elements in C,, appropriately ordered so that vec(C) = vec(C,).
Let 69 > --+ > 0, > 0 denote the singular values of C and let vq,...,v,;, be the associated
right singular vectors. Furthermore, for r < m, let £, denote the compact set of all m x m

orthogonal projection matrices with rank < r and let P, . € ¥, be the orthogonal projector onto

Span(vy,...,v,). Then

oo < omin XY - (@Q)XM 2 < X0 - PRXM 2 < 0 ¥ o2,
i=r+1 17~~~7Qn€pr =1 i=r+1

The following corollary is analogous to Corollary 2.1 and can be proved using Corollary 2.1 and
Theorem 5.

Corollary 5.1: There exists a rank r orthogonal projection P such that || X(") — PUIX () |12 = o
if and only if rankC < r. Moreover, if rankC < r, then || X(®) — Pg@X(”) I* = 0.

A condition for the global optimality of the projector P, ., similar to Corollary 2.3, is also easily

established and is not given here.

C. Discussion of Methods III and IV

Method III utilizes knowledge of the second order correlation of X. The design method and error
bound only involve second order moments of the X process, except for the bounding constant a,.
Under the assumption of linearity, a, is determined using only the 2nd and 2nth order moments
of the underlying independent, symmetric process. In general, Method III is suboptimal.

Method IV requires the 2nth order moments of X and does not make any linearity assumptions
on X process. Also, Method 1V is nearly optimal in the sense of Theorem 5. The 2nth order
moments are generally more difficult to compute or estimate than the second order correlations.
Also, the design method involves computing the square root of an m™ X m”™ matrix, requiring
O(m?>") floating point operations, and hence is much more computationally intensive than Method
III. However, note that the complexity of Method IV is similar to the complexity of the least squares

identification of the original Volterra kernel h.

V. IMPLEMENTATIONAL COMPLEXITY

The main source of computational burden for the Volterra filter arises in the number of multi-
plications required per output. To study the relative computational efficiency of the TPBA, the
number multiplications required per output using the rank ™ TPBA h and original Volterra filter

h is compared.

13



Two cases are considered. First, the “paralle]” implementation of h, in which all products
of the input are computed for every output. To form all unique n-fold products of X requires
(n — 1)("*™=1) multiplications and another ("*7~!) multiplications are required to compute the
output. Second, consider the “serial” implementation, in which the input is a time-series. In this
case, after initialization, only products involving the new input need be computed at each time
step. The number of such products is given by the number of ways ny > 1,ng,...,n, > 0 may be
chosen so that >~ , n; = n or equivalently the number of ways ny,ng,...,n, > 0 may be chosen
so that 3™, n; = n — 1 which is ("7'7*~1). Hence, the number of multiplications required for a
“serial” implementation of his ("t7~1) 4 (n — 1)("™72).

To study the complexity of the TPBA h recall that the output is computed with a ("*7-1)
parameter Volterra filter hy and the transformed data vector Xy = U7X, where the columns of
U span an r-dimensional subspace 4 C IR™ (3). To form X, and all unique products in Xgn)
requires rm + (n — 1)("*7=1) multiplications (the first term corresponds to the transformation and
the second corresponds to formation of the necessary products). With these products in hand,
the output is computed with an additional ("*7~!) multiplications. Note that due to the required
transformation, no savings is available in the serial implementation using the TPBA.

The exact ratios, denoted 7, and 7,, of the number of multiplications using h versus h, for

parallel and serial implementations respectively, are given below.

_ #mults(h)  rm 4 (")

e = #mults(h) n(”"'?;}—l) ’ (13)
and )
~ #mults(h) rm + n("TT=1)
s = #mults(h) — ("t 4 (n— 1) (14)

To gain some insight into the behavior of these ratios as a function of subspace dimension,
consider the following large m asymptotic analysis. Assume that n > 2 and let 0 < p < 1 be fixed.

Let r = [pm], the smallest integer greater than or equal to pm. The number p is the ratio of

the approximation subspace dimension to m. Using (1 + —2<)""! ~ ", (1 + #)”"’1/2 ~ 1, and

Stirling’s formula m! ~ /27 m™+1/2 ¢~ it follows that

) rm p

7(n+m—1) ~ p s (n+777174—1) ~ TL' ’171”_2 .

(15)

Hence, X
~ #multsth) (n—1)lp
= #mults(h) mn—?

+0" (16)
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and

_ #mults(h) n!p
s = #mults(h)  mn—2

+ np" = nn,. (17)

The above expressions show how the reduction in complexity is related to the ratio of the ap-
proximation subspace dimension to m, p & . In the special case of quadratic filters, further

simplification is obtained by applying the method proposed in [4].

VI. NUMERICAL EXAMPLES

Two examples are studied in this section. The first example demonstrates the filter error design
methods applied to a simulated system identification problem. The second example studies the

input error design methods for a Laplacian noise input.

A. Fxample 1 — Filter Error Design

In this example, the performance of the filter error design methods is studied. To accomplish
this, the third order nonlinear system given in Fig. 1 is simulated. The system is a cascade of
an FIR linear filter L, whose impulse response is depicted as the solid curve in Fig. 2, followed
by memoryless, cubic polynomial p, represented by the curve in Fig. 3. The complete system is
denoted as F. Cascade systems of this form are often called “Wiener” models [7]. The memory
length of L is 40. The input z is i.i.d. uniform on [—1, 1]. This input is applied to the system and
2000 input and output samples are collected. The goal is to identify the “unknown” system F from
the input and output data.

It is assumed that prior information is available that suggests:

1. The effective memory of the unknown system F is 40.
2. The response of F' to sinusoidal inputs with frequency
higher than 0.15 times the sampling frequency is negligible.

3. F displays nonlinear behavior up to third order.

Such information may be obtained by impulse and sinusoidal response tests prior to complete
identification. In light of this prior information, Theorem 1 suggests that a low-frequency basis may
be choosen for a TPBA. The basis is computed by finding the 12 = 40 x .3, (memory X bandwidth),

eigenvectors associated with the 12 largest eigenvalues of the 40 x 40 positive semidefinite matrix

we o s, (18)
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where w(f) = (1,e27f, ..., &BN27H  Theorem 1 shows that by using this basis the TPBA
represents the low-frequency response of F with negligible error. Since the high-frequency response
of F is itself negligible, it is reasonable to expect that the TPBA will model F quite well. Using
this basis, the third order TPBA (sum of linear, quadratic, and cubic homogeneous TPBA’s) has
454 parameters. For comparison, the number of parameters in a third order Volterra filter with
memory 40 is 12,340. From the input and output data records the least squares estimate of the
linear, quadratic, and cubic Volterra kernels using the TPBA are obtained. The normalized squared

error between the true system kernels, denoted hq, hsy, and hsz, and the TPBA kernel estimates, le,

iLQ, and ilg, is defined as

E’Zl‘,...,ikZI |h’k(117 ey Zk) - ilk(il, ey ’Lk)|2
it AR, i) P

For this simulation, the errors are e? = 3.8751 x 1072, €3 = 1.6813 x 1071, and €3 = 1.7587 x 107!,

€r = , k=1,2,3. (19)

The estimated and true kernels are also visually compared. The dashed curve in Fig. 2 shows the
estimated linear kernel. Fig. 4 and 5 depict the true and estimated quadratic kernels respectively.
Fig.s 6 and 7 show the 2-dimensional kernel “slices” {h3(i,,5)}{—, and {hs(i,i,7) 19, of the third
order kernels. These kernel slices are representative of the correspondence between the estimated
and the true third order kernels.

If g is the impulse response vector of the linear system L and x = (2(k),...,2z(k — 39))L, then

the output of F is given by

(k) = 5(g'x)’ - (g"x)* +g"x,

Written this way, it is easy to see that the vectorized second and third order kernels of F' are
proportional to g ® g and g ® g ® g respectively. Using Theorem 2 and Corollary 2.2, g may be
recovered exactly (up to a constant scale factor) from either the second or third order kernels. For
example, in the third order case the m? x m matrix H, formed according to Theorem 2 using the
third order kernel, is proportional to (g ® g)g’. Hence, in this case H is rank 1 and the normalized
right singular vector associated with the non-zero singular value is g/||g||. The second order kernel
produces the same result. Hence, given only the true system kernels, using Theorem 2 one can
deduce the cascade structure of F. The use of Theorem 2 to deduce the cascade structure from a
general order Volterra kernel is an extension of the quadratic kernel rank criterion proposed in [7].

If the estimates of the Volterra kernels are sufficiently accurate, then applying Theorem 2 to the
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estimated kernels should reveal the special structure of the true system F. Using the estimates
obtained from the system identification simulation above, an m X m matrix H, is formed from the
estimate of the second order kernel ibg, and an m? x m matrix ﬂg is formed from the estimate of
the third order kernel hs, both according to Theorem 2. Because the kernels are estimated using a
12 dimensional TPBA, H, and Hj each have at most 12 non-zero singular values. The a plot of the
first 12 singular values of H, is given in Fig. 8. The first 12 singular values of H; are plotted in Fig.
9. Note that both I:IQ and ﬂg are nearly rank 1 matrices indicating that both the second and third
order kernels are well represented as a tensor product of a single basis vector. Furthermore, the
right singular vectors corresponding to the single largest singular values of H, and H; are nearly
the same. These singular vectors also match up well with the normalized estimate of the linear
kernel as shown in Fig. 10. On the basis of this comparison, one may infer that the underlying true
system is well represented by a cascade of a linear filter with impulse response Ry (linear kernel

estimate) followed by a memoryless polynomial transformation.

B. Fzample 2 — Input Error Design

In this example, the input error design methods are examined. Let {Uy} be an ii.d. sequence

e~2lul, An MA sequence {X}} is generated

of Laplace random variables, with density fy(u) =
by passing {U;} through a 10-tap FIR filter whose impulse response is shown in Fig. 11. Let
X =Xp=(Xg,.. .,Xk_g)T be the input to a 2nd order homogeneous Volterra filter.

The eigenvalues of R = E[XX'], normalized by the largest and arranged in descending order,
are depicted in the solid curve of Fig. 12. Note that the last 5 eigenvalues are approximately zero.
Since X is a linear, symmetric process, Theorems 3 and 4 suggest that the first 5 eigenvectors of R
(associated with the largest eigenvalues) provide an excellent basis for X. If P55 is the projection
matrix corresponding to these five eigenvectors, then Theorems 3 and 4 produce the error bound

(for Laplacian distributed random variables the bounding coefficient ay = 6)

X - (P X))

< 1. -2
en x| < 1.1304 % 10 (20)

The actual error in this case is e = 9.5386 x 10~%. The bound of Theorem 3 overestimates the error
by an order of magnitude, but is useful in that it indicates that the worst case error is approximately
1 percent.

A nearly optimal TPBA is obtained by forming the matrix C, as in Theorem 5, from the 4th order
moment matrix E[X(Q)X(Z)T]. The singular values of C are shown (normalized and in decreasing

order) in the dashed curve of Fig. 12. Notice that again only 5 singular values are significant. Using
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the five dominant right singular vectors of C as a basis and forming the corresponding projection

matrix Ps ¢, produces the error

X - (P X))
Ix)]

€c

= 9.5385 x 107%. (21)

Hence, in this case both the methods of Theorem 2 and Theorem 5 appear to perform equally
well. In fact, the projections are nearly identical and [|P5 5 — P5c|l2 = 2.0458 x 1072 (note, for any
projection matrix P, ||P||z = 1).

Next, the input error design methods are examined for a nonlinear process. For this case, let

{Xx} be the quadratic process
X =020U.U;_1 + 0.5U;_1Uj—9 + 0.5 UL_oUi_3 + 0.25 Up,_3Up_4. (22)

Again, X = X, = (X, .. .,Xk_g)T is the input to an 2nd order homogeneous Volterra filter. The
singular values of R and C for this case are depicted in the solid and dashed curves of Fig. 13

respectively. The rank 5 approximations of both methods in this case produce the errors

X (s, X))
: 1X@|

= 3.2090 x 1072, (23)

X (X))
i 1X@]

Notice that the nearly optimal SVD method does produce a slightly lower approximation error than

= 3.0432 x 1072 (24)

Method III. As a point of interest, in this case the projections are quite different and ||P5 3 —P5 ¢||2 =
3.6018 x 1071,

In the two previous examples, the difference in performance between the two input error methods
is slight. However in [16], it is shown that Method IV can perform arbitrarily better than Method
I11.

VII. CONCLUSIONS

The TPBA dramatically reduces the complexity of Volterra filters. Four methods for choosing the
approximation basis for the TPBA are studied. The methods vary in computational complexity
and required prior knowledge. Two methods are shown to be nearly optimal. In all cases, the
approximation error of the TPBA is bounded to quantify the performance of the approximation.
It is shown that the TPBA offers a much more efficient implementation than the original Volterra
filter. Also, because certain design methods are based on incomplete prior knowledge of the filter

(i.e., frequency support) or input (i.e., moments only) such approximations are also useful in
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reducing the estimation complexity of Volterra filters for identification and modelling problems.
Furthermore, the approximation subspace provides useful insight into the response of the Volterra
filter. In particular, the approximation subspace may be used to model or detect bandpass behavior

and cascade structure as demonstrated in the examples.

APPENDIX A

PRELIMINARIES

The following classical result regarding low-rank matrix approximations is used in several of the
proofs.

Theorem Al [5, 13]: For every complex-valued matrix A € C?*"™, ¢ > m, there exists a matrix
that is a best rank r < m approximation to A, simultaneously with respect to every unitarily
invariant norm | - || on €7*™. Moreover, if A = UXV? is the singular value decomposition of A
where UTU = VIV = [, ¥ = diag(o1,...,0m), 01 > -+ > 0, > 0, then A, = US, VT, where
¥, = diag(o1,...,0,,0,...,0), is a best rank r < m approximation.

Corollary A1: If A = USVT, V, is an m X r matrix composed of the r columns of V corresponding
to 01,...,0,, and P, = VTV;F7 then A, = AP,.

The Kronecker product also plays a key role in several of the proofs. The following Kronecker
product properties are used extensively. If A is any matrix, then the n-fold Kronecker product of
A with itself is denoted

AW —Ag...0A.

n times

Also, throughout the appendices, let I denote the m x m identity matrix. See [3] for a review of

Kronecker product properties. Dimensions of matrices used in Kronecker product properties:

A(pxq) B(s x 1) G(l x u) H(p x q)
Qg X q) P(p x p) D(g x s) R(s x t)
(P1) (A®B) @ D=A®(BeD)
(P2) (A+H)@(B+R)=A@B+A®R+H®B+H®R
(P3) (A®B)(D® G)=AD ®BG
(P4) (A@B)T = AT g BT
(P5) If {\;}i_, are the eigenvalues of P and {y;}I_, are the eigenvalues of Q,

then the pq eigenvalues of P @ Q are given by products {Xju; }i=1...p, j=1,..q-
(P6) vec(ADB) = (BT @ A) vec(D)
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APPENDIX B

METHOD I: FREQUENCY DOMAIN FILTER ERROR DESIGN

Proof of Theorem 1: This theorem establishes a minimizer of
min Hw(n) + pw pn) _ plr)y(n) _ W(”)P(”)Hg, (25)
Pef,
where . is the set of all orthogonal projection matrices on IR™ of rank < r. To show that &,

is compact suppose that {Q;};>1 is a convergent sequence in ¥,. Then Q? = Q;, Q;F = Q., and

70
rankQ; < r, Vj, and hence §, is closed. Also, since each element in ¥, is a projection matrix, &, is
bounded. Therefore, since £, is finite dimensional, closed, and bounded, it is compact. The error
is continuous with respect to P and hence a minimizer exists.

Let W = UDU be the eigendecomposition of W, where D = diag(Aq,...,An), A\p > - > A, > 0.
IfC= UDI/QUT7 then W = CTC. Notice that

W + PWP — PW — WP = (C — CP)T(C - CP),
so that
W+ PWP — PW — WP||, = ||C — CP||2.

Theorem Al implies that P, y, as defined in the statement of Theorem 1, minimizes ||[C — CP||;
and hence P, minimizes ||[W + PWP — PW — WP||,. It is easily verified that [|W + P, w WP,  —
P, wW — WP, w|l2 = Ar41. Note that P, wWP, w = P,wW = WP, = UD,U?, where D, =
diag(A1,...,A,0,...,0). Kronecker product property (P3) implies that ngvz,w(”) = (PnWW)(”).
Since P, wW = P, wWP, , applying (P3) again shows that P%%,W(”) = P&%W(”)P&%. Therefore,

WO 4 P WEIRT, — PEAW) — WOORTE [y = [ WO — (WP )2,

I(UDUT)™ — (UD,UT)||,

= Jum(D® — ey,

r

(n)

The matrix (D(”) — D;"’) is diagonal and positive semidefinite. Furthermore, it is easily verified

that the largest element of (D(") — Dgn)) is equal to A\J7'A, ;. Therefore,
U D = DENTET | = A=Ay

Hence, to prove the theorem it suffices to show that for every orthogonal projection matrix P with

rank < r there exists a unit norm vector e such that
el(W 4 pwpt) _ plyw() _ wpye > A1y L.
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Let vy maximize vIWv subject to Pv = 0, ||v|]]s = 1. Then it is easily established that
vIWvp > A,41. To see this, note that the problem: maximize v Wv subject to Pv = 0, ||v|]z = 1,
is equivalent to: maximize v PTWPLv subject to [|v[|2 = 1, where PL =T~ P. Also note that
vIPtWPLvy = |W + PWP — PW — WP||,. Hence, if vIPXWP»v; < .44, then |W + PWP —
PW — WP||; < A;41. However, this contradicts the optimality of P,y according to Theorem Al.

Let u; denote the unit norm eigenvector of W associated with A; and set e = u(n_l) ®vp. Using

1
(P3) it follows that e’'e = 1 and
PWe = (Puy) "V @ (Pve) = (Puy)» Y go=o0.
Hence,
eT(W(”) + pwpln) _ plr)yw(n) _ W(”)P(”))e = el'wle,
= (0 Wuwy)" " (vg Wvs), by (P3),

= A?_I(VEWVP),

> AT

ArprPENDIX C

MEetHoD II: SVD BaAsSeDd FiLrer ERROR DESIGN
Proof of Theorem 2: First show that || Pgﬁ%h — h|3<nY %, 0l Let
er = |h— (PX @I |2 k=1,...,n.
Note that (Pﬁﬁ; ® I"=#)) is an orthogonal projection matrix and use (P3) to establish the identity
(PY @ 100 = (PUTY @ 1=F+D) (162D @ (P, @ 1070,
Using the identity above

e = |[h—(P% @ 1=")h|3,

= |
(k—1)

+(10) — P @ T E ) h | 2,

) ® I(n—k-l—l))[h . (I(k—l) ® PT,H ® I(n—k))h]

Since (P&{CH_I) @ 1051y and (100 — Pq(fH_l) ® I=%+1)Y are projectors onto orthogonal subspaces
e = [PV @1 - (4D @ Py 010 |3
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+11 (1) - pU ) @ 1R D)h 2,
= @Y @1 — (10D @ P, @ TP)h) |2 4 65y (26)

(k

Now, since (PT’H_I) ® I(”_k"'l)) is a projection matrix,
I(Pr ) @100 — (%D @ Py @ IR F < b — (5D @ Py 0 )b 3 (27)
Furthermore, the symmetry of h implies that
Ih— (1" VP @l ] =|h - (Px 01" V)| = e (28)
To see this, let P;; = I — P, ;. Then using (P2)
h— (1Y@ P,y @ 10)h = 1* @ P, @ 179k,

Let u;, 2 =1,..., m denote columns of I and let p;, 2 = 1,...,m denote the columns of P#H. Then
each element of (I(k_l) ® P#H ® I(”_k))h has the form hT(uZ-J ®-Qu, ®p;Qu;,,, @ -Qu;,_, ),
for appropriate integers 1,...,%,_1,7. The symmetry of h implies that for every collection of

m-vectors {x;}"_; and every permutation (7(1),...,7(n))of (1,...,n),
b (x1 ® - @ %) = W' (Xp(1) @ -+ @ X))

Hence,
b (w, @ @w, ©p;@u,, @---Quw, ) =h"(w, @---Qw, , @p;).

For each #1,...,4,_1,7 the term on the right hand side of the equation above is an element of the
vector (P © 1"=D)h. Hence, the vectors (I*~1) @ Pl ® 1*=*))h and (Piy ® 1"=D)h have the
same elements and thus both have the same norm.

From (26), (27), and (28) it is easily established that ey < ex_1+e; and || h—nggh I2=e, <ne.
Notice that vec(H) = h, where the vec operator stacks the matrix columns to form a column vector.
The Kronecker product vec identity (P6) shows that vec(H — HP, ) = h — (P, ® I®~Y)h. The
Frobenius norm, denoted || - ||, is the square root of the sum of the square of every element in the
argument. Hence, || h—(P, z @I )h||2 = |[H—HP, 4||2. The Frobenius norm is unitarily invariant
and therefore Theorem A1l and Corollary Al imply that HP, y is a best rank r approximation to
Hand e; = [[H—-HP, 42 = Y7, 0f.

To establish the lower bound consider the following. Suppose that

n

Ql,f?gnepu (§Qi)h - h|;= H(gil) Q:)h — hif3,
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that is, {Q;}", are minimizers. Note that

I(QQ)h - k3 = (1™ - R Q)hl3,
=1 =1

> (|10 - Q @ 1" V)h|3,

since the subspace spanned by the columns of Q; ® 1"=1) contains the subspace spanned by the

columns of ®”_; Q;. Using (P6), the Frobenius norm, and Corollary A1,

[0 - Q @ 1""D)h|} = [[HQ, - HJ3,

m
> |HPx —H[z= ) of.
i=r+1

APPENDIX D

MEeTHOD III: CORRELATION MATRIX BASED INPUT ERROR DESIGN

Proof of Theorem 3: Theorem 3 states that if P is an orthogonal projection matrix and X
is an m-dimensional random vector with finite 2nth order moments, then there exists a constant

0 < a, < oo such that
X = (PX)O? < g XX - PXP

Define ¢; = X(%) — (I(”_k) ® P(k))X(”)7 for k =1,...,n. Then using Kronecker properties (P2) and
(P3)
lertal? = X0 — (101 @ PEHD)XMNZ = 1Quer pr + QX% (29)

where Q;, = 1(m=#) g pk) Qi = 1) — Q. and €y py1 = X(n) — (I(”_k_l) ®P® I(k))X(”). Since Q

and Q,Jc‘ are projectors onto orthogonal subspaces, it follows that

1Qeer it + QFXM? = tr(E[(Qpérpr1 + QEX™)(Quér psr + QFX)TT),

= t(QuE[E1 k4161 1pa] Qi) + tr(QEEX (X M)TIQR),
where the facts
tT(QkE[él,kH(X(n))T]QIﬂ = tT(E[él,kH(X(n))T]QliQk) =0

and similarly tr(QiE[X(”)é{k_H]Qk) = 0 are used. Also, since Q, is a projection matrix, tr(QkE[éLk_Hé{k_H]Qk) <

tr(E[éLkHé{kH]). By symmetry tr(E[él,k-}—lé{k_}_l]) = ||€1k+1]|? = ||le1]|?. To see thislet P+ = I-P.
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Then using Kronecker property (P2) €y 541 = X(=k=1) @ PLX @ X*) and properties (P3) and
(P4) show that

levrall® = tr(Blerpnef ppa]) = wEXXT)OHD @ PAXXTPE @ (XXT)P)). (30)

The trace is equal to the sum of the eigenvalues and by the Kronecker product eigenvalue property

(P5) the ordering of the Kronecker products does not effect the eigenvalues, hence

tr(B[(XXT)"F=1) @ pLXXTPL @ (XXT)F)))
Eltr(XXT)"=F=1 @ pLXXTPL @ (XXT)*))],

= E[tr((XXT)"=1) g PAXXTPL)),

= el

A

Finally, note that Q3+ X () = ¢, and therefore |lex11||? < |le1]|* +||ex||? and ||e,]|* < n ||e1]|?. Hence,

X — (X)) leal® < nlled))® = n|X™ —A*D @ P)X™)?,

n|IXD @ (X - PX)|?, by (P2).

Now let X4,...,X,_1 = X and let X,, = (X — PX) and let X;; denote the jth element of the
vector X;. Since X has finite 2nth order moments there exists a constant 0 < «, < oo such that

2n 2 1n
E[X77] < o, E[X7,]". Therefore,

XCD e X -PX)? = [Xig @ X,
= ) BT, X7
ilv 1271_1

E[Xﬁ%]l/”, by Holder’s inequality,

IN
E|Vt1 E|'
s

> eV Eix%) = e, Y. TIEXZ]

11,eein=1 j=1 11 ,eein=1 j=1

IN

= a, [TIX]? = a, IX[*" V)X - PX]|2
7=1

Hence, ||X") — (PX))||? < na, ||X[2*Y||X — PX]%

X0~ (PR 2

The ratio X2

quantifies the quality of the approximation (PX)(”). The numerator is
bounded from above as using the previous argument. The denominator ||X (|| is bounded from

below using Jensen’s inequality.

IXP)? = a(EXOXE),



= tr(E[(XX")M),
= Blux(XX")"],
= E(XTX)",
> (E[(XTX)])", by Jensen’s inequality,
= I[P
O

Proof of Theorem 4: Theorem 4 asserts that if X is a linear transformation of an independent,
symmetric process U, then the bounding constant a, can be determined from the 2nd and 2nth

order moments of U alone. Consider a random variable

q
Z=3¢Uj, (31)

i=1
where ¢y, ..., ¢, are real numbers. Technically, this proof only requires that the odd order moments
of U;, 7 =1,...,q vanish up to order 2n — 1, and the symmetry assumption guarantees this. First

consider the second order moment of Z. Due to the independence of the U;’s and the fact that

they are zero-mean,
q

E[ZQ] = Z CJIC]2 LhLJz Z? U2 (32)

J1,32=1 =1
Next look at the 2nth order moment of Z,

q
E[ZQTL] = Z Cjr " C]énE[UJi T LTan]' (33)

j17~~~7j2n:1
Note that since the distributions are symmetric and by independence, E[U;, ---U;,, ] is zero if the

product inside is factorable in the form Ufp] [Tiz; U, for some j and non-negative integers

P1,...,pq. Hence, any non-zero term in the series above (33) has the form,

. -cijE[Ufpl e U(qu], (34)
where py,...,p, is an arbitrary collection of non-negative integers whose sum is n. In fact, the
series (33) contains all such terms; that is every product of the form (34) over all pq,...,p; >

0, 23‘21 p; = n. Also notice that each term of the form (34) may be bounded as

A -cgp‘?E[Ulzp1 U < A 2P E[UQ”]T1 . [UQn]?q by Holder’s inequality,

IN

cfpl .. .Cgpq aﬁl/” E[U2]Pr . . ,aqu/n E[UqQ]pq7

= BT B, (35)
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where the fact 3°7_; p; = n is used in the last step. Hence,

E[Z*"] < ay > Pt [UF]P - - B[UZ TP (36)
P1y-Pg20:) | pj=n
Finally note that E[Z?]* = (3; ¢JE[UF])" is equivalent to the sum above. Hence, E[Z?"] <
a, E[Z2]".
If C is an arbitrary m X ¢ matrix and P is a projection matrix on IR™, then the elements of
X = CU and (I — P)X are simply linear combinations of the U process. Hence a,, as defined may

be used in Theorem 3 (see proof of Theorem 3). o

APPENDIX E

MEeTHOD IV: SVD BASED INPUT ERROR DESIGN

Proof of Theorem 5: This theorem is proved using an approach similar to the proof of Theorem
2. Three identities are established first. Let R,, = ]E)[X(”)X(”)T]7 C,, be the square root of R,, (i.e.,
R, = C2), and let {Q,}", be an arbitrary collection of orthogonal projection matrices. Because
each Q; is an orthogonal projection matrix, so is the Kronecker product (Qr-; Q;). It then follows

that the input error may be written as

n n

| x(n) _ (é Qi)X(”) H2 = tr([C, — Cn(® Qz)]T[Cn - Cn(® Q1)

Ca(@ QI (37)
=1
where || - ||z denotes the Frobenius norm. It is also easy to show that
1(Rn = (QQi)Rn) = [ICr = Ca(@Q Q7 (38)
=1 =1

Using the Kronecker product vec identity (P6) vec(Cp, — C,(®%, Qi) = ¢ — (®™, Q;) ® I)c,
where ¢ = vec(C,,). The Frobenius norm is the square root of the sum of square of every element

in the argument. Hence,
1C: = Cal@QllE = lIvee(Cy = Cu ®Q Nz = lle—( ®Q )@ 1)elf7,
=1

= fle=( ®Q @ 1)e||3. (39)

The three identities (37),(38), and (39) are used several times in the subsequent analysis. =~ Now

to establish the upper bound || X(") — Pg?c)X(”) I < n Y. 0f or equivalently using identities
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(37) and (39),

le = (PE2@1™ellf < 0 3 of.
t=r+1
define e, = ||c — (ngc) ® I(27=F))¢||2. Proceeding in the same manner as in the proof of Theorem 2
(see equation (26) in Appendix C) shows that
er = (P @ 1+ )le — (1070 @ Prc @ 10" P)e] [ + 4. (10)

Also, since (ngc_l) ® I(Qn_k‘H)) is a orthogonal projection matrix
I(PUEY @ 1@k e - (1D @ P, o @ I M)e] I < fle — (16D @ Pr e @ 1EP)e|2. (41)
At this point, to establish the upper bound it suffices to show that
e = (1 g P, e 0 1E ]| = e,
To see this, use (P3) to establish

tr(R, — (10 @ P, @ IF-NHR,) = tr(EXMXC

T

_(I(Tb—k) ®Prc® I(k—l))E[X(n)X(n) D,

—E[tr(XH @ P, X @ XE-)x(7).

Because the trace of a matrix is the sum of the eigenvalues and since (P5) implies that the eigenval-
ues of (X""H @ P, X ® X(=1)X (™" are the same as the eigenvalues of (X1 @ PT7CX)X(”)T.
Therefore,

T

tr(R, — (1"® @ P, . @ IF-NR,) = E[tr(XMXM7)]

T

—E[tr(X" Y g P, X)X

]
—E[(P, X @ X)X (M7,

)]7

T

= tr(EXMX®

= tr(R, — (Prc @ I""DR,,). (42)
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Now using the identities (38), (39), and (42),

le = (V@ P, @1 M)el = [|C, — (1M @ P,c @ IFD)C, |12,
= tr(R, — 1" H @ P, o I*R,),
= (R, — (Prc ® I""D)R,),
= [ICs = (Prc @ 1" )C,IZ,

= lle = (Pre @ 1% ))e]3 = 1.

Hence, combining this with (40) and (41) produces the bound e, < ne;. Kronecker property
(P6) shows that vec(CP,c) = (P,c ® I¥"V)e. Hence, using the Frobenius norm || ¢ — (P, c ®
12*=D)¢ || = ||C — CP,.c 2. The Frobenius norm is unitarily invariant and therefore Theorem A1
and Corollary Al imply that CP, ¢ is a best rank r approximation to C and e; = ||[C — CP,¢[|2 =
Y107
The lower bound is easily established as follows. Suppose that
min X0~ (@QXO =X~ (@)X,
Q€85 = =

that is {Q;}", are minimizers. Note that
X0~ (@ QX = 1) = QX > (17 - @ & 1= X
=1 =1

since the subspace spanned by the columns of Q; ® 1"=1) contains the subspace spanned by the

columns of @, Q;. Using (38), (39), and Corollary Al,

(1) — Q, @ I )XM2 = [|CQy = CIZ > |CP,x —Cl2 = 3 o7, (43)
i=r+1
O
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